
Fundamental Concepts of Programming Page 1

Programming:
The Fundamental Concepts of Computer Coding

Harry H. Porter III*

Portland State University

March 19, 2003

Abstract

This paper surveys the most basic concepts of programming and is intended for
someone without any programming experience. Simple examples in the Java
language are used to illustrate these core ideas.

How do computers work? Programmers create programs and these programs tell the computer
how to behave. The act of writing programs is called coding and the programs, when taken
together, are called code.

Each program is written in some programming language. There are hundreds of programming
languages in use today, but the most widely known are Java, C++, VisualBasic and Perl. In the
past, programming languages like Fortran, Basic, C, Pascal, Smalltalk and Lisp had more
prominent roles and many programs written in these languages are still in widespread use.

Today, many languages are designed for specialized applications. HTML, which is used in
formatting web pages, does not qualify as a true programming language, since it is too
specialized and lacks important features available in the other languages.

When a program is created, it is placed in a file. A file is simply a sequence of bytes which is
given a name and stored on a disk. Recall that a bit is the smallest unit of data storage. A byte,
which is a sequence of 8 bits, is another, slightly larger, measure of data storage. The size of

* Author’s Web Page: www.cs.pdx.edu/~harry

Author’s E-mail: harry@cs.pdx.edu
This Paper: www.cs.pdx.edu/~harry/musings/Programming.pdf

www.cs.pdx.edu/~harry/musings/Programming.html

Fundamental Concepts of Programming Page 2

disks is measured in bytes or, more likely, millions or billions of bytes. The rate of data
transmission can be measured in bytes per second.

A byte is 8 bits. Here are two different bytes of data:

a byte: 0 0 1 0 1 1 0 1
another byte: 1 1 1 0 1 0 0 1

How many different combinations of 8 bits are there? There are 256 different combinations, so a
byte can hold any one of 256 different values. These different values are numbered from 0
through 255.

Possible byte values
0
1
2
...
255

So, in one byte of memory, we can store a single number, as long as it is between 0 and 255. If
we set up a correspondence between characters and numbers, then we could interpret this
number as a character. Here is such a correspondence:

Byte value Character
0 A
1 B
2 C
... ...
25 Z
26 a
27 b
28 c
... ...
51 z
52 0
53 1
54 2
... ...
61 9
62 (space character)
63 (
64)
65 -
... ...

Fundamental Concepts of Programming Page 3

Using a table like this, we can store a single character in each byte. We can store 10 characters,
such as “Hello there”, in 10 bytes.

The ASCII code is exactly such a correspondence between byte values and characters as we
showed above. The ASCII code is a little different than our code, but the idea is the same. The
ASCII code defines a fixed set of characters that are available for use. It includes most of the
characters on the keyboard, but it does not include characters like é or S or Æ, and it does not
include any information about font size, italics, etc. Files that include only ASCII characters are
called plain-text files. There is one byte per character and their interpretation as characters is
quite standardized.

In addition to characters, the ASCII code includes several control characters. These are not
characters at all, but are used to convey other information. The most important control characters
are newline and tab. We use the abbreviation \n for newline and \t for tab. In the ASCII code,
newline happens to be number 10 and tab happens to be number 9. There are other control
characters, which are given names like control-A, control-B, control-C. The newline is also
called control-J and tab is control-I. Hitting the enter key usually sends a control-J (newline) and
hitting the tab key sends a control-I (tab) to the computer.

There are many different programs for creating files. Word processing programs, such as MS
Word, put a lot more into the file than just the ASCII character codes. The extra material is used
to represent information about font, spacing, and so on. Programmers, on the other hand, use
simpler text editors to create the files containing their programs. A text editor (as opposed to a
word processor) is used to create and manipulate plain-text files. Programs are placed in plain-
text files, containing only ASCII characters.

A program is a file containing a sequence of statements. Each statement tells the computer what
to do. Here is an example program:

print ("Hello.")
print ("I am a computer.")
print ("Have a nice day!")

The term “statement” might be misleading, since these are imperative statements (i.e.,
commands), not statements of fact. They say “do this” or “do that.” Statements in English have
the quality of being true or false, while each statement in a program instructs the computer to
take some action.

Once a program is created, it can be run. The program tells the computer what to do, but the
instructions are not followed until the program is run. Often we say the program is executed (or

Fundamental Concepts of Programming Page 4

individual instructions in a program are executed); this means that the commands are followed
and actions occur.

When a program contains a sequence of statements, they are executed one after the other when
the program is run. Sequential execution is the norm: when one statement follows another, the
second statement will be executed immediately after the first statement.

When we run the program above, it will produce the following output, which will be displayed
somewhere:

Hello.
I am a computer.
Have a nice day!

When a program is run, it will interact with the outside world. It may display material on the
screen; it may accept input from the keyboard and mouse; it may modify files or cause the
printer to print something. It may also communicate with other programs over the internet or
control various devices (like motors and lights) connected to the computer. Collectively, this
interaction is called input/output and it occupies a huge part of many programs, since the
interactions and communications can be quite complex.

In the simplest programs, a program will produce simple (ASCII) characters as output and will
accept characters typed at keyboard as input.

Programs can be usefully compared to sequences of instructions from other areas of life. A
cooking recipe contains a sequence of commands:

Beat 6 eggs in a bowl.
Add 3 cups of sugar.
Set the oven to 375 °F.
...

In a recipe, we assume the thing executing the program is a human and we can be rather vague in
our instructions. We can say things like:

Make a white sauce.
Add vanilla to taste.
Bake until done.

With computers, all instructions are precise and unambiguous. Programming languages have
been designed in such a way that every instruction means exactly one thing. The instruction will

Fundamental Concepts of Programming Page 5

be executed exactly as it was written. Generally, the programmer writes the instruction correctly,
so the computer does the desired thing.

Sometimes, the programmer makes a mistake and then the program contains a bug. For example,
if our program had been:

print ("Helllo")

then the computer would have printed “Helllo” complete with the misspelling.

The ability of a computer to execute instructions precisely and exactly as they are written is
phenomenal. All of the problems with computer bugs originate from mistakes in programs,
mistakes made by programmers. The cases of computers producing incorrect output due to (say)
extreme heat or radiation are so rare as to be ignored.

On the other hand, human fallibility is a major problem in programming. As programs become
larger, the likelihood of programs containing bugs has increased. As computers control more and
more life-critical processes, the consequences of bugs are also increasing. There is much ongoing
effort in trying to make programs more reliable, but there seems to be no clear solution, beyond
using brains and good software engineering practices.

When a programmer writes a program, he or she will type it into a file called a source code file.
This file contains plain-text character data. Unfortunately, the computer cannot execute the
program in this form. The program must be translated into an executable file (also called a code
file).

A piece of software called a compiler is used to perform this translation of a program from
source code to executable file. The compiler is itself a program which reads—as input—a source
code file and which produces—as output—an executable file. The compiler is one piece of
software that every program developer has on his or her computer, but which typical users would
never see on their computers.

Each programming language has its own compiler. Thus, there is a Java compiler, a C++
compiler, and so on. Actually, each different sort of computer will have a different compiler as
well. For example, there is one version of the C++ compiler for the Intel/PC computers and
another C++ compiler for the Macintosh computers. Each compiler produces executable target
code for a specific machine, such as the Pentium microprocessor (in the PC) or the G4
microprocessor (in the Mac).

Fundamental Concepts of Programming Page 6

A compiler is essentially a translator: it translates a program written in a high-level language
like Java into a program written in a low-level language called machine code, which is the
language of the microprocessor. Machine language is used to express instructions that the
computer hardware can execute directly. A microprocessor can only execute very simple
instructions, such as add two numbers together or move a byte of data from one place in memory
to another. A single complex instruction in the high-level program might be translated into
hundreds of machine code instructions.

Machine instructions are quite technical and, although the processor can execute billions of them
every second, they are difficult for humans to understand. Today, almost no one writes machine
code directly. Instead, everyone writes programs in a high-level language like Java since it is
much easier to use. The compiler performs the detailed and tricky task of translating the program
into machine code, which can then be executed on the computer.

So after creating the source code file, the programmer will run the compiler to produce the
executable. First, the compiler will check the program to make sure it is legal—that is, to make
sure it contains statements that conform to the requirements of the programming language—and,
if there are problems, the compiler will display messages telling the programmer which
statements are in error. If the program passes the compiler checks, then the compiler will create
an executable.

The next step involves running the program and testing it on various combinations of input, to
assure that it functions correctly. This is called debugging. The programmer should try his or her
program repeatedly until there is high confidence that it is correct. Debugging is a critical step in
program development and often takes more time than writing the program itself.

