OPENCOURSEWARE

SCSJ 2733
Programming for Engineers

Introduction

Innovative.Entrepreneurial.Global

ocw.utm.my ©UIM

“Computers make very fast,
very accurate mistakes”

ocw.utm.my @HTM
What is Programming

Programming is writing instructions for a computer
to perform.

But the problem is, a computer takes everything
literally and without question.

It cannot distinguish between what we say and
what we might actually intend to say.

So, humans must be clear and unambiguous when
giving instructions (programming) to a computer.

ocw.utm.my ©UIM

Chicken Curry Recipe

* |Ingredients
— 6 spring onions
— 3 garlic cloves
— 2 tbsp vegetable oil
— half a 400g tin chopped tomatoes
— 2 tbsp curry powder
— 1 tsp ground ginger

— 400g boneless skinless chicken thigh, cut into 2.5cm
pieces

— 100ml Greek-style natural yoghurt, plus extra to serve
— salt and pepper

ocw.utm.my @HTM

Chicken Curry Recipe
* Method

— Thinly slice the spring onions, reserving a handful of the sliced
green parts for garnish. Peel and chop the garlic. Heat the oil in a
large saucepan over a medium heat and cook the spring onions
and garlic for a few minutes. Add the tomatoes, curry powder
and ground ginger and cook for 3-4 minutes. If the pan gets dry
add a splash of water and make sure the spices don't burn.

— Add the chicken and cook for 5 minutes. Make sure all the
chicken is coated and is beginning to brown on the sides.

— Add 250ml water and bring to the boil. Reduce to a medium to
low heat and cook for 10-15 minutes, or until the chicken is
cooked through with no sign of pink juices in the middle of the
pieces.

— Take the curry off the heat, stir in the yoghurt then season with
salt and pepper. Serve the curry with the rice and garnish with a
drizzle of yoghurt.

ocw.utm.my @HTM

What do we normally program?

Repetitive & Duplicative process

Sequence/series/multiple of complex
operations

_drge SCale computations

Repeated applications
Computationally expensive for human to do

ocw.utm.my @HTM

Programming vs Natural Language

* Elements of language — vocabulary,
rules/grammar, structure.

* Natural languages

— can be ambiguous and make small errors, and still
expect their intent to be understood

— human can guess the ‘intended” meaning

ocw.utm.my @HTM

Programming vs Natural Language

* Programming languages

— require a greater degree of precision and
completeness

— have syntactic and semantic rules used to define
meaning

— computers do exactly what they are told to do,
and cannot understand the code the programmer
"intended" to write

— are used to facilitate communication about the
task of organizing and manipulating information,
and to express algorithms precisely

ocw.utm.my @HTM

Talking to Computer

* Machine Code/Language —

— The lowest-level programming language
understood by a computer’s CPU, consisting
entirely of numbers (binary numbers), hardly
understood by human.

— Every CPU model has its own machine code.

ocw.utm.my @HTM

Talking to Computer

 Assembly Language

— An assembly language contains the same
instructions as a machine language, but the
instructions and variables have names instead of
being just numbers

ocw.utm.my @HTM

Talking to Computer

* High-Level Language

— A programming language (such as C, FORTRAN, or
Pascal) that enables a programmer to write
orograms that are more or less independent of a
oarticular type of computer. Such languages are
considered high-level because they are closer to
human languages and further from machine
languages.

 oowutmmy ©UIM
Talking to Computer

High Level I.anguage{

Low Level Language

.........

Hardware

ocw.utm.my @HTM

Compiling

* Programs written in a high level language has
to be compiled (translated) by a compiler into
machine language (consisting of just binary

numbers) before it can be executed by the
computer.

* Hence, the compiled, ready to run programs
are also called binaries, or executables.

ocw.utm.my

Programming

Problem steps must be able to be fully &
unambiguously described

Problem types;
— Can be clearly described

— Cannot be clearly described (e.g. Beauty)

Many similarities to solving ‘word problems'
— Translate prob. description into a formal solution

— Symbol manipulation

Mix of high level creativity & low level details
Modularize (for reuse) & Automate (loops)

©UIM

. Data Organization & Algorithm Design

. ocw.utm.my . @HI‘M
Steps in Problem Solving

(Programming)

. Program Analysis & Specification }Logic of
Program

. Program Coding Coding
. Execution & Testing (Typing)

. Program Maintenance

ocw.utm.my @UTM

Stages of Program Development

Logic Errors

[
v Syntax Errors

Input?
Ej READ *, X , Y 2 ';'de b
XY, Y IF(X.LE.Y) THEN ero:
Z=X*Y
X BLSE -
:> :> Z=2X]Y Missing
ENDIF Comma!
Special PRINT *, Z
Cases?
| Wrong
Graph \ Answer!
Output?

(a) Program Concept

(b) Algorithm Development

(c) Program Coding

Fig. 1-1 Stages of program development

(d) Debugging

ocw.utm.my @HTM

Prog. Analysis & Specification

. Specs must include
— Input — specs. Of problem input

— Output — description of problem's output

. May be complex, imprecise, vague — but must
be clarified at this stage

ocw.utm.my @HTM

Data Org. & Algorithm Design

. Problem's Data — Appropriately Structure &
Organize (to store data)

. Design Algorithm — how to process data

. Algorithm — Precise sequence of simple steps

to arrive at solution
- May be written in a mix of pseudocode &

flowchart

. Pseudocode — mixture of natural
language, symbols, programming
language of choice

ocw.utm.my @HTM

Structured Algorithm / Programs

Use 3 basic methods of control
- Sequential : steps done in sequential manner,
each step executed once

-~ Selection : One of a number of alternatives is
selected and executed (if / condition)

- Repetition : One or more steps are performed
repeatedly (loops)

For more complex problems — divide & conquer
- Break into smaller, manageable subprograms
(modules)

ocw.utm.my ©UIM

Program Coding

Coding — Implementing data objects & algorithms in a
chosen programming language

Syntax — must follow grammatical rules of that language
- Variables

— Types : real, integer, etc.

— Operations : +, -, X, /, **

- Assignment : =

— Input/output : read, print, write

- Comments

ocw.utm.my @HTM

Programming Style (Coding)

. Correct, Readable, Understandable. To achieve these;

- Programs must be well-structured

. Top-down approach (divide & conguer)
. Simplicity & clarity

- Each program unit must be documented
(comments)

. Opening comments (purpose, data, author,
date, ref.)

. Key program segments

. Meaningful identifier (variable names)

ocw.utm.my @HTM

Programming Style (ctd.)

- Formatted to increase readability
. Spaces
. Blank lines between sections of program
. Alignment & indentations
. Choice of fonts

. Fixed-width font (programmer’s font)

. Ex.: Courier, Consolas, Inconsolata

ocw.utm.my @HTM

Execution & Testing

. Program must be correct (produce correct

results)

- Validation — program meets project specs.
(answering the question)

— Verification — results are correct & complete
(answering It correctly)

ocw.utm.my @HTM

Errors (Bugs)

. Syntax error

— Compile time error (missing comma, brackets etc)

- Runtime error (divide by zero, infinite loop etc)

. Logic error

— From flaw in algorithm

Program Testing

. Test with simple cases which results are
known in advance (reality check)

ocw.utm.my ©UIM

Program Maintenance

. Maintain Flowchart

. Maintain Source Code

. Make code readable

