Programming for Engineers
Fortran: Getting Started

Abu Hasan Abdullah

January 8, 2009

Abu Hasan Abdullah) 2009

Preview
e How a program is organized
e The different types of data, constants and variables
e Assignment statements for calculating and storing data

e Simple input and output

Course Text:
MAyo W. E. AND CWIAKALA M. (1995): Programming with Fortran 77,

ISBN 0-07-041155-7, McGraw-Hill

Abu Hasan Abdullah (©) 2009 1

Our First Fortran Program

e A program is constructed with a text editor. Run your text editor and edit the
following Fortran source code into a file named salam.f

12345678901234567890. . .

I T 60 10O O 0 O O O 1 0 i

1 uuuuuuPRUGRAMusalaﬂl
2 [_||_||_||_||_||_|PRINT|_|* s L ’Salam ’ uworld I

3 uuuuquND
e As shown above, a program may (optionally) start with the statement
PROGRAM name
and must end with the statement

END

Abu Hasan Abdullah (3) 2009

Program Organization

e A program line must follow very specific rules, e.g.
— Columns 1 thru’ 5 reserved for statement labels.
— Column 6 reserved for a continuation character.

— Columns 7 thru’ 72 store Fortran commands.
— Columns 73 and higher are ignored. Can be used for comments.

e Thus, without the imaginary spaces, the code is

1 PROGRAM salam
9 PRINT *, ’Salam, world!’
3 END

e Comments, used for documenting various parts of a program, are indicated by
a Cin column 1 or character ! in any column

Abu Hasan Abdullah (3) 2009 3

Running g77 Fortran Compiler

e Compile salam.f source file by typing
[userid@siswal]$ g77 -o salam salam.f
at the console command prompt. If all goes well, object file salam.o is created
and linked to the system libraries to produce executable file salam.
e To execute or run a successfully compiled program, type

[userid@siswal]$./salam

e Explore other compiler options by typing

[userid@siswal]$ man g77

Abu Hasan Abdullah (©) 2009 4

Data Types

e Fortran contains six intrinsic data types, built automatically into the language
and divided into two categories:

1. numerical data types

(a) integer

(b) real

(c) double precision

(d) complex

2. non-numerical data types
(a) character

(b) logical

Abu Hasan Abdullah 3) 2009 >

Data Types
Integer Constants

e Those that represent whole numbers.

e Range of values that can be represented on a computer varies from one
computer to another.

e A typical range —2%271 to 423271
Approximately £2 x 10” for a 32-bit computer.

Abu Hasan Abdullah (B) 2009 6

Data Types
Real Constants

e Represent fractional numbers which maybe positive or negative and always
have a decimal point.
e Stored in computer as two components:

— mantissa—ranging between 0.1 and 1.0.
— exponent—indicates appropriate power of 10.

For example 10.2345 is stored with 0.102345 as mantissa, 2 as exponent (i.e.
10.2345 = 0.102345 x 10?).

Abu Hasan Abdullah) 2009 7

Data Types
Real Constants

e Used with scientific notation to represent a very large or very small numbers.
Written as:

< mantissa > x 1Q<exponent>

For example, 0.123456 x 10° represents 123, 456.
e Accuracy limited to seven digits, magnitude ranging 103" to 10738.

e Samples in Example 2.4, Example 2.5.

Abu Hasan Abdullah (B) 2009 8

EXAMPLE 2.4

The following examples illustrate valid and invalid uses of real constants:

Valid Examples

Invalid Examples

Comment

-21.4
+132.7
0.0000034
123 456.0

$1.23
0

123,456.00

Negative required

Plus sign optional

Small numbers permitted

Spaces ignored

Only numbers permitted (no $)

Requires a decimal point, otherwise this
Is an integer

No commas

EXAMPLE 2.5

The following examples show the use of real constants using scientific notation:

Valid Examples

Invalid Examples

Comment

0.6023E24
—0.123E24
0.123E-24
0.0EO

1E2

0.1E—-12.5
0.1E—123
0.1E+123

Avogadro's number 6.023 x 107
Negative mantissa permitted
Negative exponent permitted

Zero!

Decimal point not required
Exponent must be integer

Value too small on most computers
Value too large on most computers

Data Types
Double Precision Constants

e Whatever applies to real numbers, apply to double precison numbers . . .

e . .. with these additions

— If 7-digit accuracy is not enough, increase it using double precison numbers
— Accurate to 14-16 decimal places (machine dependent)
— Use D instead of E for exponent, for examples

0.98153E+12 REAL number
0.3817253422126D+08 DOUBLE PRECISION number

— Samples in Example 2.6.