We can summarize the program development process as follows:

Fundamental Concepts of Programming Page 7

1. Determine what the program should do and how it will do it.
2. Type the program into the source code file.
3. Run the compiler.
4. If the compiler finds errors...
5. Edit the source code file to fix the error.
6. Go back to step 3.
7. Else, if are no compiler errors...
8. Run the executable on some input and see what happens.
9. If the output is incorrect...
10. Edit the source code file to fix the bug.
11. Go back to step 3.
12. Else, if the output is correct...
13. If we run have not run enough tests...
14. Go back to step 8.
15. Else, we’ve tested enough...
16. Quit.

The above process might be viewed as a program of sorts. In this analogy, the programmer is the
computer which executes the program. However, this is not a program because it is not written in
any programming language and is not precise enough to be executed by a computer. There are
many details that are missing. (What should we call the file in step 2? What test input should we
use in step 8? In step 10, how should we identify and fix a bug?)

The above is an algorithm, not a program. An algorithm tells us what to do and provides a
general plan of how to do it. An algorithm may be expressed in any language. We often use a
clipped form of English, where every statement is an imperative (like above), but we can also
express an algorithm directly in a programming language. Technically, every program is an
algorithm, but the idea behind an algorithm is that it captures the abstract idea of how a program
will perform its task.

As an example of an algorithm, we can describe the process of how to sort a list of numbers.
(There are several algorithms for sorting. We might try building up the list by inserting each new
number is its proper place, or we might use an algorithm that looks for adjacent pairs of numbers
that are out of order and switches them around.)

After choosing an algorithm, it can then be translated into a Java program or a C++ program.
Conversely, if we see a program to sort a list of numbers, it is reasonable to ask, “Which sorting
algorithm does this program use?”

The above algorithm for developing a program contained a number of repetitive actions. In step
6, we say “go back to step 3”. This is called looping and occurs frequently in algorithms. The

Fundamental Concepts of Programming Page 8

idea is that one statement (or a small sequence of statements) is executed repeatedly, over and
over.

Next, let’s look at an example program. Our goal is to write some code that will print out a table
of Fahrenheit and Celsius temperatures. We want to print out all temperatures between 0 °F and
100 °F, along with the corresponding temperature in Celsius. We’ll have to print out one line
after another, repeating the same computation over and over, so we’ll use a loop statement. A
loop statement is used to perform repetitive tasks, and this ability to relieve humans from boring,
repetitive tasks is well appreciated.

First, we give the program, expressed in the Java language. Then, we’ll discuss it.

1. // Print a table of temperatures
2. double f, c;
3. f = 0;
4. while (f <= 100) {
5. c = (f - 32) * 5 / 9;
6. System.out.print (f + " F is " + c + " C\n");
7. f = f + 1;
8. }

I’ve numbered the lines for easy reference, but these are not part of the program.

On line 1, we see a program comment. Comments are part of the program but are not executed.
Instead, comments describe and document the program. They are intended to be read by humans
looking at the program and, as such, they are written in a language like English. The compiler
will recognize that this is a comment by the characters // and will ignore everything else on the
line after the //.

Comments are a critical part of programs, particularly large and complex programs, even though
the compiler ignores them. Programs must be read and modified by humans and the comments
serve to explain and guide programmers through big, difficult-to-understand chunks of code.

This program also contains some indentation (lines 5-7). The indentation and spacing rules are
quite liberal and allow the programmer to format the program in more or less any way he or
she wants. The standard practice is to use indentation in ways that help humans understand the
code.

For example, our program could also have been written without indentation and comments, like
this:

double f,c;f=0;while(f<=100){c=(f-32)*5/9;
System.out.print(f+" F is "+c+" C\n");f=f+1;}

Fundamental Concepts of Programming Page 9

The compiler would have no difficulty understanding this mess, but it is much harder for the
programmer to read, understand, and debug.

Our example program (Refer to the formatted version!) will work with two numbers, a
temperature expressed in Fahrenheit—we’ll call this “f”—and a temperature expressed in
Celsius, which we’ll call “c”. For each of these, we will have a variable, so this program uses
two variables, called “f” and “c”.

A variable is a named piece of computer memory which can hold a single value at a time.
Programs can manipulate many kinds of data. One important kind of data is numeric data and
there are several ways a program can represent numbers.

In this program, we will use floating-point numbers. The ASCII code told us how to store one
character in a single byte. With floating-point numbers, we can store a number in 8 bytes. Within
this chunk of 8 bytes, we can place exactly one number. The number can be a fractional number,
positive or negative. Here are some examples of numbers that can be stored in a floating-point
variable:

-5
3.1415
6.023 ¥ 1027

The relationship between real numbers (as mathematicians understand them) and the numbers we
can store in a floating-point variable is not exact. With the computer representation, we are
restricted to 17 digits of accuracy and the exponent on the 10 is limited to about –300 to +300.

This representation of numbers will work for our program, but an important point is that there is
always a difference between what is stored in the computer’s memory and the outside world.
When we speak of a data representation, we say how some information will be stored in
computer memory. There are often other data representations and part of the programmer’s task
is to choose a data representation that will capture enough of the information to allow the
program to perform its task, but we should always be clear that a thing is different from its
representation. The data representation may either fail to capture some aspects of the thing or it
may capture some aspects in incorrect or misleading ways.

For example, the number p has a definite value, but this value cannot be captured precisely with
a floating-point number. Instead, the closest we can come is:

3.141592653589793

Fundamental Concepts of Programming Page 10

In line 2 of our program, the variables “f” and “c” are introduced in a variable declaration:

double f, c;

The word “double” is a keyword, which means it is part of the Java language. Java has about 45
of these special words and each has a specific meaning when used in a program. Our program
also uses other keywords. Each language has a slightly different set of keywords, but the
common programming languages all use keywords like double, int, if, else, while, and return.
(We’ll discuss the meanings of these common keywords later in this paper.)

On this line, we create two variables. A variable declaration tells the compiler the names of our
variables (“f” and “c”) and the type of data they will hold. The keyword “double” is used to
mean an “8-byte floating-point number”. In a variable declaration, “double” will be followed by
a list of names.

Each variable has a type. The variable’s type indicates what kind of data can be stored in the
variable. For example, we say, “The type of f is double.” This means that we can store a single
floating-point number in “f”. At any one time, there will be a number stored in “f,” but this value
can be changed during the execution of the program. Thus, we speak of a variable’s current
value.

Each programming language has a very definite syntax, and the compiler will check to make
sure the program is syntactically correct. For example, in a variable declaration, we must have a
keyword (such as “double”), followed by a list of one or more variable names, separated by
commas and followed by a semi-colon. There are many other syntactic rules, such as:

For every open parenthesis “(“ there must be a matching “)”.
The addition operator + should be placed between two expressions.

In a natural language like English, a sentence may be ungrammatical, but might still be
understandable. However, in a programming language each statement must conform exactly to
the syntax of the language.

There is quite a bit of complexity within the syntax of a programming language. For example,
here are some other syntactically-correct declarations:

double w, x, y, z;
double tempInCelsius;
double pi = 3.1415;

Fundamental Concepts of Programming Page 11

The Java syntax makes extensive use of semi-colons. In general, there is a semi-colon after each
statement. These serve no real purpose, but serve to tell the compiler where the statement ends.
Like the period at the end of a sentence, they can help humans to read the program and may also
help the compiler in making sense of programs with syntax errors.

The second example shows that we can make up any name we want for a variable. A made-up
name is called an identifier. An identifier may consist of any sequence of letters, but must not
contain any spaces or punctuation characters and must not conflict with the keywords of the
language. It is often a good idea for the programmer to name variables with identifiers chosen to
convey some intuitive meaning to other humans who read the program. You can probably guess
what the variables “tempInCelsius” and “pi” will contain, but it is hard to know what “z” is.

The third example declaration shows that we can give a variable an initial value when it is
created. In general, variable initialization is often a wise thing to do, but every variable will
always contain a single value at every instant after it is created. In our program, the variables “f”
and “c” will always have values, even before we move data into them.

Some languages will automatically store default values in variables when they are created. A
reasonable default value for a double number is “0.0”. In other languages, the variables will
simply be created without being automatically initialized. In such a situation, the initial value
will be determined from what combination of bits happens to be stored in that particular 8 bytes
of memory. This is an unpredictable, essentially random value.

Furthermore, if such an uninitialized variable’s value is used before being set, it means that
during any one execution of the program, the output may differ depending on what just happened
to be in memory before the program was executed. This unpredictability is considered bad since
the same program, given the same input, may produce different outputs on different executions.
This problem occurs in C++ but languages like Java go to extremes to avoid it.

There are other ways to represent numbers. One common representation is using integers. Here
is a variable declaration that uses the keyword “int” to create a variable “a” which will hold an
integer value.

int a;

Every integer value will be stored in 4 bytes. With 8 bits per byte, this means that 32 bits are
used to store each integer.

Of course, there is an infinite supply of whole numbers:

..., -3, -2, -1, 0, 1, 2, 3, ...

