Programming for Engineers
Fortran: Input and Output

Abu Hasan Abdullah

January 7, 2009

Abu Hasan Abdullah) 2009

Course Text

Mayo W. E. AND CWIAKALA M. (1995): Programming with Fortran 77
ISBN 0-07-041155-7, McGraw-Hill

Abu Hasan Abdullah () 2009

Preview
e List Directed 1/0O
e Formatted 1/0O
e Format Statement

e Edit Descriptors

Abu Hasan Abdullah () 2009

List Directed 1/0

e List directed 1/O provide the easiest way to input and output data from a
program, where

* appearance of data is not of any concern, only what we input or output

* computer controls all aspects of the appearance of output
* getting quick answer is desired

e General form for input

READ *,6 variablel, variable?2, ...

e General form for output

PRINT *, variablel, variable?2, . ..

Abu Hasan Abdullah (B) 2009 3

List Directed 1/0

e The asterisk (*) in both statements indicates we are using the free format

e variablel, variable2, ... appearing after the READ * and PRINT * are
called the Input/Output (1/0) list

e Show how Example 3.2 works

e Show how Example 3.3 works

Abu Hasan Abdullah 3) 2009 4

EXAMPLE 3.2

The PRINT command shown below will send the value of each variable to the CRT screen.

For example, if we enter the data given above, we can print them out using the following
program segment:

READ *, X, Y, 2
PRINT *, X, Y, 2

the computer will print out the same values that you typed in:

14.3, -27.943, 0.0034567 <CR> (what you type in)
14.30000 =-27.94300 0.003456700 rintout on CRT screen)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAA

l | I l l

10 20 30 40 50

]

EXAMPLE 3.3

Here is an example of enhancing the PRINT statement with strings that describe the data

being printed:
X = 2.4
PRINT *,'X = ', X, /X %% 2 = r o X*X

This will produce the following output on the screen:

X = 2.400000 X ** 2 = 5.760000

A A A A
AA

| e | | |

10 20 30 40 50

Formatted 1/0

e Formatted 1/O allows control over |/O functions which list-directed /0O
commands, seen previously, do not.

e This introduces I/O FORMAT pair:

* For input
READ sl1, variablel, variable?2, . ..
sl FORMAT (list of instructions)

* For output

PRINT sl1, variablel, variable?2, . ..
sl FORMAT (list of instructions)

where sl is a number used as the statement label. See the examples below.

Abu Hasan Abdullah () 2009

Formatted 1/0

e Examples:
* For input

READ 10, SPEED, TIME
10 FORMAT (1X,F12.3,2X,F12.3)

* For output

PRINT 20, DENCT, VOLUME
20 FORMAT (1X,F12.3,2X,F12.3)

Note: Without matching I/O commands, the FORMAT statement is useless.

Abu Hasan Abdullah @) 2009

Formatted 1/0

e Difference between list-directed 1/0O

PRINT *, ICOUNT, JCOUNT

and formatted 1/0

PRINT 33, ICOUNT, JCOUNT
33 FORMAT (° ’,I6, I9)

is that the * is being replaced with a statement label (33 in the example
above) pointing to a FORMAT statement

Abu Hasan Abdullah 3) 2009 7

FORMAT Statement

e List of instructions that follows FORMAT statement is composed of:

— a carriage control character (output only) to reset printer if used
— a list of edit descriptors to specify the output instructions for each output
item, such as
x type of variable and number of significant digits
% column in which to start printing
« floating point or exponential form (real numbers)
x number of blank spaces and blank lines
* any added text to be included

Abu Hasan Abdullah (3) 2009 8

FORMAT Statement
e General form of a FORMAT statement

sl FORMAT (CCC, specifierl, specifier2,...)

where

sl = statement label (integer up to 5 digits)
CCC = carriage control character (only for output)
="' single vertical spacing
='0" double vertical spacing
='1" new page
= '+’ no advance; reset to start of current line

specifier = instruction for individual variable

Abu Hasan Abdullah (3) 2009

Edit Descriptors

e Provide detailed formatting information on how data are to be read (for input),
printed or displayed (for output). Formatted input is RARELY used. Will only

concentrate on output from now!

e Two main categories of format specifiers
1. rules for controlling numerical and character data
2. rules for controlling physical layout

e Two primary concerns in formatting numerical output

— total number of spaces
— total number of significant digits to be displayed

Abu Hasan Abdullah 3) 2009 10

Edit Descriptors:
Controlling Numerical and Character Data

Category Descriptor Function Form Example
Numerical data | Integer lw 15
F Real Fw.d F6.2
E Real (exponential) Ew.d E12.3
D Double Precision Dw.d D20.8
G Real (general) Gw.d G8.3
switches between
F and E format
Character data A Character variable Aw A20
O Character strings 'xxx' 'Example’

