Programming for Engineers
Fortran: Loop-Based Control Structures

Abu Hasan Abdullah

January 7, 2009

Abu Hasan Abdullah) 2009

Overview

1. Previously we have seen these conditional statements and constructs—IF
statement, block IF construct, IF...ELSE construct and SELECT CASE
construct.

2. In this session we take a look at another type of control structure—I/oop.
There are two types

(a) counted loop
(b) conditional loop

Course Text:
Mayo W. E. AND CWIAKALA M. (1995): Programming with Fortran 77,

ISBN 0-07-041155-7, McGraw-Hill

Abu Hasan Abdullah (©) 2009 1

Counted Loop

e Executes a predetermined number of times and the variables controlling the
loop cannot be altered during the loop execution

e Most widely used by engineers and scientists

e Known as DO loop in Fortran

Abu Hasan Abdullah (3) 2009 2

Counted Loop

e General form of DO loop construct

DO sl LCV=start,stopl[,step]

series of instructions

sl CONTINUE

where

sl statement label
LCV loop control variable

e In this form, DO statement marks beginning of loop and s1 CONTINUE statement
marks end of loop

Abu Hasan Abdullah (B) 2009 3

Counted Loop

e Alternative form of DO loop construct

DO LCV=start,stopl[,step]
series of instructions
END DO
where

LCV loop control variable

e In this form, DO statement marks beginning of loop and END DO statement
marks end of loop

Abu Hasan Abdullah) 2009 4

Counted Loop

e In both forms of the counted loop the computer has complete control of the
loop and handles all tasks, including

1. Initialize the LCV to the start value

2. Increment the LCV by the step value each time through the loop
3. Test the LCV to see if it exceeds the stop value

4. Decide when to terminate the loop

Abu Hasan Abdullah (©) 2009 >

Counted Loop

e Rules and guidelines for setting up the loop and LCV

LCV should be integer. Avoid using real value

start, stop, and step values used to establish LCV can be variables
LCV cannot be changed inside the body of loop

The step size can be omitted. If it is, the computer assumes a step size
of 1

It is permissible to leave the body of loop. But you may not enter a loop
body from outside

P o=

o

Abu Hasan Abdullah (3) 2009 6

e Code snippet

or

Counted Loop

DO 5 I=1,10,1
PRINT *, 2%I

CONTINUE

PRINT *, I

D0 I=1,10,1
PRINT *, 2x%I

END DO

PRINT =, I

Abu Hasan Abdullah () 2009

Counted Loop
e Study the DO loop flowcharts of Examples 5.1-5.4

e Turn Examples 5.1-5.4 into complete programs, compile and run them to
study various DO loop behaviours and how LCV affects them

Abu Hasan Abdullah (3) 2009 8

EXAMPLE 5.1

Here is an example of a DO loop in action.

Program

The following loop will
execute 10 times and use
I as the loop control
variable. Note that we
can look at the value of I
inside or outside the loop.
po s I1=1,10,1

PRINT *, 2*I
5 CONTINUE
PRINT *, I

(220000000

EXAMPLE 5.2

In the followin

& Program segment, we attempt to change the value of the LCV inside the
loop. But since

this is not allowed, we would receive an error message from the compiler.

BO S5 I=1, 19
I =141
5 CONTINUE

EXAMPLE 5.3

The loop control variables themselves can be either variables that are read in at execution
time or the results of a computation. In this example, we will read in the variables { and /,
and use these as the start and stop variables in the DO loop to compute all the even integers
between and including 2i and 2.

Program Flowchart
C We will read in I and J .
C for use as the loop Print
¢ control variablesg. "Enter i, j"
PRINT *, ‘ENTER i, J¢
READ *, I, J v
O 10 L = I, J, 1
PRINT *, 2+ Read
10 CONTINUE i, J
Start = |
Stop =

1

Step

EXAMPLE 5.4

The step size of a DO loop may be a variable that is read in at execution tme.

Program Flowchart
We will read in two integers Pﬁ?{)
I and J, along with a step “Bnter i, j, k

size K. The program then
prints out all integers
between I and J in steps
of K.