Fundamental Concepts of Programming Page 12

but we can only work with a finite subset of these in a computer. Using “ints”, we can store any
whole number between –2,147,483,648 and +2,147,483,647.

Again, we see that the data representation matches closely—but never exactly—the thing being
represented. This range is limited but is generally useful in most of the counting tasks that are
done by a computer.

It should also be noted that the computation done by a computer may not always be what is
expected. For example, if we add two numbers, “a” and “b”, we expect the mathematically
correct result. If we represent “a” and “b” with “ints”, the computer will get the correct answer,
as long as the correct answer can be represented with an “int”.

For example, assume “a” contains 25 and “b” contains 10. Then the following statement, when
executed, will set “c” to 35:

c = a + b;

However, if “a” happens to contain 2,000,000,000 and “b” contains 1,000,000,000, this
statement will not do what you expect. In fact, when executed, this statement will set “c” to the
value –129,496,729,667, which is quite unexpected. This value doesn’t even have the correct
sign!

Many subtle bugs have arisen because the programmer has forgotten that the representation of
numbers in computers is not always accurate and the behavior occasionally varies from
mathematical theory. A similar bug resulted in the loss of a multi-million dollar Arianne
spacecraft.

Our sample program contains three assignment statements. They are repeated here:

f = 0;
...
c = (f - 32) * 5 / 9;
...
f = f + 1;

The equal sign “=” is used in the assignment statement. To its left, we see a single variable and,
to its right, we may see any expression. Although we use the “=” sign, there is no relation to
mathematical equality. Instead, the “=” sign is used to indicate data movement.

The first assignment statement says “Move the zero value into the variable f.” We read this as “f
gets zero.”

Fundamental Concepts of Programming Page 13

The last assignment, which is read “f gets f plus 1,” says to take the current value of “f”, add 1 to
it, and move the resulting value into variable “f”. This statement will increment “f” by 1. For
example, if “f” is 56 and this assignment statement is executed, then “f” will be changed to 57.

The middle assignment statement shows that, to the right of the “=”, we can have any arbitrary
expression. In this case, we are using a simple formula to calculate the temperature in Celsius,
given the temperature in Fahrenheit. The symbol “*” is used to indicate multiplication and “/” is
used to indicate division. This computation involves subtraction, multiplication, and division,
and will convert any Fahrenheit temperature into Celsius. We can also perform calculations
using any other mathematical function (like sin or square-root) that we might find on a calculator
as well as other, more obscure functions.

Our task is not to perform this computation once, but to perform it many times. We need to
repeat this computation in a loop. Here is the relevant portion of the program:

3. f = 0;
4. while (f <= 100) {
5. c = (f - 32) * 5 / 9;
6. System.out.print (f + " F is " + c + " C\n");
7. f = f + 1;
8. }

Here we have two statements. The first, on line 3, is an assignment to initialize “f”. The second
statement is a while statement, which is on lines 4 through 8, which will do the repetitive
looping.

The while statement is an example of a compound statement. A compound statement can
contain other statements inside of it. This is akin to the sort of grammatical nesting you find in
English statements like:

The fact that (Sally went to the store) was discussed among the group.

Here, one statement contains another statement within it.

The general form of a while statement is:

while (...conditional expression...) { ...body statements... }

In our program, the conditional expression is:

f <= 100

Fundamental Concepts of Programming Page 14

and the loop body consists of the statements:

c = (f - 32) * 5 / 9;
System.out.print (f + " F is " + c + " C\n");
f = f + 1;

Notice how indentation was used in the program to set the body statements apart from the main
statement sequence. This is not strictly necessary, but makes the program much easier to
understand.

A conditional expression is an expression which is either true or false. We use the characters
“<=” to mean £ since there is no “£” character in the ASCII code. We can also use “<”, “>”, and
“>=”.

The conditional expression will be evaluated many times during the execution of this program.
Sometimes it will be true and, at the end of the execution, it will become false. When

f <= 100

is false, it will be because

f > 100

is true.

The statements in the loop body will be executed many times. Each time they are executed, the
loop body statements will do the following:

Given a value of “f”, compute the corresponding value of “c”.
Print out “f” and “c”.
Add 1 to “f”.

The while statement works like this:

1. Evaluate the conditional expression.
2. If it is false, stop.
3. Execute the statements in the loop body.

a. Given a value of “f”, compute the corresponding value of “c”.
b. Print out “f” and “c”.
c. Add 1 to “f”.

4. Go back to step 1.

Fundamental Concepts of Programming Page 15

The program as a whole initializes “f” to 0 and then executes this while statement to print out the
table.

Each time the loop statements are executed, we say an iteration of the loop occurs.

Let’s walk through the execution of this loop, step by step. (This is called hand-simulation of a
program and it is used to help programmers understand how a program will be executed.)

As the first step of the while loop, the conditional expression will be evaluated. The conditional
expression will be true so the body statements will be executed. This is the first iteration of the
loop. It will result in setting “c” to -17.77777777777778, printing the values of “f” and “c”:

0.0 F is -17.77777777777778 C

and finally incrementing “f” to 1.

Next, the loop will repeat: execution will jump back up to the beginning of the loop and the
conditional expression will be evaluated a second time. The value of “f” has now changed, but
the expression (f <= 100) will still be true so the body will be executed a second time.

In the second iteration, our program will print this line:

1.0 F is -17.22222222222222 C

Our program will continue looping, printing lines. Ultimately, it will print the line:

100.0 F is 37.77777777777778 C

Then, the program will increment “f” to 101.

On the next iteration, it will test the conditional expression:

f <= 100

This will now be false, which will cause loop termination: the while statement will terminate,
without executing the body again. Since there are no more statements after the while loop, our
program will complete.

Programs with loops should terminate but, due to program bugs, they may fail to terminate. As a
result, the program may have an infinite loop. A non-terminating program will continue
execution forever. If the body of the loop statement contains a statement that prints output, then

Fundamental Concepts of Programming Page 16

such a program will produce a never-ending stream of output. Otherwise, the program will
continue silently, computing away like a mental patient lost forever in his or her own thoughts.

Here is a non-terminating program:

i = 0;
while (i < 100) {
 System.out.print ("I will not chew gum in class.");
}

Non-terminating programs must be stopped from outside. For example, in the UNIX operating
system you can type control-C to force the operating system to stop the program prematurely.
This is necessary if the program is to be stopped. Sometimes, bugs within the operating system
will cause the OS itself to go into an infinite loop. (After all, the OS is also a program!) In this
case, you might need to push the reset button and re-start the OS.

Our example program also contains the following print statement to produce output:

System.out.print (f + " F is " + c + " C\n");

In addition to dealing with numeric data, programs can also work with characters and string
data. A string is a sequence of characters. Java has another type of data called “String” and we
can have statements such as the following:

String s, t;
s = "Hello";
t = s + " there!";

Here we are creating two variables called “s” and “t”. In the second line, we assign the string of
characters “Hello” to the variable “s”.

Strings are enclosed in double quotes, like this:

"Hello"

while individual characters are enclosed in single quotes:

'H'

The plus sign (+) is used for string concatenation as well as numerical addition. String
concatenation is an operation which takes two strings and glues them together to create a larger
string. Thus, the assignment

Fundamental Concepts of Programming Page 17

t = s + " there!";

will set “t” to

"Hello there!"

Given values for the variables “f” and “c”, we see that the expression

f + " F is " + c + " C\n"

uses string concatenation to build the string we want to print. This string will end with the
newline character, \n, so each time we print, the output will be on a different line.

Since we are working with strings, the “+” will be interpreted to mean string concatenation and
not numerical addition. This occurs so much that there is a name for it: overloading. We say that
the symbol “+” is overloaded with two meanings. Even though the “+” symbol has more than
one meaning, the program as a whole is unambiguous, which means that there is no confusion
about what the computer should do when the program is executed.

The following code in the program:

System.out.print (...String...);

tells the computer to print a line. There are many ways that a program can produce output. For
example, it can open up a window, or make a noise, or print on the printer. In this case, we want
the default output which, in Java, is referred to as “System.out”. This means to send the
characters to wherever the user has instructed. Generally, these characters would appear on the
screen but they could also be written out to a file.

Some programs are necessarily tied to specific input/output devices while other programs are
written in a way such that input / output redirection is possible. Programs that take ASCII
characters as their input and produce ASCII characters as their output are extremely useful and
are called filters. The input can come either from the keyboard or from a plain-text file or even
from another program! Their output can be directed either to the screen or to a plain-text file or
to another program.

We can chain several filter programs together to make a pipe:

Keyboard Æ Program Æ Program Æ ... Æ Program Æ Display

Fundamental Concepts of Programming Page 18

The output of one program is fed as input to the next program in the chain. The idea is that each
program in the pipe processes the data a little bit. This allows complex functionality to be built
from small pieces. The UNIX operating system makes heavy use of program pipes.