Abu Hasan Abdullah (B) 2009 9

EXAMPLE 2.6

The following examples illustrate double precision constants using scientific notation:

Valid Examples Invalid Examples Comment
0.0D0 Double precision form of zero
0.23D-94 Double precision will give greater range

0.123456789E23 Not double precision! Extra digits ignored

Data Types
Complex Constants

e Algebraic representation:
real; + (realy)i

for example, 4 + 3i, where 4 is the real part and 3: is the imaginary part

e Fortran representation:
(REAL;,REAL,)

where REAL, is the real part and REAL, is the imaginary part

e Samples in Example 2.7.

Abu Hasan Abdullah @) 2009

10

EXAMPLE 2.7

Here are some examples of commonly encountered complex constants:

Valid Examples Invalid Examples Comment

(1.23, -3.45) Either component may be negative
(+1.23, 0.0) Positive sign is optional

(1.23E-2, 3.45) Exponential format is permitted

(1.23D-128, 3.45) Both components must match in precisio,
(1, 2) Integers not allowed

Data Types
Character Constants

e Handle non-numeric data such as names and addresses.

e Any set of allowed symbols, defined below, and enclosed in single quote marks
("):
— Letters of alphabet (upper- and lower-case)

— Numbers 0 through 9
— Special characters + — () . ,*x / ="39

Abu Hasan Abdullah (B) 2009 11

Data Types
Character Constants

e Note that

— 71234 is a character constant but 1234 is its numerical counterpart.
— You can add 123 + 456 but NOT ’123° + ’456°.

e Samples in Example 2.8.

Abu Hasan Abdullah () 2009

12

EXAMPLE 2.8

H
crc are some commonly encountered examples of character constants:

Valid Examples Invalid Examples Comment

’Helen" Mixing upper/lower case OK
,1,2,345 : All numbers OK
I’M OK - If you want an apostrophe inside the
single quotes, you must use two
apostrophes. Result is I'M OK.
"Helen" Must use single quotes (apostrophe)
Helen Missing quote marks
TY NY’ Illegal character ()

Data Types
Logical Constants

e Can only take two values:

— ol RUE.
— FALSE.

Note the use of periods!!
e Much used in Fortran control structures, which we will deal later.

e Samples in Example 2.9.

Abu Hasan Abdullah () 2009

13

EXAMPLE 2.9

Here are some examples of common uses of logical constants:

Valid Examples Invalid Examples Comment
.True. Mixed case is acceptable
FALSE Requires periods (.FALSE.)

.T. Must spell out complete word

Data Types
Variables

e Variables are

* means to manipulate data—used to represent a quantity in a formula as

used in algebra,
* also used to represent memory in computer.

e Input and output statements are used to introduce data into program by
assigning them to variables

e Work through Example 2.10.

Abu Hasan Abdullah (B) 2009 14

EXAMPLE 2.10

Below is a simple program to compute the area and circumference of a circle of radjys

r
the program, the variables used are PI, AREA, CIRCUM, and R. Note that we try to Choo;n
variable names that indicate their function in the program. v

PROGRAM AREAOFCIRCLE
C The following statements request the user to type in
C a value of the radius
PRINT * , ’'Enter circle radius'’
READ * , R
C Once the radius 1is fed in, the area is calculated
Pl = 3.1416
AREA = PI * R * R
CIRCUM = 2 * PI * R
C The value of the area is now printed out
PRINT * , ’'Area of circle is ’, AREA

PRINT * , ’‘Circumference of circle is ’, CIRCUM
END

Data Types
Variables

e Give variables suitable names to describe their function within the program—
e.g. VOLUME, AREA, WIDTH, etc.

e Rules for defining Fortran 77 variable names:

— Names are 1 to 6 characters long

— Only letters (A=Z), (a—z) and numbers (0-9) allowed
— First character must be a letter

— Upper/lower case are equivalent

— Blank spaces are ignore

e Work through Example 2.11.

