Programming for Engineers
Fortran: Subscripted Variables and Arrays

Abu Hasan Abdullah

January 7, 2009

Abu Hasan Abdullah) 2009

Overview

1. Arrays are a convenient way to work with large quantities of data

2. With arrays we only need a single variable to control 100 numbers

3. Without arrays we need 100 conventional single-valued variables

4. Each array has index to locate and manipulate quantities stored in the array

5. Index is sometimes called subscript

Course Text:
Mavyo W. E. AND CwIAKALA M. (1995): Programming with Fortran 77,
ISBN 0-07-041155-7, McGraw-Hill

Abu Hasan Abdullah (©) 2009 1

This session focuses on

1. Need for arrays

2. Declarations and 1-D arrays
3. Manipulation of arrays

4. 2-D and higher order arrays

5. 1/0O of arrays

Overview

Abu Hasan Abdullah () 2009

Need for Arrays

e Engineers and scientists often work with large amounts of data

e For instance, a program that reads in ten numbers and prints them may have

READ *, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10
PRINT #, X1, X2, X3, X4, X%, X6, X7, 1B, X9, X10

e [f we wanted to perform this on 1000 numbers, there'd be a lot of work

Abu Hasan Abdullah (B) 2009 3

Need for Arrays

e [here is a difference between

— single-valued variable, and
— subscripted variable

e So far we used single-valued variables that take only a single value:

X1 = 1.23456
X2 = 9.87654

e To create a subscripted variable we must add the subscript, for example

X(1) = 1.23456
X(2) = 9.87654

number within parentheses is the index

Abu Hasan Abdullah () 2009

Need for Arrays

e The array subscript or index can be controlled by a DO loop using LCV

DO I =1, 10
XL{I) = I*%2
END DO

e Turn Example 6.1 into a complete program, compile and run it to study how
DO loop populate an array

Abu Hasan Abdullah (©) 2009 >

Array Declaration Statement

e General form of array declaration

type arrayname (lower limit : upper limit)

where

type type of array (REAL, INTEGER, LOGICAL, etc.)
arrayname valid Fortran variable name

lower limit lowest value for the subscript

upper limit maximum value for the subscript

e lower limit:upper limit of numbers can be any integers (even negative)

e upper limit MUST be larger than lower limit

Abu Hasan Abdullah (B) 2009 6

Array Declaration Statement

e Examples

REAL X(1:10)
REAL Y(-5:20)
INTEGER COUNTER(20)

Abu Hasan Abdullah () 2009

Manipulating Arrays
e 1-D arrays are efficient way to store and manipulate list and tables of data
e Control by loops are ideal for storage and manipulation of arrays

e Loops and arrays are therefore almost inseparable

Abu Hasan Abdullah () 2009

Manipulating Arrays

e For example, take the sum of individual elements

i=100
a=) v
i=1

e . . .can be implemented in Fortran with a DO loop thus

A=20.0

DO I =1, 100

A=A+ Y(I)
END DO

The DO loop takes each element of the array and adds it to the running total

Abu Hasan Abdullah () 2009

Manipulating Arrays

e Turn Examples 6.4-6.10 into complete programs, compile and run them to
study various array manipulation using DO loops

Abu Hasan Abdullah 3) 2009 10

Application - Summation of Array Elements

EXAMPLE 6.4

Sigma notation ,(E) is used very frequently in engineering, science, and mathematics as a
shorthand notation. So we will explore this subject in considerable detail in this and
subsequent e-‘fﬂmIﬂES. Recall that sigma notation indicates the sum of the individual elements
of the subscripted expression is to be computed. Here is a simple example:

i =100

a= 3 ¥

i=1]

This expression represents the sum of all the elements stored in the subscripted variable y and
the statement stores the result in a. We add one element of the array at a time, and
systematically change the subscript from i=1 to i=100. We implement this in Fortran with
a DO IOQP (we leave out the input statements since we haven’t discussed 1/0 of arrays yet):

Program

REAL Y (100)
C We have left out the input
C statements that assign
C values to Y
A =0.0
DO 10 I = 1, 100
A=A+ Y(I)
10 CONTINUE

EXAMPLE 6.5

Create a program that reads in a list of numbers from the terminal, calculates the average,
and finally prints a list of the individual deviations of each number from the average. The
deviation is the difference between the number and the average. Assume a maximum of 100

numbers will be entered.
To solve this problem, we will use two arrays: X and DEV. The X array will store the

numbers as we enter them. Once all the numbers are entered, we will be able to compute

the average. Finally, we can then compute the deviations by subtracting the average value
from each of the input numbers. Note that we have to save the entered numbers so that we

can use them a second time for the computation of the deviations. A simple algorithm and
flowchart to do this are:

Algorithm

1. Read in number of data points, N
2. SUM = 0.0
3. Loop (1 to N)
Read in a value and assign to X(I)
Add X(I) to SUM
4. Compute average (AVG = SUM/N)
5. Loop (1 to N)
DEV(I) = X(I) — AVG
Print X(I) and DEV(I)

Flowchart

y

f Read n J

o v

sum =10

¥
Start = 1\
Stop = Nf

[Read x; j
T

sum =
sum + x;

|

|

avg =
sum/n

v

Start = 1
Stop = n

V1

dev;, =
X, — avg

Prmt
dev, and X;

