OPENCOURSEWARE

Basic Building Blocks of
Programming

Innovative.Entrepreneurial.Global

ocw.utm.my @HTM

........

Variables and Assighment

Think of a variable as an empty container
Assignment symbol (=) means putting a value into a
variable (container)

— This is not the same as ‘equal’

Initialization

— Before doing repetitive computations, usually needs
initialization value (usually O or 1)

Swapping

— To swap values between two variables, we need a third
dummy variable to temporarily store the value.

ocw.utm.my @HTM

........

Assignment (=)

* In mathematics, x =1 — x is a statement of fact,
which can be solved to get x = 75

* |In programming x =1 —x is a command to assign x
with the value of the right hand side of the = symbol.

— This will be read as x is now assigned with the value of 1
minus the current value of x

* |In programming, the LHS is always a single variable
because a value is being assighed to it.

ocw.utm.my

Algorithm structures

Sequential execution
Branching

Loops

Nested structure

Subroutines

........

Block Function Flowchart Symbol
Unconditional Transfer ¢ f‘ - —>
I 0 /J- /
Sequential nput or Output ZT
Execution
Processing _L
Branching Conditional Transfer F{);_|v
v
(O
Conditional Loop #J
>
Loops o

Counted Loop

Fig. 1-2 Basic building blocks of programming

©

UTM

NEPAFE FERLN PR

ocw.utm.my @HTM

........

Sequential execution

* Proper sequence is important.

* Following instructions in different sequences
will give different results (or no result)

{'.r“‘"‘\ el
\@ : EXAMPLE 1.1

A7 uwverem TERLON WAL :
Construct an algorithm and a flowchart to compute the weight w of a hollow sphere of
diameter d, wall thickness ¢, and density p, using the following equations:

I-=_d [,:g—t
2 2
V=%'rr(r3-r3) w=pv

We start with the calculation of the outside and inside radii (r, and r;), based on the values
of the diameter d and thickness ¢. From these, we next calculate the volume v of the hollow
sphere. Finally, we calculate the weight, which is just the volume times the density, or pv.
Here are the algorithm and flowchart to perform these instructions:

Algorithm Flowchart
Compute inner and outer radii by
_d oo d
r, = 2 r;) t r, = d|2
Compute volume of sphere by X
V:%ﬁrr(rs—rl?) rp=dl2 = ¢
Compute weight of sphere by . (r2-r))
3 o 1
w = p | 4 l
w=pVv

[@recle]

ocw.utm.my

| ©

TYTYra r€r

EXAMPLE 1.3

Rewrite Example 1.1 and Example 1.2 to allow for repeated calculatio

i i nof ¢ .
hollow sphere of diameter d, wall thickness ¢, and density p. This time, he we

input of different values of d, ¢, and p before each calculation of w and . » oy f
Algorithm Flowchart

Enter values for d, tandp C Start)

Compute inner and outer radii by ” l ,

d
r= g =g b / Read 7
& 2 2
d,t p

v

Compute volume of sphere by
doy ™ d/2 Ir. = dlz .
4 3_ .3 0 i
V=—3—7T(1'o'1'i) V=477-/3(I.03_1,i3)
w=pVv
Compute weight of sphere by T

w=pv Print
v, W
Print out values of v and w ‘
Go back to beginning D0

w".utrn.rny

ocw.utm.my

Branching

* Also called
— Conditional structure
— Decision
— |F statement
— Selection

yes no

©UIM

o g

ocw.utm.my @ UTM
EXAMPLE 1.4 |

Construct an algorithm and flowchart to read two numbers and determine which is larger.

Algorithm - Flowchart
Enter values of x and y C Start
Is x larger than y?
If yes, print "x is larger" Read
If no, print "y is larger" - /
End Branch

yes 0 no
v ;
/ Print "x is larger" / / Print "y is larger" /

C Stop)

EXAMPLE 1:5
‘ ®UTM

Construct an algorithm and flowchart to determine if a point (x, y) lies with
’ 1 in a C' AV
IT

cadius, 7, centered at the origin. Use the condition that if 02 +)12 |
within the circle. If the point lies within the circle, print out a n)l,e)ssa < r, then the Poi;?f
of that point from the center of the circle. ge and the digtap, .
et
Algor22 Flowchart
Read in 7 and (x, Y) C str -
52+ <r? "
If yes, then Read
print "inside" e /
compute Z %)
print Z
If no, then
print "outside" yes '
End Branch no
Print "inside"
[1de / / Pl'int ,noutsiw
y | l
| 7= (x2+y2)l/2
v

[=]
Q

C Stop)

EXAMPLE 16 Nested IF Statement

Construct an algorithm and flowchart to see if a number 7 is negative, positive, or Zero.

Algorithm Flowchart
Read in n C Start)
Isn <0?
If yes, n is negative
print "Negative" Read n

If no, is n = 0?
If yes, n is zero
print "Zero"

If no, n is positive n<0?
print "Positive"
End Branch
End Branch
Prmt Print Prmt
"Negative" "Zero" "Posmve

_O__

—Q

ocw.utm.my

Loops

* Also called repetition, recursion
* Two types

— Counted
— Conditional
* Avoid infinite loops!