PRINT *, 'ENTER I, J, K’

READ *, I, J, K

DO 10 L = I, J, K

PRINT *, L

10 CONTINUE

SESNORSNERS

EXAMPLE 5.5

Here are some examples of correct and incorrect usage of the DO statements:

Correct Incorrect Comments
DO10I=1,10 (Step is optional (assumed=1))
DO201=1J,10 (Mixing variables, constants OK)
DO30I=10,1, -1 (Decreasing index OK)
DO40I = 1.0, 5.0, 0.1 (Mixed mode)
DOSOI =1, 10,1 (Subtle attempt to modify LCV)
DOG60I = 10, 1 (Loop does not converge)

DO701=1,10,0 (Zero step size is not allowed)

Counted Loop
Nesting

e One of the most common structures in Fortran is to nest one loop inside
another, most frequently with arrays and complex /0

e When nesting loops, inner loop must lie completely within the outer loop and
the two loops must use different LCV

Abu Hasan Abdullah (B) 2009 9

Counted Loop
Nesting

e General form of nesting loops

DO sl1 LCVi=startl,stopl[,stepl]
DO sl12 LCV2=start2,stop2[,step2]

series of instructions

sl2 CONTINUE

sll1 CONTINUE
where
sll sl12 statement label of outer and inner loop, respectively

LCV1 LCV2 loop control variable of outer and inner loop, respectively

Abu Hasan Abdullah) 2009 10

Counted Loop
Nesting

e Alternative form of nesting loops

DO LCVi=startl,stopl[,stepl]
DO LCV2=start2,stop2[,step2]

series of instructions

END DO

END DO
where
LCV1 loop control variable of outer loop
LCV2 loop control variable of inner loop

Abu Hasan Abdullah @) 2009

11

Counted Loop
Nesting

e Code snippet

READ *, I, J
DO 10 OUTER=1, I
DO 20 INNER =1, J
PRINT *, OQUTER*INNER
20 CONTINUE
10 CONTINUE

Abu Hasan Abdullah () 2009

12

e Alternatively

Counted Loop
Nesting

READ *, I, J
DO OUTER=1, I
DO INNER =1, J
PRINT *, OQUTER*INNER
END DO
END DO

Abu Hasan Abdullah () 2009

13

Counted Loop

e Study the flowchart of Examples 5.7. It is a combination of block IF and DO
loop control structures

e Edit Example 5.7, compile and run it

e Have a close look at Example 5.8 on examples of properly and improperly
nested DO loops

e Turn Example 5.9 into a complete program, compile and run it to study nested
DO loop

Abu Hasan Abdullah (B) 2009 14

EXAMPLE 5.7

The Fibonacci series is a famous sequence that dates back to the thirteenth century:
1,1,2,3,5,8, 13,21, 5, ...

The first two terms in the series are 1 and 1, but every term after that is the sum of the two
previous terms. In this problem, we are going to calculate the series up to the nth term,
where n is a number entered at execution time. In cases like this we have to be careful that
the value of n is a valid number. Thus, in the program below, we will first see if n is a
number less than 3 (with a block IF). If it is, then we will go ahead and compute n terms in
the series (with a loop). Note that we will nest the DO loop within the block IF structure.

Program

———

C First we read in N

INTEGER FIB1,
PRINT «,

READ *, y
C Now check to see if N ig
C less than 3. If it is, then
C use the DO loop to compute
C N terms of the series.
IF(N.LT.3) THEN

PRINT *,’ERROR’
ELSE

FIB1=1
FIB2=1

PRINT *, FIB1, FIB2

DO 10 1=3,N
NEW=FIB1+FIB2
FIBl1 = FIB2

FIB2
"Enter N:°

FIB2 = NEW
PRINT *, NEW
10 CONTINUE
ENDIF
END

Print
"Error"

I

newﬁ=b2
b1+

ﬁbl =fib2
fib2=new

EXAMPLE 5.8

Here are examples of properly and improperly nested DO loops:

Properl
- perly Nested Improperly Nested
DO 10 T = ~— DO 10 I = |
DO 20 J = — DO ZUEJ =

20 CONTINUE — 20 CONTII;UE :,
DO 30 K = —— DO BOEK—

30 C . E
ONTIDEIUE —_— 10 CONTINUE

10 CONTINUE W 30 CONTiNUE B

EXAMPLE 5.9

Here is an example of how to use nested loops to generate a simple multiplication table. At
this point, we don’t yet have the means to produce a nice square table. But at least this
program will generate the values.