In Java, to read a value into a variable, we can use a statement like this:

x = System.in.readInt ();

[Experienced Java programmers will recognize that I am simplifying things for the sake of
clarity and exposition.]

In the following code sequence, we are instructing the computer to get a value and then test it to
see if it is positive:

int x;
x = System.in.readInt ();
if (x > 0) {
 System.out.print ("This is a positive number.");
}

This code contains an if statement, which has this general format:

if (...conditional expression...) { ...statements... }

Like the while statement, the if statement is compound. The idea is that the conditional
expression is first evaluated. If it is true, then the statements between the braces are executed.
Otherwise, these statements are not executed.

The output of this program will depend on which number is given as input. If it is greater than
zero, this program will print “This is a positive number.” If it is not, the print statement will be
skipped.

There is a second form of the if statement, which is exemplified by this code:

if (x > 0) {
 System.out.print ("This is a positive number.");
} else {
 System.out.print ("This is not a positive number.");
}

The “if” and “else” are both keywords and they are often used in conjunction with braces { and
}. We also saw braces in the while statement. In this example, we had only one statement in the
then-part and one statement in the else-part, but we could have had several.

Fundamental Concepts of Programming Page 19

In the following code, we also set the variable “abs” to the absolute value of “x”, in addition to
printing a message:

if (x > 0) {
 System.out.print ("This is a positive number.");
 abs = x;
} else {
 System.out.print ("This is not a positive number.");
 abs = -x;
}

In general, braces are used to bracket or enclose a sequence of statements.

{
 Statement;
 Statement;
 Statement;
 ...
 Statement;
}

The braces tell the compiler exactly which statements are to be executed if the condition is true
or which statements comprise the body of a loop statement.

As a matter of style and convention, the programmer will place each statement on a separate line.
When the statements are to be executed sequentially, they should be indented by equal amounts.
When a compound statement (like while or if) is used, the statements inside the compound
statement will be indented and the braces will be lined up as we have done in our examples. This
is not required by the compiler, but good programming style is necessary if a large program is
to be comprehensible to humans.

From a theoretical perspective, it has been shown that the aspects of programs we have discussed
so far are sufficient for writing any program. In other words, any programming language that
includes the following features:

• integer variables
• assignment statements
• arithmetic operators like + and <
• while statements
• input / output statements
• sequentially arranged statements

is Turing complete. Any function that can be programmed on a digital computer can, in theory,
be expressed as a program in any Turing complete language, although there is no guarantee that
the program will be short or easy to understand.

Fundamental Concepts of Programming Page 20

From a practical point of view, many additional features have been added to programming
languages to make them easy and convenient to use. Although these features add no increased
theoretical capabilities, they make a huge difference in the usefulness of the language.

Turing completeness should not be confused with the Turing Test, which is a test to determine
whether a computer exhibits human-level intelligence. To date, no computer has passed this
famous test, but this society-shattering event may occur in our lifetimes, particularly if new and
better programming languages have features that make it convenient and easy for programmers
to create complex programs.

One of the most important conveniences is the ability to group a number of statements together
and place them in a function. Here is an example, in Java:

1. void DoTheWork (double x) {
2. double y;
3. y = (x – 32) * 5 / 9;
4. System.out.print (x + " F is " + y + " C\n");
5. }

In the first line, we are saying that we are defining a function, which we have named
“DoTheWork”. A function is a little like a compound statement and we see matching braces and
several indented statements in the function body.

The idea with a function is that we can call the function from elsewhere in the program. For
example, we can re-write our program as:

6. // Print a table of temperatures
7. double f;
8. f = 0;
9. while (f <= 100) {
10. DoTheWork (f);
11. f = f + 1;
12. }

In line 10, the function is called. This call statement is a new kind of a statement: it is a
statement whose behavior the programmer has determined. To know how it will be executed,
you must look at the function definition.

The while loop is still executed the same way: the body is executed repeatedly and, for each
iteration, the function is called. Each time the function is called, it is executed with a different
value of “f”.

Fundamental Concepts of Programming Page 21

The first line of the function is called the function header and in it we not only give the name of
the function, but we also indicate that this function will take as its input a single floating-point
value and will return no value.

Functions that do not return values are called void functions. Functions that return a value are
said to be non-void functions. “DoTheWork” is a void function, but many functions return a
value.

A function in a programming language is similar to a mathematical function. A mathematical
function generally takes a single number, performs some computation, and results in some value.
For example, we might define a function “g” as:

g(x) = (x-32)⋅(5/9)

This mathematical function performs the conversion from Fahrenheit to Celsius, but it works
with all numbers. Our function “DoTheWork” is restricted in the range of numbers it can handle
correctly: it can handle all temperatures anyone can reasonable expect to encounter, but the point
is that it cannot handle all values.

Also, “g” returns a value, whereas “DoTheWork” is a void function. It is used not for its
resulting value, but it is used because it has a side-effect. It does more than just compute a value;
it also prints a line on the output. A side-effect means that executing this function has more of an
effect than just computing and returning a result. A function with a side-effect may print output
or alter variables that are used in other parts of the program.

In general, the syntax of a function definition is:

ResultType FunctionName (...parameters...) { ... declarations and statements... }

The result type in our case is “void” and the function name is “DoTheWork”. If we wish to
define a function that will compute and return the value (without printing it), we could define the
function as follows. We’ll call it “g”, since it models the mathematical function given above.

double g (double x) {
 double y;
 y = (x - 32) * 5 / 9;
 return y;
}

The first line is the header line and it indicates that “g” will return a double value. In Java, the
type of the resulting value is written right before the function name.

Fundamental Concepts of Programming Page 22

Next, between the parentheses, we see “double x”, which means that the function will take a
single value as an input. This value will be a double (a floating-point number) and will be called
“x” within the function. Between the braces, we have what amounts to a small program. These
lines are the function body.

The inputs to a function are called its parameters. This function takes a single parameter called
“x”. Within the function body, we may use the parameters. Here, we see that “x” is used in the
computation.

In the body of function “g”, we also see a new kind of a statement, the return statement. This
statement is only used within functions. It indicates what value to return. In this example, we
return the value of the variable “y”.

Given this new function, we will need to modify our main program.

double f, c;
f = 0;
while (f <= 100) {

c = g(f);
System.out.print (f + " F is " + c + " C\n");
f = f + 1;

}

Here we see the assignment statement:

c = g(f);

The function is called and the value it returns is then stored into the variable “c”. Non-void
functions may be used within any expression. In the next example, we use “g” within the
conditional expression of an if statement:

if (g(f) >= 100) {
 System.out.print ("boiling hot");
}

A function may take zero or more parameters. In our functions “DoTheWork” and “g”, we had a
single parameter called “x”. Each parameter will have a name and a type. Some functions may
have no parameters. For example:

double foo () {
 ... Declarations and Statements ...
}

Some functions will take many parameters. This function takes 3 parameters:

Fundamental Concepts of Programming Page 23

double bar (int x, double y, int z) {
 ... Declarations and Statements ...
}

Here are example statements which call these functions with the appropriate number of values:

a = foo ();
b = bar (7, 3.1415, 48);

We could also call these functions providing values that will be computed at the time the
function is called. In the following statement, which calls “bar”, we see 3 expressions used as
values to the function. The second value even involves calling another function!

b = bar (a, x*g(y), ((i+j)*5)+k);

The names foo and bar are traditionally used by computer scientists in examples to stand for
“any made-up name.” Of course a real program would use more meaningful function names like:

ComputeAdjustedGrossIncome (...)
Fahrenheit2Celsius (...)

Our program now has two parts: the main part and a function called “DoTheWork”. In general,
the ability to break a program into smaller, separable parts is good. It allows the programmer to
work on the parts in isolation.

In this example, our function is called from only one place, but the real leverage occurs when a
function is called from several different places. In our example, we could either use a function or
we could simply include the function body directly into the while statement. Perhaps breaking
the program into pieces will make it clearer, but it doesn’t give us any real advantage in this
example.

However, in many programs, a function is called from several places in the code. If this is the
case, then the use of functions becomes critical. Without functions, we would have to copy the
same statements into several places in the program.

For example, if our program performs Fahrenheit to Celsius conversions in several places, it is
much better to place this computation in a function and then call this function from all those
places. Later, if we find a bug in our computation, we only need to modify one place in the
program: the function. If we had not used a function and had copied the statements in several
places, then we would have to fix the same mistake several places in the program. We might

Fundamental Concepts of Programming Page 24

easily make the fix in several places correctly, but forget or mess-up some of the other places.
Without functions, we would also need to test each place independently.

Not only is a program without functions much longer, it is also correspondingly more difficult to
create, understand, and debug.

Let’s now look at a function from mathematics: the “factorial” function. Recall that this function
is defined as

n! = 1 ⋅ 2 ⋅ 3 ⋅ ... ⋅ n, for any n ≥ 1

For example:

6! = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6
= 720

We will use the functional notation of programming, instead of the traditional ! notation from
math.

fact(n) = n!

