Programming for Engineers
Fortran: Decision-Based Control Structures

Abu Hasan Abdullah

January 7, 2009

Abu Hasan Abdullah) 2009

Preview
1. Unconditional Transfer

2. Conditional Statements and Constructs

(a) IF Statement

(b) Block IF Construct

(c) The IF...ELSE Construct
(d) SELECT CASE Construct

MAyo W. E. AND CWIAKALA M. (1995): Programming with Fortran 77
ISBN 0-07-041155-7, McGraw-Hill

Abu Hasan Abdullah () 2009

Unconditional Transfer

e The simplest transfer operation. Also known as GO TO statement. Purposes

— skip over a set of instructions
— repeat a set of instructions

e Avoid using this statement in your program if you could! It's bad.

Abu Hasan Abdullah () 2009

Unconditional Transfer

e |t transfer control to another line in the program and the line to receive control
must be labeled using a statement label.

e General form of a GO TO statement

GO TO statement label

e Example

GO TO 20
20 PRINT *, AREA

e Turn Example 4.1 and Example 4.2 into complete programs, compile and
run them to study the effect of GO TO statement

Abu Hasan Abdullah (3) 2009 3

EXAMPLE 4.1

Here is a program that produces a list of the squares of positive integers

Program Flowchart
' ¥ :

C Use of Go To Statement to I=1 ‘
C construct a loop. The
C variable I is a "counter" -

I = 1
20 J = I **% 2 J=1%*2

PRINT *, J T
C After I squared is computed
C and printed, we increment I / PrintJ],
C by 1 and loop back to sl=20 T

I =1+ 1

GO TO 20 —| I=1+1 |

When we first start this program, I has the value of 1. Its square is computed and printed,
after which I increases by 1 and the whole process repeats. While this program works and
produces the desired result, it is a very poor way to accomplish this. Note for example, that

the process presented is an infinite loop, and there is no way to get out.

EXAMPLE 4.2
In the simple example program below, we use the GO TO statement to skip over another line
within the program.

~ Program Flowchart

C Demonstration of GO TO as a ¢
C means of skipping over a set X=X+ l|
¢ of instructions.

X=X +1

GO TO 40 A=X= 1|
C By execuping the previous T
C instruction, the next line ;
C is skipped. ' / PrmtX/
30 X=X -1 ns

40 PRINT *, X ;

Conditional Statements and Constructs

e Built upon IF statement to construct conditional tests. Based on this test it
will be able to branch to other lines of the code for other operations.

e IF statement provides a way to test a condition and execute a single command
if the test is true.

e General form of a IF statement

IF (test condition) statement-to-execute-if-true

e Example

IF (VELOCITY.LE.0.0) PRINT *, ’MASS NOT MOVING’

Abu Hasan Abdullah (©) 2009 4

Example Relational Operator

Description

IF (DENO .EQ. 0) STOP
IF (TEMP .LT. 0) PRINT *, TEMP

IF (X .LE. XMIN) XMIN = X
IF (S .GT. 1E6) S = 1E6

IF (A .GE. 0) GO TO 10

IF (SQRT(X*Y) .NE.)X =Y

IF (ABS(X) .EQ. Y*Z) A=SQRT(X)
IF (1I/2*2 .EQ. I) PRINT *,’even’

Halt the program if the value of DENO = 0

If TEMP < 0 then print value of TEMP

If X < XMIN, set value of XMIN to X

Set Sto 1x10%if S >1x10°

Permissible to transfer to a statement label

You can use expressions for comparison

You can compare an expression to an expression
How to determine if an integer I is even or odd

—

Conditional Statements and Constructs:
Relational Operators

e Relational operators are used in the test-condition of an IF statement by
comparing two quantities and return and answer of TRUE or FALSE

Operator Description test-condition Result
s Lol s Less than (1.LT 22 true
LB, Less than or equals (5.2.LE.12.1) true
.EQ. Equals (3.EQ.10) false
.NE. Not equals (5.NE.9) true
.GT. Greater than (1.GT.23) false
.GE. Greater than or equals (6.GE.3) true

Abu Hasan Abdullah (©) 2009 >

Conditional Statements and Constructs:
Logical Operators

e You may wish to check more than one test-conditions before carrying out an
instruction, i.e. a compound test. For example, two test-conditions may need
to be true simultaneously before a calculation can proceed.

Operator Description Number of arguments
.NOT. Negation 1 argument
.AND. Both simultaneously 2 arguments
.OR. Either/or 2 arguments

Abu Hasan Abdullah (3) 2009 6

Conditional Statements and Constructs:
Logical Operators

e .AND. truth table

A B (A) .AND. (B)
T T T
T F F
F T F
F F F

e Example: (stress .GT. 0.0) .AND. (stress .LT. 100.0)

Abu Hasan Abdullah (3) 2009

Conditional Statements and Constructs:
Logical Operators

e .0OR. truth table

A B (A) .0R. (B)
T T T
T F T
F T T
F F F

e Example: (radius .GT. 0.0) .OR. (radius .LT. 10.25)