Program Flowchart
{

READ *, I , J

DO 10 OUTER = 1,

I / Read
DO 20 INNER =1, J

PRINT *, OUTER*INNER y
20 CONTINUE

Start = |
10 CONTINUE Stop = i

Print
outer*inner

¥ |

Conditional Loop

e Available on most Fortran compiler, but a few may still NOT support it

e Should be used where we do not know in advance how often to execute the
loop

e Built upon DO WHILE structure

e Those without DO WHILE capability may replace it by an equivalent structure
using IF-THEN-ELSEs and GO TOs

Abu Hasan Abdullah (B) 2009 15

Conditional Loop

e General form of DO WHILE structure

DO WHILE (condition is true)
gi;ck of instructions
END.bé
e |f test condition is true, the block of instructions is executed

e |f test condition is false, the loop terminates and control jumps to statement
after end of loop

Abu Hasan Abdullah) 2009 16

EXAMPLE 5.10

awp.

To demonstrate how this works, let’s assume that we are calculating the average weight
of rabbits in a laboratory. Since rabbits multiply so fast, we never know in advance how
many there will be. So we set up the loop to read in the weights, one at a time, until one of
the weights is greater than 500 pounds. When this occurs, the loop will stop. We sometimes
call this special value a sentinel value. The loop is set up so that we watch for this key value,
which we have chosen so that it is unlikely to be found in the data set. So when you enter
this value, the program will recognize it as the signal to stop.

tot =tot +wgt !

num=num+1 Print
l avg

e Code snippet

Conditional Loop

TOT = 0.0
NUM = O
WGT = 0.0

DO WHILE (WGT .LE. 500.0)
PRINT *,’Enter Weight’
READ *, WGT
TOT = TOT + WGT
NUM = NUM + 1

END DO

AVG = (TOT-WGT)/(NUM-1)

Abu Hasan Abdullah () 2009

17

Conditional Loop

e Alternative way to construct the DO WHILE code snippet above

TOT = 0.0
NUM = 0O
WGT = 0.0

10 IF (WGT .LE. 500.0) THEN

PRINT *,’Enter Weight’
READ *, WGT
TOT = TOT + WGT
NUM = NUM + 1
GO TO 10

ELSE
AVG = (TOT-WGT)/(NUM-1)

END IF

Abu Hasan Abdullah () 2009

18

5.15 Write 4 program to compute the value of b given by
computing t!1e sum of the terms until the absolute value
0.01. By doing this, we evaluate the series for all
any term whose value is so small that it has little
Note in this series that the terms have an

deﬁning a variable SIGN whose initial value is se
series, we will multiply SIGN by

the series shown below. Continue
of any individual term falls below
terms that are significant. We will ignore
effect on the series total.

alternating sign. This is best handled by

t at 1.0. For each successive term in the
—1.0, in effect, alternating the sign.

b=1'-—1-+_];—l+_..
2 3 4

5.17 Write a program to read in the radius r of a circle centered at the origin. Then read in the
coordinate pairs (x, y) of a point and determine if that point lies within the circle. Use the

condition that if
(x? +y2) - <r

then the point is inside the circle. Terminate the program the first time that O + yH)os >
2r.

5.20 Write a program to simulate a population explosion. Start out with a single bacteria cell that
can produce an offspring by division every 4 hours. The new cell must incubate for 24
hours before it can divide. The parent cell meanwhile will continue to divide every 4 hours.
Assume that any new cells will follow this pattern. How many cells will you have in 1 day,
I week, and 1 month, if none of the new cells die?

H24 is the number of cells that are 24 hours old or older.

Similarly, H20 is the number of cells that are 20 hours old,
H16 is the number of cells 16 hours old and so forth. Every
four hours, we move the number stored in each variable to the
next higher level. Thus, H16 receives the value from H12. The

number of new cells created (NEWCEL) is the value stored in
H24 .

H24=1
PRINT *, ’'Enter Number of hours’
READ *, HOURS
DO 10 I = 1, HOURS/4

NEWCEL=H24

H24=H24+H20

H20=H16

Hl6=H12

H1l2=HS8

H8=H4

H4=HO0

HO=NEWCEL

10 CONTINUE

TOT=HO+H4+H8+H12+H16+H20+H24
PRINT *, ‘'Number of Cells=’, TOT

nononoaoaan