* Loops are controlled by LCV (Loop Control

Variable) which determines when to exit the
loop

........

ocw.utm.my
Loops
‘_
Instructions
®
@
®
Keep
Count

(a) Counted Loop

Instructions

(b) Conditional Loop

ocw.utm.my

Counted Loop

when loop

: start value
finished . back

step size

ocw.utm.my @ HI M

e

Write an algorithm and flowchart to print out the numbers 1 to 100 and thejy squ
are

Algorithm Flowchart
Loop (LCV start = 1; stop = 100; step = 1) (—m
Print LCV value and LCV?
End Loop start
stop= 10()
step=1
v LCV

Print
LCV, LCV?
4

(Stop)

ocw.utm.my ©UT

=

Nested Loop

EXAMPLE 1.11

Construct an algorithm and flowchart to create a 10 by 10 multiplication table such as 1 X
1 =1,1X2 =2, and so forth. This problem is best solved by nesting two counted loops.

One loop keeps the value of the first number constant, while the second loop changes the
second number from one to ten.

ocw.utm.my ©UIM
Value of LCV1 in QOuter Loop Value of LCV2 in Inner Loop Product (LCV1 X LCV2)

| 1 1

1 2 2

2 ! 2

2 2 4

10 9 90

10 10 100

Algorithm Flowchart

Loop (LCV1 start = 1; stop = 10; step = 1) (Start)
Loop (LCV2 start = 1; stop = 10; step =1)
Product = LCV1XLCV2
Print LCV1, LCV2, and Product
End Loop
End Loop

Product =
LCV1XLCV2

—

Print
LCV1, LCV2, @

Product

ocw.utm.my

Conditional Loop

§—

YCS @ no "
Body of
Loop

©UIM

ocw.utm.my @HTM

........

Conditional Loop

LCV satisfies
Condition?

Body of
loop

« LCV must change inside the body of loop to finally satisfy
condition.
« Otherwise it will result in an infinite loop.

ocw.utm.my @ UTM

Example

1.12 Construct an algorithm and a flowchart to compute an approximation to the series:

This series continues indefinitely and it is impossible to complete the computation. Yet we
can estimate the series value by carrying out the computation until a term in the series adc!s
a negligible amount to the total sum of all the previous terms. The way that we will do this
is by performing the computation until any term falls below a critical value (e) that you read
in. As an example, if we read in a value of e=0.005 each term will be evaluated and added
to the total until any individual term becomes smaller than 0.005 as shown below.

ocw.utm.my @ UTM

Term Sum Comments

1/13 - 1.0 Term (1.000) > € (0.005), so continue series
1/23 1.125 Term (0.125) > € (0.005), so continue series
1/3* 1.162 Term (0.037) > € (0.005), so continue series
1/4° 1.178 Term (0.016) > € (0.005), so continue series
1/5° 1.186 Term (0.008) > € (0.005), so continue series
1/6° 1.191 Term (0.0046) < € (0.005), so stop

Algorithm
Read €
term = 1
sum = 1
count = 2

Loop: (While term = ¢)
term = 1/coun
sum = sum + term
count = count + 1

End Loop

Print sum

ocw.utm.my ®UTM

Flowchart
/ Read ¢ /

¥

term = 1

sum = 1

count = 2
<

no form; S yes

f l

term=1/count’

/ Print sum / sum=sum+term
count=count+1

ocw.utm.my @HTM

Subroutines

* Also called functions, procedures, or modules

e Common sub-procedures are often made into
small subprograms for reuse.

* Useful for large problems when it is broken up
into small sub-problems.

[

- oowutmmy ®UTM

EXAMPLE 1.13
Construct an algorithm and a flowchart t
o evaluate the first ten t
erms of the infip;

TOTAL=TOTAL
+ TERM

Factorial

start = 1
stop = LCV
step = 1

1 ey

ocw.utm.my

Patterns and Structure

e Separate data and variables
— Look at empty variables

* Look for patterns and structure of empty
variables to help in constructing algorithms
— Loops (repetitions)
— Conditions (branching)

........

ocw.utm.my

Walk-through

* Also called tracing an algorithm

* To check whether the algorithm would
produce the expected result

........

; ; ™™
1.16 Trace through the following flowchart (or algorithm) and predict the outpyt, 1M

Algorithm Flowchart
= =1
Pl .
Print f1, f2 ¥
LOOP (CV start = 3, stop = 10, Step = l) Print
B R [E2 [
=53 v
= < start = :
Print f3 stop = 10
End Loop Step =
y LCV
B=A+p
2=
fl=1
v
/ Print f3 /
v

ocw.utm.my @HTM

........

Debugging Tip

* |[nsert print command into places in the
program where you suspect the error is
occurring and see whether the output is what
it should be.