For example:

fact(6) = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6
= 720

Suppose we wish to create a function in Java which will be passed an integer “n” and which will
return “fact(n)”. We might notice the repetition involved in this definition and write the
following function:

// Function to compute factorial
int fact (int n) {
 int result = 1;
 int i = 1;
 while (i <= n) {
 result = result * i;
 i = i + 1;
 }
 return result;
}

However, you may be familiar with another equivalent definition of factorial:

Fundamental Concepts of Programming Page 25

fact(1) = 1
fact(n) = n ⋅ fact(n - 1), for any n > 1

For example, to compute fact(7), we can use the definition to write:

fact(7) = 7 ⋅ fact(6)

Since we know fact(6) is 720, we can conclude:

fact(7) = 7 ⋅ 720
= 5040

The second definition of factorial is a recursive definition, since factorial is defined in terms of
itself. At first, it may seem circular to define something in terms of itself, but it works in this
case, since the factorial of each number is defined only in terms of the factorial of smaller
numbers. Eventually, the first part of the definition—the definition of fact(1)—can be used.

The recursive definition of factorial leads to a recursive function, which is a function that, during
its execution, may call itself. Here is a second, recursive version of fact:

1. // Function to compute factorial, recursive version
2. int fact (int n) {
3. if (n == 1) {
4. return 1;
5. } else {
6. return n * fact (n-1);
7. }
8. }

The “==” sign is used to test whether two numbers are the same. It is often a source of confusion
that “==” in a program corresponds closely to “=” in math, while “=” in a program is used for
data movement in the assignment statement.

This recursive function will test whether it is asked to compute fact(1); if so, an answer of 1 is
immediately returned in line 4. If the value of the parameter is not 1, then we will execute the
return statement in line 6.

Let us assume we are trying to evaluate fact(7). In line 6, the computer will subtract 1 from “n”
to get 6. (Of course, “n” will not itself be changed.) Then, the fact function will be called a
second time. We say that fact calls itself recursively, with the value 6. Assume for a moment
that the function fact works correctly; then this recursive call will do some computations
culminating in returning a value of 720. Finally, in line 6, the computer will multiply this result
(720) by “n” (which is 7). This results in 5040, which will be returned.

Fundamental Concepts of Programming Page 26

One point of confusion is that while executing fact(7), we will begin executing the fact function
again—for fact(6)—from the beginning. At this point, we will have 2 separate executions of fact
occurring simultaneously. We say that there are multiple invocations of fact. One invocation
will be computing fact(7) and the other will be computing fact(6).

The invocation for fact(7) will be suspended in the middle of line 6 when the invocation for
fact(6) begins and will remain suspended until the computation of fact(6) has been completed.
The new invocation—of fact(6)—will begin on line 1 and proceed to line 6. At this point, things
get even more complex, since fact(6) will call fact(5) in line 6.

Now we have three invocations of the function. Each of these different invocations of fact will
be separate. Each will have its own copy of “n”. The invocations of fact(7) and fact(6) will be
suspended, and the invocation of fact(5) will begin execution.

This process of recursive invocations will continue until the invocation of fact(1). Fact(1) will
not invoke itself recursively. Instead, fact(1) will compute and return its result (namely, 1)
immediately. As each invocation completes and returns, a suspended invocation is reawakened.
Ultimately, fact(6) will return and fact(7) can complete its computation and return our final
answer.

Recursive functions are difficult for everyone to grasp at first, but after a little practice this style
of programming turns out to be very useful. Many problems have parts that interact and the
programs to solve them tend very naturally to be recursive.

We have seen a number of conditional expressions so far. For example:

n == 1
f <= 100

We have also seen a number of numeric expressions, like these:

result * i
(x – 32) * 5 / 9

Both seem to involve variables, constant values, and operators, yet one results in numeric values
and the other results in... what?

In addition to integers and floating-point numbers, programs can work with logical values. There
are a lot of integers and a lot of floating-point values, but there are only two logical values: true

Fundamental Concepts of Programming Page 27

and false. Logical values are also called boolean values, after a mathematician named George
Boole.

In a program we often use variables which contain boolean values instead of numeric values. For
example:

boolean b;
...
b = (f <= 100);

Here, we create a variable called “b” and, in a later assignment, we set it to either true or false.
The assignment is analogous to this assignment:

x = (f + 100);

The difference is that the + operator returns a number while the <= operator returns a boolean
value. It either returns the true value or the false value, depending on the value of “f” when the
<= is evaluated.

Note that we used “...” to skip over some statements; we are assuming that we also have
statements to set “f” to some value, but these are not shown. Otherwise, the comparison of “f” to
100 would be meaningless.

Once we have executed statements to set “b” to some value, we can use that value in subsequent
statements. Perhaps we will wish to copy the value into some other variable:

boolean b2;
...
b2 = b;

We can use the boolean value directly in an “if” statement, like this:

if (b) {
 ... Some statements ...
} else {
 ... Other statements ...
}

There are several logical operators we can use to compute with logical values. For example,
assume that we have two boolean variables, “b” and “c”, and that we have given them logical
values:

boolean b, c;
b = ...;
c = ...;

Fundamental Concepts of Programming Page 28

Assume we wish to test whether both “b” and “c” are true; we can use the logical “and”
operation. The “and” operator is symbolized using &&.

For example, assume that “d” is another boolean variable. Then the following statement will set
“d” to true only if both “b” and “c” are true. It will set “d” to false in all other cases:

d = b && c;

As another example, assume that we have two variables “x” and “y”. We wish to print a message
if they are both positive. This code will do the trick:

if ((x > 0) && (y > 0)) {
 System.out.print ("Both are positive");
}

The evaluation of the conditional expression in this example involved the evaluation of two sub-
expressions:

(x > 0)
(y > 0)

Now let’s assume we want to print the message whenever either “x” or “y” is positive. We can
use the logical “or” operation, which is symbolized with ||. This code will work:

if ((x > 0) || (y > 0)) {
 System.out.print ("At least one is positive");
}

What exactly does the “or” operator do? We can answer that by writing the following table.
Here, “a” and “b” represent arbitrary logical values, and “a || b” is the result. There are 4 possible
combinations of values for “a” and “b”. In this table, we simply list all possible values for “a”
and “b” and show the result of “a || b”.

a b a || b
false false false
false true true
true false true
true true true

Here is a table showing exactly how the logical “and” operator works:

Fundamental Concepts of Programming Page 29

a b a && b
false false false
false true false
true false false
true true true

There is also a logical “not” operator, which is sometimes referred to as logical negation. This
operator takes a single logical value and flips it. Logical negation is indicated with the ! symbol.
Here is a table giving all (two) values for “a” and showing the value of “!a”, which is read “not
a”:

a ! a
false true
true false

We could re-write the previous code, which printed a message if either “x” or “y” is positive, as
follows:

if (!((x <= 0) && (y <= 0))) {
 System.out.print ("At least one is positive");
}

It may not be immediately clear that this code does the same thing, but notice that

(x <= 0) && (y <= 0)

is true only if both “x” and “y” are non-positive. Its opposite, which is achieved with the logical
negation, is true if either is positive. This is exactly when we want to print the message.

After practice, programmers become pretty good at writing and understanding such complex
logical expressions, but as you can guess, this is a source of many logical errors in programs.

Next, assume that we would like to write a program to read in 100 numbers and print them out in
reverse order. Clearly our program will need to remember all the numbers before the first one is
printed. Perhaps we could code this with 100 variables, but there is a much better way.

We can store a large collection of values in an array. An array can be thought of as a sequence
of variables, which we can refer to by number, rather than by name. In our program, we will use
a single variable called “a”, which will be an array of 100 values.

First, we need to declare the variable:

Fundamental Concepts of Programming Page 30

int [] a;

The brackets indicate that this variable will hold not just a single integer, but an array of integers.

Next, we need to create the array. In Java, we use this code:

a = new int [100];

Since each integer requires 4 bytes, this array will require 400 bytes. The above statement will
request 400 bytes of memory to use for “a” and will set all 100 values to zero.

The individual components of the array are referred to as the array elements. Our array will
have 100 elements.

We can refer to any individual element of the array using brackets. For example, we can ask
what is stored in element number 15 by writing the following in our program:

a[15]

We might want to add 8 to element number 23. This assignment will do that:

a[23] = a[23] + 8;

The elements in the array are numbered starting from 0, not from 1. Thus, our array contains the
following 100 elements:

a[0], a[1], a[2], ... , a[99]

Starting the numbering at zero may seem confusing but there are technical reasons why most
programming languages do it this way.