Abu Hasan Abdullah (B) 2009 15

EXAMPLE 2.11

Here are some common forms of variable names:

Valid Examples Invalid Examples Comment
X OK, but not very illustrative
TAXDUE Better, since it describes its function
TEMP1 OK to mix letters and numbers
AMT DUE OK, spaces are ignored
Amt Due Same as previous example, since lower
case is treated the same as upper case
in Fortran
AMOUNTDUE Too many characters (max of 6)
$OWED Illegal character ($)

2BEES " Must start with a letter

Data Typing

e How does a program tell the computer to define variables, whether they are
integer, real, double precision, complex, character or logical?
e Fortran offers two options:

1. implicit data typing
2. explicit data typing

Abu Hasan Abdullah 3) 2009 16

Data Typing
Implicit Data Typing

e Variable is assigned data type based on the first letter of the variable name

e Variable names that begin with letters A—H or O—-Z are real. Examples are
RADIUS, PI and AREA.

e Variable names that begin with letters I-N are integer. Examples are ICOUNT,
and MAXIT.

e Applicable to integer and real data types only.

e Not applicable to complex, character or logical.

e Work through Example 2.12.

Abu Hasan Abdullah (B) 2009 17

EXAMPLE 2.12

Here are some examples of implicit typing:

Variable Type
R Real
PI Real
AREA Real

Variable Type -

CIRCUM Real

LENGTH Integer
Integer

ICOUNT

Data Typing
Explicit Data Typing

e A procedure of specifying explicitly how to treat each variable.
e Used to overide the implicit data typing of integer and real variables.

e As implicit data typing is not applicable to complex, character or logical, they
must use explicit typing rules.

Abu Hasan Abdullah 3) 2009 18

Data Typing
Explicit Data Typing

e Examples

REAL X,Y declares X, Y as real variables
LOGICAL OKEY declares OKEY as logical variable

e See Example 2.13 for more examples of declaration.

e See Example 2.14 on how to apply in a program.

Abu Hasan Abdullah () 2009

19

EXAMPLE 2.13

Here are some examples of explicit typing:

Declaration Statement

Result

REALX,Y,Z

REAL LENGTH
INTEGER COUNT
CHARACTER GRADE
CHARACTER*20 NAME
COMPLEX PHASE
LOGICAL YESNO
DOUBLE PRECISION X
CHARACTER A*10, B*20

Declares X, Y, and Z as a real variables

Defines LENGTH as a real variable

Defines COUNT as an integer variable

Defines GRADE as a character variable of length 1
Defines NAME as a character variable of length 20
Defines PHASE as a complex variable

Defines YESNO as a logical variable

Defines X as a double precision variable

Defines A as a character variable of length 10 and B 55 ,
character variable also, but of length 20

EXAMPLE 2.14

The following program is similar to Example 2.10, except that the types of the variables are
now explicitly stated:

PROGRAM AREAOFCIRCLE

C The following statements requests the user to type in
C a value of the radius
REAL R, PI, AREA, CIRCUM

PRINT * , ’'Enter circle radius’
(Program continues on next page)
READ * | R
C Once the radius is fed in, the area is calculated
PI = 3.1416

AREA=PI*R*R
CIRCUM = 2 * pT * R

C The value of the ares is now printed out
PRINT * , ’Area of circle is ’, AREA

EEENT * , 'Circumference of circle is ’, CIRCUM

Simple Input/Output
e Most programs require users to enter data into program. This calls for input
statement. To input a value to a variable, from keyboard for instance, we use

READ *, variablel, variable?2

e Once data manipulation is completed, we may want to send results to display.
This call for output statement. To output a value of a variable, to the VDU

for instance, we use

PRINT *, variablel, variable?2

e Recall /O in Example 2.1. More in Example 2.15.

Abu Hasan Abdullah 3) 2009 20

EXAMPLE 2.15

The following example reads in a person’s name and age in years. It then converts the age
from years into months:

PROGRAM AGEINMONTHS

C The declaration statement must come first
CHARACTER*10 NAME
REAL, AGEYRS, AGEMTH

C Here 1is where we input the person’s name and age
PRINT *, ’‘Enter your name and your age in years’
READ *, NAME, AGEYRS

C Now we convert the age from years into months
AGEMTH = AGEYRS * 12

C Print out the results
PRINT *, NAME, ' is approximately ', AGEMTH, ' months old’
END

Assignment Statements

e Assignment statement is the primary means of storing data in variables. We
tell computer to assign a value to a given variable.

e General form is

Target «— Value from an expression

e Fortran implementation is

Variable = Value from an expression

Abu Hasan Abdullah 3) 2009 21

Assignment Statements

e Examples of Fortran assignment statements

PAY = 5.15

VELOCITY = 45.27

X = SQRT(Y)

ICOUNT = 100

NAME = ’*MUHAMMAD IBN ABDULLAH’
OKEY = .TRUE.