Abu Hasan Abdullah (3) 2009

Conditional Statements and Constructs:
Logical Operators

e .NOT. truth table

A .NOT. (A)
T F
F T

e Example: .NOT. (icount .LT. 0)

Abu Hasan Abdullah () 2009

Priority Math Symbol Fortran Symbol Meaning

1 (...) (...) Parentheses
) AP i Exponentiation
3 X = * Multiplication & division
4 + — +, — : Addition & subtraction
5 = % < -EQ., .NE., .LT. Relational operators
< > > .LE., .GT., .GE.
6 2 .NOT. Logical negation
7 O .AND. Logical AND
8 &)

.OR. Logical OR

Conditional Statements and Constructs

e Turn Example 4.4 and Example 4.5 into complete programs, compile and
run them to study roles of relational and logical operators in constructing
test-conditions

Abu Hasan Abdullah 3) 2009 10

EXAMPLE 4.4

Construct a logical operator to see if a number x is within the range 1.0'< x < 10.0. Thjs
test actually consists of two separate tests, both of which must be true simultaneously:

1.0<x and x < 10.0
We construct the two tests and connect them with the .AND. logical operator:

READ *, X |
IF(1.0.LT.X.AND.X.LT.10.0)PRINT *,X, 'is between 1 and 1¢-

When you first look at this, you might have been tempted to write, as we do in mathematics-
1.0 .LT. X .LT. 10.0
But this statement is incorrect. The reason is that the operators can only compare data of the

same type. They cannot compare true or false values with numerical data for example. Let’s
assume X = 5.0 and trace through our hypothetical solution:

1.0.LT.X .LT.100 - 1.0.LT.5.0.LT.10.0 - true .LT .10.0

_An error occurs at this point since the .LT. operator attempts to compare two things that are
iIncompatible (logical data with a real number in this instance).

EXAMPLE 4.5
Evaluate the following €xpressions, assuming that X = 10.0, Y = —2.0, and Z = 5.0:
(X*Y .LT. Z/X .OR. X/Y .GT. Z*X ,AND. Z*Y .LT. X)
First, substitute the values for X, Y, and Z, and perform the mathematical operations:
(10.0*-2.0 .LT. 5.0/10.0 .OR. 10.0/-2.0 .GT. 5.0*%10.0 .AND. 5.0*—2.0 .LT. 10.0)
Next, perform the relational comparisons (.LT., .GT., .LT. left to right):
(true .OR. false .AND. true)

From the hierarchy table, we see that . AND. takes precedence over .OR.. Thus, this reduces
(o

(true .OR. false) - (true)

IF Statement

e General form of an IF statement

IF (test condition) statement-to-execute-if-true

e Example

IF (VELOCITY.LE.0.0) PRINT *, ’MASS NOT MOVING’

Abu Hasan Abdullah () 2009

11

Block IF Construct

e Useful when you have a single instruction to execute after the test condition is
evaluated

e Not suitable in situation where more than a single instruction is needed

e General form

IF (test-condition) THEN

Block of statements if test-condition is TRUE
ELSE

Block of statements if test-condition is FALSE
END IF

Abu Hasan Abdullah) 2009 12

Block IF Construct

e Code snippet

IF (X.LT.0.0) THEN
PRINT *=, *Error!?
ELSE
PRINT *,°’Valid’
END IF

e |t is a good practice to indent the block of instructions, see example above,
when writing an IF-THEN-ELSE-ENDIF block

e Turn Example 4.6 and Example 4.7 into complete programs, compile and
run them to study IF-THEN-ELSE-ENDIF block usage

Abu Hasan Abdullah 3) 2009 13

Program Blocks

e Block IF construct is one of the many program blocks available in Fortran

e Rules for program blocks include

From inside the block, control can be transferred to statement outside of
the block

It is valid to transfer control from one statement of a block to another
statement within the same block

Control cannot be transferred from outside of a block to inside of a block
except by way of the controlling structure

It is possible to nest constructs as long as the inner construct is completely
with the outer block i.e. NO crossing of block boundaries is permitted!!

It is valid for a GO TO to send control to the closing statement of a construct

Abu Hasan Abdullah (B) 2009 14

Program Blocks

e Turn Examples 4.8-4.11 into complete programs, compile and run them to
study some of these program block rules

Abu Hasan Abdullah (B) 2009 15

EXAMPLE 4.8

The following example demonstrates that it is permissible to transfer out of a block IF
construct. We will see shortly that the reverse operation (transferring into the body of a

block) is never permitted.

Program Flowchart

C The GO TO statement in

C this example transfers true Jalse
C out of the block IF

IF(D.EQ.0) THEN

PRINT *,’'D = 0 a=1/d I
GO TO 10 —
ELSE
ANS =1 /D
PRINT *,ANS
10 STOP
END —{(Stop

EXAMPLE 4.9

It is permissible to transfer control from one statement of a block to another statement within
the same block.

Program Flowchart

C The second IF statement
C will cause the program to
C jump to a position within
C the block IF
IF(Y.EQ.1) THEN
IF(X.GT.0) GOTO 10

X=-X
10 Y=Y+X L~
ELSE '
ENDIF
y=y+x

EXAMPLE 4.10

In the following exam

ple, we show how you might attempt to transfer into the middle of a
block. The Fortran co

mpiler however, will not allow you to do this.