Abu Hasan Abdullah (B) 2009 11

Edit Descriptors:
Controlling Numerical and Character Data

e General form of numerical format descriptor
TYPEwidth(.decimals)

where

TYPE = a letter (I, F, E, D or G) indicating the type of data
width = total width of space desired

decimals = total number of decimal places (not need for integer)

Examples:

F12.3, E12.5, D20.8

Abu Hasan Abdullah () 2009

12

Edit Descriptors:
Controlling Numerical and Character Data

e Demonstrate Example 3.5 for I edit descriptor.
e Demonstrate Example 3.6 for F edit descriptor.
e Demonstrate Example 3.8 for E edit descriptor.
e Demonstrate Example 3.8 for D edit descriptor.

e Demonstrate Example 3.11 for ’ ’ edit descriptor.

Abu Hasan Abdullah () 2009

13

EXAMPLE 3.4

When we print out integers, our only concern is that we leave enough space in the printed
line for all the digits of the number. We do not need to worry about the number of decimal

places since integers can only be whole numbers. Therefore, the form of the specifier
becomes:

Iw

where [indicates an integer number and w indicates t

he total amount of reserved space. To
illustrate, consider the following example:

ICOUNT = 237

JCOUNT = -14
PRINT 33, ICOUNT, JCOUNT
33 FORMAT (' *, I6, I9)
« 16 > I9 (how the line is divided)
237 ~-14 (the actual output)

AAAANAANSNAANA
AAAAAAAAAAAAAAAAaAAAAAAAAAAAAAAAAAAA&AAAAAAAAAAAA

| | | N |

10 20 30 40 50

EXAMPLE 3.5

Consider the following program segment where the program does not allow sufficient space
to print out the data:

ICOUNT 12345

JCOUNT -98765

PRINT 98, ICOUNT, JCOUNT
98 FORMAT(’ ', I5, I5)

nu

This will result in the following output:

« IS5« I5- (set up of the line)
12345% %% %% (the actual printout)

AAAAAAAMAAMAAAAMAAAMAMAMAAAAAAAAAMAANAAADMAAMAAMAMAANMAAANANIADDNDDPD DA A A MA MM

| | | | I

10 20 30 40 50

EXAMPLE 3.6

Here is an example of how to use the F edit descriptor:

DIST = 12.345
TIME = 0.00345
VELOC = DIST/TIME
PRINT 5, DIST, TIME, VELOC
5 FORMAT(’ ', F7.2, F9.6, F10.1)

will produce the following output:

o FT:}ﬁ— F9.6 -« F10.1 -
12.35 0.003450 3578.3

10 20 30

AAA

e

(set up of the line)
(the actual Erintout)

AAAAAAAR

| |

40 50

EXAMPLE 3.7

The following example demonstrates how to control the number of decimal digits printed and
the spacing between two numbers. Also, we have included strings inside the FORMAT

statement.
X = 1.234567
Y = 9.876543
PRINT 10, X, Y
10 FORMAT (’ ‘,’Value of X= ’,F8.3,3X,'Value of Y= ’,F9.1)

To better understand the format specifiers, we should interpret each one separately:

T2

The carriage control character - start a new line in column 1:

'Value...’ Character string - just print out what is inside the apostrophes;
F8.3 Descriptor for controlling the printout of the first variable, X.
F8.3 specifies a total of eight columns with three decimal places;
3X Skip three spaces;
'Value...’ Another string - do as above;
F9.1 Descriptor for printing the value of the second variable Y in nine columns

and one decimal place.

Value of X= 1.235 Value of Y= 9.9

AA

| | | | |

10 20 30 40 50

Scientific Notation

We can also express real numbers in scientific notation as we discussed in Chapter 2. The
general form for printing a real number in this exponential format is:

Ewd

where E = indicates exponential format (mantissa X 107).
w = total width of field reserved for number.
d = desired number of decimal places for mantissa.

As with the F format, the E format has a special rule about how many additional spaces must be
reserved. Besides the number of significant digits of the mantissa, the E format requires a total of
7 additional spaces. Thus, the rule for the Ew.d format is:

w=d+ 7

E12.4 -
_ 0.1235E+02

7 Required reserved spaces

Double Precision

D w.d

where D = indicates double precision format (e.g. 0.123D +003).
w = total width of field reserved for number. |
d = desired number of decimal places for mantissa.