Now we can present the program to read in 100 numbers and print them in reverse order:

Fundamental Concepts of Programming Page 31

// Declare variables and create the array.
int [] a;
int i;
a = new int [100];

// Read in 100 values and store them in the array.
i = 0;
while (i < 100) {
 a[i] = System.in.readInt ();
 i = i + 1;
}

// Write out the 100 values in reverse order.
i = 99;
while (i >= 0) {
 System.out.println (a[i]);
 i = i - 1;
}

In this program, the number 100 was predetermined. If we want to reverse a list of 200 numbers,
we will need to modify the program and re-compile it.

A different approach would be to make the program flexible. Let’s have the program begin by
reading in a single number, “n”. It will then create an array of size “n” and proceed as before.

Here is the modified program:

// Declare variables.
int [] a;
int i, n;

// Read "n" and create an array of that size.
n = System.in.readInt ();
a = new int [n];

// Read in "n" values and store them in the array.
i = 0;
while (i < n) {
 a[i] = System.in.readInt ();
 i = i + 1;
}

// Write out the "n" values in reverse order.
i = n-1;
while (i >= 0) {
 System.out.println (a[i]);
 i = i - 1;
}

Next, let’s create some code to read in 100 values, sort them into increasing order and then print
them. You might suggest that we should begin by reading “n” in order to make our program

Fundamental Concepts of Programming Page 32

more flexible and more useful. This is a good idea, but we’ll use 100 nevertheless, to keep the
code simpler.

We’ll start with a sketch of our algorithm, which we’ll express in pseudo-code. Pseudo-code is
not legal code. It may contain anything and can be written on the back of a napkin, but writing
pseudo-code is usually the first step in the programming process.

Read in the array.
Sort the array.
Print out the array.

This is a good start, but we need to be a little more specific in the middle step.

Read in the array.
In a loop, for each element a[i] in the array...
 Locate the smallest element of a[i], a[i+1], ..., a[99].
 Put that element in position a[i].
Print out the array.

Let’s elaborate this a little more:

Read in the array.
In a loop, let i take the successive values 0, 1, 2, 3, ..., 99 in the following...
 Find the smallest element between a[i] and a[99]. Let k be its position.
 Start by assuming a[i] is the smallest.
 Look at all elements between a[i+1] and a[99].
 See if any of them is smaller
 Swap the values of a[i] and a[k].
Print out the array.

We are now ready to write the final program:

Fundamental Concepts of Programming Page 33

int [] a;
int i, j, k, t;
a = new int [100];

// Read in the array.
i = 0;
while (i < 100) {
 a[i] = System.in.readInt ();
 i = i + 1;
}

// Sort the array.
i = 0;
while (i <= 98) {
 // Set k to the position of the smallest element
 // of a[i]...a[99]
 k = i; // Assume smallest is in position k=i.
 j = i+1; // Run thru elements i+1 thru 99.
 while (j <= 99) {
 // if a[j] is smaller, then set k to its position.
 if (a[k] > a[j]) {
 k = j;
 }
 j = j + 1;
 }
 // Swap a[i] and a[k].
 t = a[i];
 a[i] = a[k];
 a[k] = t;
 i = i + 1;
}

// Write out the array.
i = 0;
while (i < 100) {
 System.out.println (a[i]);
 i = i + 1;
}

Note that this program contain several loops. In fact, one of the loops contains an inner loop
within it. Loops can be nested and careful indentation becomes important in understanding such
nested loop structures.

This program may require some study to understand. There are many ways it could be changed
and improved; we make no claim this program is best.

This version of sort uses an algorithm called selection sort. There are many sorting algorithms
which will run in less time than this algorithm, but they can be much more difficult to
understand.

Fundamental Concepts of Programming Page 34

Execution speed is a measure of how long a program will take to run. In general, the time a
program takes to run will depend on the input it is given. The general rule is, more input means
the program will take longer to execute.

Our sorting program will do more work when the array is in reverse order to begin with, but the
most critical factor is the size of the array we are sorting. When sorting an array of 100 items,
execution speed is not so important, but when sorting millions of numbers, the performance of
this algorithm will become a huge drawback. We’ll need to use a faster sorting algorithm.

In many applications, program performance is an important engineering consideration. In a
few simple, well-studied algorithms (such as sorting algorithms) a program’s performance can be
pre-computed analytically, but with most real-world programs the analysis is hopelessly
complex. It is often easier to run the program on some sample inputs and measure the
performance empirically.

Often, beginning programmers write programs that function correctly but have poor
performance. Another problem occurs when programmers focus on performance too much, to the
detriment of correctness. The programmer may choose an overly complex algorithm and fail to
get it quite right. What is the value of a program that runs fast but that fails to perform correctly
for some inputs?

As our next example task, let’s think about writing a program to keep track of student records
and university course information. Our primary focus will be on how the data is represented in
the program and we will be less concerned with what we do with the data. Perhaps we will write
code to print out which students are enrolled in which courses or code to compute each student’s
grade-point average (GPA). Either of these tasks will be possible once we have the data stored in
the computer’s memory. Here, we’ll focus on the data representation.

For a large collection of data, a real organization might reasonably purchase some database
management software. Such a software package will facilitate additional tasks like disk
organization, data security, backup procedures, and simultaneous access by multiple users. For
our purposes though, we’ll store our data in the computer’s main memory, not on disk. We will
ignore many of the complex tasks handled by a database management system.

So far, we have discussed simple variables, which can hold a single value at a time, and arrays,
which can hold a numbered collection of values. However, for this task we will use objects and
pointers.

When thinking about our task, we notice that we need to store a number of pieces of data for
each student. Let’s assume that we keep the following information for each student:

Fundamental Concepts of Programming Page 35

Student info:
student id number
name
address
courses currently enrolled in

For each course, we’ll keep the following information:

Course info:
course name
course number
instructor’s name
meeting time
room number

We could, of course, add more information, such as the number of credit hours for a course or
the students’ phone numbers or grades. Deciding exactly what information to represent and
capture in the computer is the task of data modeling. For the sake of simplicity, we’ll ignore this
additional information.

In our program, we will create an object for each student. We’ll use the name “Student” to
describe these objects. If we have data for 100 students, we’ll create 100 “Student” objects.

In our Java program, we’ll include the following code to describe the Student objects:

class Student {
int id;
String name;
String addr;
Course [] courseList;

}

The word class is a keyword signifying that we are defining a new class of objects. After the
keyword, we give the name we have made up for these objects: “Student”.

Between the braces, we see a sequence of variable declarations. The first is:

int id;

We have decided to use an integer for the student’s id number and we have used the name “id”
for this piece of data.

Fundamental Concepts of Programming Page 36

For the student’s name and address, we will use “name” and “addr”. Each of these will be a
String.

String name;
String addr;

Finally, we will use an array to store information about which courses a student is taking, since a
student will usually take more than one course. We will call this array “courseList”.

Course [] courseList;

Next, let’s define a class called “Course”. Each Course object will describe a course being
taught:

class Course {
String courseName;
int courseNumber;
String instructor;
String time;
String room;

}

We’ll use Strings for the time and room number, since they may look like this:

"M/W 2:00"
"Lincoln Hall 205"

Let’s assume that our program will read in information about the students and courses from the
input. We’ll ignore details, but for every student, our program must create a “Student” object,
and for every course, we must create a “Course” object.

Let’s begin with courses. The following Java statement will create a new “Course” object, which
we’ll store in a variable called “c”.

c = new Course ("Physics",
 100,
 "J. Brown",
 "M/W 2:00",
 "Lincoln Hall 205");

This looks similar to the creation of an array, except that we must give values to use for
“courseName”, “courseNumber”, etc.

When this statement is executed, what happens? A new object will be created in the computer’s
memory. The actual size of the object will depend on how much data it includes. Let’s assume

Fundamental Concepts of Programming Page 37

that this object takes (say) 100 bytes. So, 100 bytes will be used to store the information
associated with this course.

Each byte in the computer’s memory is numbered. One can ask what is stored in byte number 0,
or what is stored in byte number 1, or byte number 2, and so on, up to the size of the memory on
the machine.

Where will our new Course object be stored? Perhaps it will be stored in bytes 2001 through
2100. The operating system takes care of memory management and will “give” bytes to the
program as needed. The OS will decide exactly which 100 bytes will be used to store this object.
The programmer will not have to worry with this detail.

Let’s assume that we have a total of 20 courses; we can use an array to hold these courses. Here
is code to declare our array variable, which we’ll call “allCourses”, and code to create the array,

Course [] allCourses;
allCourses = new Course [20];

We will need code to read in the course information and create 20 Course objects. Here is some
pseudo-code to do this.

Repeat 20 times {
Read in the information about course “i”.
allCourses [i] = new Course (...the info for this course....)

}

The array “allCourses” has 20 elements. If each course takes 100 bytes, you might guess that this
array will require

20 ⋅ 100 = 2000 bytes

but this is not the way it works. Each array element will not require the full 100 bytes to store the
course information. Instead each element of the array will be only large enough to contain the
address of the Course object. The Course object itself will be located elsewhere in memory.

