
SCSJ 2733
Introduction to Fortran

Mohsin Mohd Sies

Adapted from notes by

Kadin Tseng

Boston University

Outline

• Objectives

• Introduction

• Fortran History

• Compiling

Introduction to FORTRAN

2

Objectives

• write simple Fortran programs

• understand and modify existing Fortran code

Introduction to FORTRAN

3

Introduction
Two fundamentally different types of high-level
languages:

• Interpreted language

– MATLAB, Python, Java

– Translation to machine-language is performed
incrementally at run time

• Compiled language

– Fortran, C, C++

– Translation is performed once, then executable is run as
frequently as needed without further translation

Introduction to FORTRAN

4

Introduction (cont’d)

• Compiled languages run faster.

– Large-scale computing is usually done with
compiled language

• Interpreted languages more convenient but
slower

– e.g., no need to declare variables; do things on-
the-fly

– MATLAB can be an order of magnitude slower
than C/fortran (code dependent)

Introduction to FORTRAN

5

Fortran History

• Before Fortran, programs were written in assembly language
(very tedious to say the least)

– low-level commands such as “load x from memory into
register 7” or “add values in registers 10 and 11 and write
result to register 4”

• Fortran was the first widely-used high-level computer
language

– 1957

– Developed by IBM for scientific applications

– Program written on a specially formatted green sheet,
then entered as punched cards

Introduction to FORTRAN

6

Fortran History

• Fortran 66 (1966)

• Fortran 77 (1978)

• Fortran 90 (1991)

– “fairly” modern (structures, etc.)

– Current “workhorse” Fortran

• Fortran 95 (minor tweaks to Fortran 90)

• Fortran 2003

– Gradually being implemented by compiler companies

– Object-oriented support

– Interoperability with C is in the standard

Introduction to FORTRAN

7

What Language Should I Use?

• Generally, use the language you know best

• Interpreted languages are great for

– Interactive applications

– Code development and debugging

– Algorithm development

• For major number crunching, compiled
languages are preferred (Fortran, C, C++)

Introduction to FORTRAN

8

Coding

• Program is contained in a text file

– called source code or source file

• Source code must be processed by a compiler to create
an executable

• Source file suffix can be (.for, .f, .F, .f90, .F90, …)

• Since source file is simply text, it can be written using
any text editor

– Notepad++ is recommended for this course

– Use a suitable fixed-width font such as Courier,
Consolas, Inconsolata

Introduction to FORTRAN

9

Compilation
• A compiler is a program that reads source code and

converts it to a form usable by the computer

• Internally, three steps are performed:

– preprocess source code

– check source code for syntax errors

– compiler translates source code to assembly language

– assembler translates assembly language to machine
language

– linker gathers machine-language modules and
libraries

– All these steps sometimes loosely referred to as
“compiling”

Introduction to FORTRAN

10

Compilation (cont’d)

• Code compiled for a given processor
architecture will not generally run on other
processors

– AMD and Intel are compatible

• Code compiled on an operating system (e.g.
Windows) will also not run on other operating
systems (e.g. Linux, Mac)

Introduction to FORTRAN

12

Compilation (3)
• Compile hello.f on the terminal console :

Cygwin~$ gfortran –o hello hello.f (-o lets you set
executable name, hello is the executable file name)

• If it simply returns a Unix prompt, it worked

• If you get error messages, read them carefully and see
if you can fix the source code and re-compile

• Once it compiles correctly, type the executable name
at the Unix prompt, and it will print your string

Cygwin~$./hello

Introduction to FORTRAN

13