The principal difference between E and D formats is that the exponent for double precision can pe
significantly larger than that for single precision. Therefore, you must allow for a three-digjt

exponent with the D format compared to two digits for E format. The following rule summarizes
these requirements:

w=d+ 8

EXAMPLE 3.9

To demonstrate the double precision format, let’s reexamine Example 3.8, but now with the
D format:

DOUBLE PRECISION DIST, TIME, VELOC

DIST = 12.345
TIME = 0.00345
VELOC = DIST/TIME
PRINT 5, DIST, TIME, VELOC
5 FORMAT(’ ', D12.4, D11.3, D10.1)

will produce the following output:

« D12.4 =« Dl11.3 -« D10.1 - (set up of line)
0.1235D+002 0.345D-002 0.4D+004 (the actual output)

AAANKAAAN

| | | | |

10 20 30 40 50

EXAMPLE 3.9

To demonstrate the double precision format, let’s reexamine Example 3.8, but now with the
D format:

DOUBLE PRECISION DIST, TIME, VELOC

DIST = 12.345
TIME = 0.00345
VELOC = DIST/TIME
PRINT 5, DIST, TIME, VELOC
5 FORMAT(’ ', D12.4, D11.3, D10.1)

will produce the following output:

« D12.4 =« Dl11.3 -« D10.1 - (set up of line)
0.1235D+002 0.345D-002 0.4D+004 (the actual output)

AAANKAAAN

| | | | |

10 20 30 40 50

X = 12.34
Y = -0.025
PRINT 34, X, Y, X*Y
34 FORMAT(’ ’','X = ',F6.2,' Y = ',F6.3, ' PROD = *+F10.,5)

will produce the following output:

X = «F6.2> Y = «F6.3-»> PROD = « F10.5 -
X = 12,34 Y = -0.025 PROD = -0.30850

AAﬁAﬁA

10 20 30 40 50
%2 Carriage Control Character - begin new line

'X =" Character string - Print X =

F6.2 Floating point format - print out first number as XXX.XX

'Y = Character string - Print Y =

F6.3 Floating point format - Print out second numper as XX. XXX

' PROD ="' Character string - Print PROD =

F10.5 Floating point format - Print out third number as XXXX.XXXXX

Edit Descriptors:

Controlling Physical Layout

Category Descriptor Function Form Example
Spacing X Individual space rX 5X

T Tab to column c Te T20

TR Tab right s spaces TRs TR3

TL Tab left s spaces TLs TL5

/ New line / /
Repeat r() Reuse specifiers r() 2(F6.2,I5)

Abu Hasan Abdullah () 2009

14

Descriptor General Form Example Function

X nX 3X Skip n spaces (3 spaces in the example)
/ / / Skip to next line
T Tn T32 Tab to column 7z (32 in this example)

EXAMPLE 3.15

Here are a few additional examples to show how the repeat descriptor works:

Original Format

Equivalent Format

F7.3, Fl1.3, Fi.3

[,1,1 (skip two lines)

F7.3,16, /, F1.3, 16, /

F7.3, 16, 2X, 16, 2x, F7.3, 16, 2X, 16

F7.3, 2X, 16, F7.3, 2X, 16, F9.4, 14, F9.4, 14

3F7.3

3(/) or /1]

2(F7.3, 16, /)

2(F7.3, 2(16, 2X))
2(F7.3,2X,16), 2(F9.4, 14)

Edit Descriptors:
Controlling Physical Layout

e Use your Fortran compiler to test Example 3.13.
e Use your Fortran compiler to test Example 3.14.

e Use your Fortran compiler to test Example 3.15.

Abu Hasan Abdullah () 2009

15

EXAMPLE 3.14

The spacing edit descriptors are easy to use and are very effective in improving the
appearance of your output. Below is an example combining all three. Assume that BASE =

12.4, HEIGHT = 9.6 and VOL = 119.04.

PRINT 9, BASE, HEIGHT, VOL
9 FORMAT (' ’,sX,F9.3,/,3X,’ X',T7,F9.3,/,
A TG, ' '/, T7,F9.3)

will produce the following output:

e P —

~~~~~~~ 119.040

AAAAAAAAAAAAAAAAAAAAAAAAAAAAANAINAAANAAAAAAAAAAANAAAAAAANAAA

| | | | |

10 20 30 40 50




Homeworks
e Go through all Solved Problems on pages 88-94.

e Use your Fortran compiler to test Supplementary Problems 3.15, 3.17, 3.19
and 3.24.
Hand in your printed codes before the end of next meeting.

Abu Hasan Abdullah 3) 2009 16