Abu Hasan Abdullah @) 2009

22

Assignment Statements:

Exception
e Consider conventional algebraic equation
g=1—p

which, on solving, yields

Abu Hasan Abdullah () 2009

23

Assignment Statements:
Exception

e But in Fortran assignment expression
X = 1.0 =X
has a totally different meaning. It means
< new value of X > = 1.0 - < old value of X >

i.e. take whatever (old) value in a memory location named X, substract it from
1.0 and put the result of that calculation back into memory location X.

Abu Hasan Abdullah 3) 2009 24

Expressions and Hierarchy of Operations

e There are only FIVE basic arithmetic operations in Fortran: subtraction,
addition, division, multiplication, exponentiation.

Operation Fortran symbol Priority
parentheses ¢) 1
exponentiation * % 2
multiplication * 3
division / 3
addition + 4
subtraction - 4

Abu Hasan Abdullah 3) 2009 25

Priority

Algebraic Symbol

Fortran Symbol

Meaning

AR W W N -

Parentheses
Exponentiation
Multiplication
Division
Addition
Subtraction

EXAMPLE 2.21

When two exponentiation operations appear together, they are evaluated right to lef;.

yRLKELE) - 2 %+ 0 - 512

EXAMPLE 2.22

For the examples below, we supply the answer. Trace through each and make sure yq, get

the same result:

Expression Value Comments

16.0 —4.0-2.0 10.0 Left to right

16.0 — (4.0 — 2.0) 14.0 Evaluate expression within () firs
16.0 + 4.0 * 2.0 24.0 Multiplication first
16.0/4.0/2.0 2.0 Left to right

16.0 ** 4.0 * 2.0 131072.0 Exponentiation first

16.0 ** (4.0 *2.0) 4294967296.0 Expression within () first

Name

Description

Argument Result Example
ABS(X) absolute value integer integer J = ABS(-51)
real real X = ABS(—17.3)
double double Z = ABS(—0.1D04)
ACOS(X) arccosine real real (rad) X = ACO0S(0.5)
double double (rad) X = ACOS(0.5D0)
ALOG(X) natural logarithm real real X = ALOG(2.71828)
double double X = ALOG(0.2718D01)
ALOGI10(X) logarithm base 10 real real X = ALOGI10(10.0)
double double X = ALOGI10(0.1D0)
AMAX(...) returns largest value integer integer 1 = AMAX(,1,6,2)
real real X = AMAX(0.2,5.6)
double double X = AMAX(1D0,3D3)
"AMIN(...) returns smallest value integer integer I = AMIN@4,3,—-4)
real real X = AMIN(0.2,5.6)
double double X = AMIN(1D0,3D3)
ASIN(X) arcsine real real (rad) X = ASIN(Q0.5)
double double (rad) X = ASIN(0.5D0)
ATAN(X) arctangent real real (rad) X = ATAN(1.0)
double double (rad) X = ATAN(1.0DO0)
COS(X) cosine real (rad) real X = C0S(1.04712)
double double X = CO0S5(1.04712D0)
DBLE(X) converts to double integer double X = DBLE(@3)
real double X = DBLE(3.0)

FORTRAN Intrinsic Functions

Name Description Argument Result Example
. X = EXP(1.0
ential, e* real real .
. o double double EXP(I.ODO)
. i J = INT(3.999g
INT converts to integer real Integer _
. | : double integer] = INT(0.3999501)
; X = FLOAT(4
FLOAT converts to real integer real .
D double real X = FLOAT(OADO{)
MOD(,)) integer remainder integer integer] = MOD(29,4
of 1/]
NINT(X) round to nearest real integer I - NINT(3.99)
integer double integer] = NINT(0.6Doy)
: X = REAL(3)
REAL) convert to real integer real
double real X = REAL(0.23ppy
- = SIN(0.5202)
SIN(X) sine real (rad) real X
double (rad) double X = SIN(0.52D0)
SQRT(X) square root real real X = SQRT(17.6)
double double X = SQRT(0.17D2)
TAN(X) tangent real (rad) real X = TAN(0.785)
double double X = TAN(0.785D0)

—

FORTRAN Intrinsic Functions

Homeworks

e Go through all Solved Problems on pages 59-62.

Abu Hasan Abdullah () 2009

26