IF (X .EQ. 0) Go TO 20
IF (Y .EQ. 0) THEN
20 - X=X+1
ELSE
END IF

(This statement is inside the block IF construct)

When the program attempts to jump to statement label 20, the statement that controls the
branching operation (IF (Y .EQ. 0)) is completely bypassed.

EXAMPLE 4.11

Here is a sample program to determine if a is positive, negative, or zero. Notice that this
requires two nested block IFs, since there are three possible outcomes:

Program Flowchart

A—+ IF(A .GE. 0) THEN
B IF(A .GT. 0) THEN
PRINT *,’A > 0
ELSE
PRINT *,'A = 0 Print Print Print
END IF "ﬂ)ﬂ'" “ﬂ=0" l'la<0'l'l
ELSE \—Q—l
C PRINT *,’'A < 0f QI

END 1IF

Here is an example of invalid nesting:

EXAMPLE 4.12

Here is the same program as in Example 4.11,

A—t IF (A .GE. 0) THEN
B IF (A .GT. 0) THEN
PRINT *,'A > 0’
ELSE
PRINT *,’A = 0'
ELSE
C PRINT *,’A < 0
END IF

END IF

ELSE IF Construct

e ELSE IF construct is a special form of IF construct

e |t is a nested block IF structure in which a block IF is placed inside the false
block of an outer block

e ELSE IF form allows a list of conditions to be tested more precisely than with
the block IF

Abu Hasan Abdullah 3) 2009 16

ELSE IF Construct

e General form

IF (test-condition-1) THEN
Block-1

ELSE IF (test-condition-2) THEN
Block-2

ELSE IF (test-condition-N) THEN
Block-N

ELSE
Block-N+1

END IF

Abu Hasan Abdullah @) 2009

17

ELSE IF Construct

e Code snippet

IF (C .LE. 0) THEN
PRINT *,’Frozen’
ELSE IF (C .LE. 20) THEN
PRINT #*,?Cold ~—>» Coonl?
ELSE IF (C .LE. 30) THEN
PRINT *,’Warm’
ELSE
PRINT =, ?’Het-
END IF

e Turn Example 4.14 into a complete program, compile and run it to study
ELSE IF construct

Abu Hasan Abdullah 3) 2009 18

EXAMPLE 4.14

The following program reads in a temperature in degrees C and prints out an appropriate
message using the following criteria:

Temperature < 0°C Print "It’s below freezing"
0°C < Temperature <10°C Print "It’s cold out"

10°C < Temperature <20°C Print "It’s cool out"

20°C < Temperature <30°C Print "It's warm"

Temperature > 30°C Print "It’s hot!"

PRINT *,’Enter the temperature in degrees C’
READ *,C

IF (C .LE. 0) THEN

PRINT *,’'It’’'s below freezing’

ELSE

IF (C .LE. 10) THEN

PRINT *,It’'’s cold out’ Can be written like this
ELSE

IF (C .LE. 20) THEN

PRINT *,’'It’’s cool out’

ELSE

IF (C .LE. 30) THEN

PRINT *,'It’’s warm’

ELSE

PRINT *,’'It’’s hot!’

END IF

END IF

END IF

END IF

This program can also be written more concisely with the ELSE IF form of the IF construct.

PRINT *, ‘Enter the temperature in degrees C’
READ *, C
IF (C .LE. 0) THEN
PRINT *, 'It’’s below freezing’
ELSE IF (C .LE. 10) THEN
PRINT *, 'It’’s cold out’
ELSE IF (C .LE. 20) THEN
PRINT *, ’'It’’s cool out’
ELSE IF (C .LE. 30) THEN
PRINT *,’'It’’s warm/’
ELSE
PRINT *,’It’’s hot!’

END IF

SELECT CASE Construct

e Many Fortran compilers offer the SELECT CASE structure as an extension of
the Fortran 77 standard

e NOT all compilers offer this control structure

e If your compiler does not offer it, you have to use the nested block IF and/or
ELSE IF structure to choose from among many multiple alternatives

Abu Hasan Abdullah 3) 2009 19

SELECT CASE Construct

e General form

SELECT CASE (expression)
CASE (selector list 1)
Block-1
CASE (selector list 2)
Block-2

CASE DEFAULT
Block-N
END SELECT

Abu Hasan Abdullah @) 2009

20

SELECT CASE Construct

e Code snippet

READ *, N
SELECT CASE (N)
CASE (1)
PRINT *,’#1 Entered’
CABE (2)
PRINT *,’#2 Entered’
CASE (3)
PRINT *,’#3 Entered’
CASE DEFAULT
PRINT #*,’Error!’
END SELECT

Abu Hasan Abdullah () 2009

21

SELECT CASE Construct

e Have a look at Example 4.15 and study its flowchart for SELECT CASE
structure

e Turn Examples 4.16—-4.18 into complete programs, compile and run them to
study SELECT CASE structure

Abu Hasan Abdullah 3) 2009 22