Addresses are called pointers, so our array will contain 20 pointers. Our array is very much like
an array of integers, where each integer is the address of a byte in memory. Memory addresses
are 4 bytes long (just like integers) so our array will consume

20 ⋅ 4 = 80 bytes.

Fundamental Concepts of Programming Page 38

Of course we still need 2000 bytes to store the Course objects so we haven’t saved any memory
with pointers.

Looking back at the statement which created a new Course object,

c = new Course ("Physics", ...);

we see that this statement will first allocate 100 bytes of memory, then move the initial data
values into those bytes and, finally, store a pointer to the object into variable “c”. The variable
itself will only be 4 bytes in size.

Next, let’s write some code to read in and create the Student objects. For simplicity, let’s assume
that each student will enroll in exactly 5 courses. We can create a new Student object with code
like the following:

id = ... Read in Student’s id number ...
nm = ... Read in Student’s name ...
addr = ... Read in Student’s address ...
a = new Course [5];
... Read in which 5 courses and initialize “a” accordingly...
st = new Student (id, nm, addr, a);

In this code, we are using several variables (“id”, “nm”, “addr”, “a” and “st”) so we would need
declarations of them somewhere else. The result of this code is to create a new Student object
which we will refer to using the variable “st”.

Notice that this code will create a new array with 5 elements. We are setting variable “a” to this
new array. The new array will contain 5 pointers and each should be set to point to a Course
object. The code to initialize this array may be rather complex and we won’t go into details, but
it will end by setting each element to point to one of the 20 Course elements.

Recall that we are assuming the Course objects are each 100 bytes in size. Without pointers, each
Student object would require

5 ⋅ 100 = 500 bytes

for the course information, plus additional bytes for name, address and id number. With pointers,
each Student object uses only

5 ⋅ 4 = 20 bytes

Fundamental Concepts of Programming Page 39

for the course information. This saving in memory space is real, since we have already created
the Course objects.

Notice that many students will take the same course. Thus, we will have only one Course object
(100 bytes) and all the Student objects will point to this shared object. If 50 students are taking
“Physics” then, to store this information, we will need:

For the “Physics” Course object:
1 ⋅ 100 = 100 bytes

For one pointer to this object in each of 50 Student objects:
50 ⋅ 4 = 200 bytes

Total:
300 bytes

The real benefit of using pointers is not that we save a lot of memory space, but that we represent
each course with just one object. Each course has a “name”, “instructor”, “time”, etc. This
information is represented and stored in only one place. If there is a change to the data (for
example, if the instructor is changed to “K. Smith”), then the data must be changed in only one
place. Since the Course object is pointed to by many Student objects, all of these Student objects
will effectively use the modified data.

Without pointers, changing the name of the instructor would require that we update the records
of all students who are taking “Physics”. While this might not seem too complex, in real-
programs it becomes a nightmare of complexity. And if the data is updated incorrectly, you end
up with some people taking the identical “Physics” class from different instructors, a nonsensical
situation.

With pointers, we can also represent missing information in a natural way. For example, some
students may be registered for fewer than 5 classes. In each Student object, we included an array
called “courseList”. We must store something in each element of this array, but we don’t want to
store a pointer to an object if the student is not taking a course.

There is a special pointer value called null. This special value can be stored into a variable when
the actual data is missing. For example, if some Student object is missing course information,
then its “courseList” will contain an element whose value is null.

Normally, each pointer is simply the address of some location in memory. For the null value, a
zero is stored in the variable. It turns out that no object will ever be stored at address zero, so this
special value can be easily distinguished from a real memory address.

Fundamental Concepts of Programming Page 40

With pointers, a whole collection of pointer bugs becomes possible. Let’s imagine that, due to a
program bug, some pointer variable contains the wrong address. Perhaps we have a variable that
should point to a Course object, but which unfortunately points to a Student object. Or, it could
be even worse. Perhaps the variable contains a more or less random number. What will happen
when this pointer is used?

As the program executes, pointers are used from time to time. When a pointer is used, the
execution will go to the memory bytes addressed by the pointer. If some variable is supposed to
point to a Course object, then the program will assume the memory contains a Course object at
that location. If there is a bug and this is not the case, then we have a serious problem.

As an example, assume that the program is trying to update a Course to change the instructor to
(say) “K. Smith”. This might be a normal operation allowed by this program to support the fact
that schedule updates and corrections occur from time to time. But if there is a bug and the
pointer is messed up, then the program will proceed anyway. It will follow the pointer to some
memory location and will modify the bytes at that location. There is no checking; the memory is
blindly updated and altered.

What is the consequence of such a bug? Unfortunately, it is impossible to say. We would need to
know exactly which address got modified, what data was stored there before and what new data
got written into memory. Generally, we cannot know these things, so the program exhibits
unpredictable behavior. While exactly what happens next is difficult to predict, it is almost
always bad.

Furthermore, since these things can change from run to run, pointer bugs often cause a program
to have non-repeatable behavior, in which the program may behave correctly sometimes, but
incorrectly other times. Anyone who has tried to fix a non-repeatable problem knows how
difficult they can be to diagnose and repair.

A program with a bug will always do one of several things:

• Go into an infinite loop
• Attempt to do something nonsensical, causing abrupt program termination
• Produce obviously wrong output
• Produce wrong output that is mistaken for being correct

The last is perhaps the worst outcome! In our society, we are increasingly relying on computers
and our actions are often determined by “what the computer says”. Often humans accept
computer output without questioning it and, when the computer says the wrong thing, the results
may be catastrophic and lethal.

Fundamental Concepts of Programming Page 41

But more often, a pointer bug and the resulting damage will confuse the computer so much that
the program will crash altogether. We also say the program bombs or core-dumps. A crash
occurs when the operating system detects that the program has become confused and tried to do
something illegal or nonsensical. For example, a program may try to access a region of memory
that (for security reasons) it is not allowed to access or it might try to divide a number by zero.

When the OS detects such a violation, it will immediately terminate the program. We say that the
program is aborted or killed. The OS may also display a cryptic system error code or message.
These messages are meaningful only to people who understand machine code and processor
architecture, so we can’t discuss them here. In fact, they will often be meaningless even to the
programmer, who may have difficulty determining exactly why the program crashed. The
problem is that a bug may cause unpredictable or non-repeatable behavior, which subsequently
causes the program to crash. Consequently, the error that causes program termination is not
directly related to the actual bug.

The C++ language suffers from this sort of problem quite a lot, but the modern languages like
Java go a long way in eliminating such unpredictable behavior. In Java, the use of pointers is
tightly constrained by the compiler, in order to make it impossible to make pointer mistakes
which can cause a program to have unpredictable behavior. Java programs can still run into
problems, of course, since programmers still make mistakes and programs can still contain bugs,
but the mistakes are all caught when they occur and are dealt with in a much safer, more
predictable way.

Up until now, we have been assuming that there is a single processor, which means that the
program is executed by the computer one instruction at a time. Although the instructions may be
executed at a rate of a billion instructions per second, the instructions are executed in sequence,
one before the next. We have assumed that our program runs to completion (or is killed) and then
another program is executed.

As you know, a modern operating system will sometimes load several programs into memory at
once and these programs will appear to be active simultaneously. In a typical OS, there will
usually be several programs running at any one time, but each program is kept separate from the
others and runs quite independently of any other active programs.

Modern operating systems go to great lengths to keep concurrently running programs isolated
from each other. Each program is placed in a different region of memory and these regions are
separated like islands. Thus, a pointer bug in one program is incapable of modifying or affecting
in any way another currently running program. If there is any interaction between programs, it is
very limited. For example, two programs might share data through a file.

Fundamental Concepts of Programming Page 42

In a computer with a single processor, only one instruction can be executed at a time, so it would
seem impossible to do more than one thing at a time, to execute more than one program at any
moment. And, in fact, in the early days of computing, a program would be loaded into the
computer’s memory, the program would be run until it completed and then the next program
would be loaded into memory.

Today, we all use multi-programmed computers, in which several programs can be active at the
same time. You may be running a word-processing application at the same time another program
is fetching your email and a third program is burning a CD-ROM. Often, all these applications
seem to be executing at the same time. It appears that there is a processor for each program and
that they are all executing instructions simultaneously. But this is an illusion!

When several programs are running simultaneously on a computer with only a single processor,
the effect of simultaneous execution is achieved through time-slicing. It works like this. The
operating system will allow the processor to execute the instructions from Program A for a small
duration of time. Then, the OS will stop the processor from working on program A and move it
to Program B. The processor will then execute instructions from Program B for a while. Then the
OS will interrupt it again and switch the processor to Program C. After each of the programs has
had a chance to execute a little, the OS will return to Program A, and go around again giving
each program “second helpings” or “second turns” of execution. This round-robin scheduling
will continue indefinitely, allowing all programs to make progress simultaneously.

Typically, the time-slice is very small (say, 1/1000 of a second). This means that any one
program will have several turns to execute every second. To the human, the switching occurs so
frequently, that it appears that all programs are executing in a truly simultaneous fashion.
Occasionally, the user will be aware of time-slicing when some program takes an unusually long
turn at execution. (It is said to “hog the processor.”) The result is that all other programs become
frozen for a period of time. If the delay is longer than a second, the user may notice a delay in the
output of any programs that are frozen.

It is also possible that some program will go into an infinite loop, effectively refusing to give
other programs their turns with the processor. It is as if one program suddenly becomes
belligerent and refuses to share. In older operating systems, the only solution is to restart the
computer, while in more modern systems, the OS will continue with normal time-slicing. A
program that is infinitely-looping will either produce no output or will produce an endless stream
of repetitive output. Since most infinite loops tend not to produce output, the looping program
will generally appear to be frozen. In either case, a looping program must be terminated from the
outside, but before it is terminated, the other programs will continue to make normal progress in
spite of the looping program. The other programs may be slowed down, but their functionality
will not be disrupted.

Fundamental Concepts of Programming Page 43

Now let’s take a look at a word-processing program. Under normal operation, the user types in
characters and they get displayed on the screen. Assume that the program can also check
spelling. Typically the task of checking spelling is quite time-consuming since the dictionary
contains so many entries that must be consulted. The goal of the spelling checker is to check
each word in the document and underline the words that are misspelled. Moreover, it will check
the spelling as the user types and will underline misspelled words as they are typed.

The task of checking the spelling is straightforward but time-consuming. Ideally, the application
would check the spelling after each character is typed, but the task is so time-consuming that a
normal computer cannot keep up with a typical human typing rate. Receiving the characters from
the keyboard and displaying them on the screen must have priority and must be done first. How
is this program to be structured?

There are essentially two different tasks. The first task, which we shall call “key-reading”,
involves receiving characters, storing them in memory and displaying them. The second task,
which we call “checking”, will look at the characters stored in memory and, if any words are
misspelled, it will display the underlining on the screen.

In this application, we want both tasks to make progress simultaneously. We don’t want the
“checking” to take too much time away from “key-reading.” One solution might be to run both
tasks as separate programs: the time-slicing of the operating system would allow both to make
progress but, unfortunately, the two tasks would be isolated from each other. This will not work
here since both tasks must access some shared objects in memory where the document’s
characters are stored.

In a simple program, as we have been discussing up to now, each statement is executed one after
the other. Imagine looking at a program while it executes and imagine that we could highlight
each statement as it is executed. Then, as execution proceeded through the program, one
statement after the next would be highlighted. (Of course, this would occur very fast, but imagine
that time is slowed down so we can see the different lines of the program light up in turn.) This
single flow of control through the program is called the thread of execution.

A normal program has a single thread: at any one time, only one statement is highlighted. As
execution winds its way through the instructions—taking this branch or that at the “if”
statements, repeating statements over and over in “while” loops and jumping to and from
functions from time to time—execution “threads” through the program statements.

Fundamental Concepts of Programming Page 44

The solution to our word processing problem is to create a multi-threaded program. In a multi-
threaded program, the principle of time-slicing is applied within a single program. There is more
than one flow of statement execution, more than one thread.

For example, in a program with two threads, two statements will be highlighted, at any one
moment. As time goes by, execution will move from each highlighted statement to the following
statement, in two separate areas of the program. Each thread will proceed on its merry way,
independently of the other thread.

One way to understands multi-threaded programs is to imagine that a program with two threads
is executed on a computer with two processors. Each processor implements one of the threads, so
it is as if the program is being executed twice on two different computers. However, you must
imagine that the two processors share their memory, like two Siamese computers, joined at the
memory. There is only one copy of the objects in memory and these objects are shared by both
processors. In our example, one processor will execute the “key-reading” task and the other will
execute the “checking” task.

With time-slicing, multi-threaded programs can easily be run on computers with only a single
processor. In fact, most common application programs, such as word processors, games and web
browsers, are multi-threaded applications. Some applications may even have hundreds of
threads.

From time to time, it will be necessary to coordinate the different threads. For example, if the
“checking” task finishes checking all the words in the document, it will have to suspend
execution and wait until the user types in some more words to check. Or perhaps the user hits
some keys to save the file and quit the application; then the “key-reading” task will need to tell
the “checking” task to stop execution altogether.

Modern programming languages like Java include a number of features to support multiple
threads of execution. For example, one thread can communicate to another thread, saying
something like, “Please stop and wait until I tell you to start back up” or “Please terminate your
execution.” One important operation occurs when one thread creates a new thread.

Threads may also be assigned different priorities. We might want to perform the “key-reading”
task with greater priority than the “checking” task. The reason is that our word processing
application should spend more time responding to the keyboard and displaying whatever is typed
than checking the spelling, so that it will display the typed characters as quickly as they are
typed. The “checking” task is a background task and is less important. The application should
only try to find and underline misspelled words when it is not doing anything more important.

Fundamental Concepts of Programming Page 45

After a program is written, it will be compiled and an executable file for some computer will be
produced. The executable can be executed on that computer over and over, but cannot be
executed on other computers. As you know, a program for the PC will not run on a Mac or on a
Sun computer since each of these computers has a different processor.

Furthermore, within some processor lines, there is enough difference between the various models
that a program written for one will not run on another. For example, a program written for a
newer Intel processor may not run on an older Intel processor, even though there is only a very
slight difference between the processors within the Intel line. Generally the newer models are
designed to have backward compatibility, which means that they can execute all of the
instructions that could be executed on the older models, but the newer models also include newer
features. Programs that are written for the newer models and that use these newer features will
not run on the older processors.

When a program works on one computer but not another, there is a portability problem. The
program cannot be moved to a different computer. Of course, this is a huge nuisance for
computer users. Some corporations (particularly Microsoft) even use the portability problem in
an attempt to trap their customers and prevent them from leaving.

Fortunately, computer scientists have found a clever way to create programs that will execute on
a large number of computers and eliminate the portability problem, in spite of whatever
decisions a manufacturer may make.

The idea is to have the compiler translate the source program, not to the Pentium or the G4 chip,
but to a standardized machine, designed primarily to address the portability problem. Such a
machine is called a virtual machine, since there is no actual chip that executes programs for it.

Let’s look at the Java Virtual Machine in particular. There is no “Java Virtual Machine” chip,
although the instructions of this machine look similar to instructions for any real microprocessor.
In theory, some manufacturer could begin producing chips for it—and this may well happen in
the future—but the point is that the Java Virtual Machine is a description of a processor, not a
real processor. It is a specification, not a real machine.

Instead, the virtual machine is implemented in software. There is a program which simulates the
Java Virtual Machine. This piece of software is called the interpreter. There are many versions
of this interpreter: there is one for the PC, one for the Mac and one for the Sun computers. Java
programs are not compiled for any particular machine; instead there is only one Java compiler
and it produces code only for the Java Virtual Machine. Today, every computer comes with an
interpreter for the Java Virtual Machine, which means that any Java executable program can be

Fundamental Concepts of Programming Page 46

executed on any machine. The user does not need to worry about whether the executable will
execute of his or her machine.

Today, most web browsers have interpreters built right into them for several popular languages
like Java. When you go to some complex web pages, what really happens is that a compiled Java
executable program is downloaded and run on your machine, using the interpreter that is built
into your web browser. (Don’t worry; the interpreter doesn’t allow the Java program to read or
write to your disk.) Running a program on your machine allows the web page to have a very
complex behavior and to be quite interactive, all without communicating over the internet.

When programs on different computers interact with each other, it is often the case that one
program runs on the user’s computer and deals with issues related to the user interface; this
program is called the client program. The other program, which runs on a remote computer and
communicates with the client program, is called the server program. Generally, the server is
concerned with managing and storing the data on some distant disk. A single server will usually
communicate simultaneously with hundreds or millions of clients.

For example, the AOL software that many people load onto their computers is a client program
which talks with the AOL server. Also, many people use an email client to send and retrieve
email from a server computer.

As another example, your web browser is a general-purpose client program, which
communicates with the millions of webpage servers on the internet. The beauty of being able to
download a Java program and execute it on your machine using the Java Virtual Machine is that
a particular server can momentarily customize your computer to make it perform in a way
compatible with the server. This allows a human user to communicate with a remote computer,
using a Java client program to act as the user interface on the user’s computer.

The subject of programming is fascinating and it is a very active research area. The design,
introduction and study of new languages is a hot and active field, attracting the smartest students.

There are many goals in programming language research, but one important goal is to create
languages that are easier to use and which reduce programming errors. Another research goal is
to create languages and compilers that are faster and more efficient. Also, many new languages
are being designed for specialized applications or based on innovative new concepts. And of
course it will remain important to understand, debug and generally live with all the legacy code
which has been written in older programming languages and which runs our existing computers
today.