/

>

Y

Program

REAL X (100), DEV(100)
C Enter the number of data items for the computation
PRINT *, ’'Number of values (less than 100)?’
READ *, N
C We will read in one data value at a time and store it in X(I)
SUM = 0.0
po 10 I-= 1, N
READ *, X(I)
SUM = SUM + X(I)
10 CONTINUE
AVG = SUM/N
C Once the average has been computed, we can use it to
C calculate the deviations defined by X(I)-AVG:
PRINT *, 'Average = ', AVG
DO 20 I =1, N
DEV(I) = X(I) - AVG
PRINT *, ’'NUMBER=’, X(I)
PRINT *, ‘DEVIATION=', DEV(I)
20 CONTINUE
END

Application — Dot Product of Vectors

EXAMPLE 6.6
The dot product z of two vectors a and b is defined by:

[+
2=a0b=Y a;b,

[=1

We start by noting that the summation process can be implemented with a single DO IQDp
as shown in the previous example. Inside the loop, we will add the product of the appropriate
components of each vector. For example, for the two vectors a = (1.2, 3.5, 4.1) and b =
(2.0, 5.1, —1.1), the dot product is given by 1.2 X 2.0 + 3.5 X 5.1 + 4.1 X (—1.1)
2.4 + 17.85 — 4.51 = 15.74. The algorithm for doing this is:

Algorithm

1.Z =10.0

2. Loop (1 to 3)
Read A, and B,
Add A;XB;to Z

3. Print Z

Flowchart
+

#

tart

top
Read —/ /— Print - /
a andb

=0

z + ﬂi*b;

I&ngnﬂn

C The two vectors A and B each contain 3 components. So
C we declare each to be a one-dimensional array with 3 elements.

REAL A(3), B(3)
Z = 0.0 .
C Inside the following loop, we read 1n the components of each

C vector and perform the required summation of the products.
DO 10 I =1, 3
READ *, A(I), B(I)
z = 2 + A(I) * B(I)
10 CONTINUE
PRINT*, ‘Dot Product = PR/

END

Application — Sorting of Lists

EXAMPLE 6.7 | |
¢ them into ascending or descending
t it into ascending order,

this is the min-max sort,

A common application is to take a list of numbers and pu and p
order. For example, if you had a list such as 7, 3, 2, 6,9, 0an 53
the list becomes 0, 2, 3, 6, 7, 9. One of the sim.plcst mcthoqs t0 ;1] tm, The 7S dithe
It works by searching all of the elements in a list for the minimu s Frst e
minimum value location and the first location are then swapped. N}?wend et | i
the minimum value; the program next searches element 2 through '[l Bh e Het. 185 Been
smallest value and then swaps them. This process is repeated until the

sorted. o
To demonstrate how this works, consider the following list and watch how the numbers

swap after each search:

7 3 2 6 9 0

Starting Values

We assume that the minimum value is in the first position. But, as We search throygh the list,
we find the smallest value is in the sixth position. So, we switch the first and sixth values:

6 9 7

Swap 1st and 6th values 0 3 2

Now we start the search at the second position (since we know that the first position has the
smallest value). We assume that the minimum value is in the second position. But, we find
that the value in the third position is smallest (in the shortened list), so we swap the values

in the second and third positions:

Swap 2nd and 3rd values 0 2 3 6 9 7

Now we start the search at the third position, assuming that its value is the smallest. This
time the assumption is correct, so we do nothing:

Leave 3rd value alone 0 2 3 6 9 7

Now we start the search at the fourth position, assuming that its value is the smallest. Once
again, the assumption is correct, so we do nothing:

Leave 4th value alone 0 2 3 6 9 7

Next, we start at the fifth position, and we find that we must swap the fifth and sixth values:

Swap 5th and 6th values 0 2 3 6 7 9

Flowchart

Print
x, to x,

S 3
1 ¥
o=
\

pliilngg Start :+1
X = Xindex B
Xindex = SWap Stop = n

'—y
min = .Ij

index = j

o

REAL X (100)
PRINT *, ’'How many numbers?’
C Input N values into X(1) to X(N)
READ *, N
DO 10 I =1, N
READ *, X(I)
10 CONTINUE
C The DO 30 loop continues until all the values are sorted
DO 30 I = 1, N-1
XMIN = X(I)
INDEX = 1
C The Do 20 loop locates the position of the smallest value
DO 20 J = I+1, N
IF (X(J) .LT. XMIN) THEN
XMIN = X(J)
INDEX = J
END IF

20 CONTINUE .
C The following section swaps the value in X(I) and the

C smallest value located in X (INDEX)

SWAP = X(I)
X(I) = X(INDEX)
X (INDEX) = SWAP

30 CONTINUE

DO 40 I =1, N

PRINT *, X(I)

40 CONTINUE

Application — Count of Certain Values

EXAMPLE 6.8

10 where the same number may be
number of occurrences for each
of each number as it is entered.
the number of ones, and so forth:

A data set contains a list of integers ranging from 0 to
entered multiple times. The following program counts the
value. We will create an array C(I) that contains a count
Thus, C(0) represents the number of zeros, C(1) represents

C(0)

C(1)

C@2)

C(3)

C4)

C(5)

C(6)

C(@)

C(8)

C©H)

C(10)

When we read in a value, we will put that number into the appropriate bin. For example, if
we read in the number 5, we would increase the count in C(5) by one:

C(0)

C(1)

C(2)

C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9)

C(10)

Flowchart

Print
¢(0) to ¢(10)

c(value) =
c(value)+1

Program

C When we declare the array C, it makes sense to declare it to
C start at C(0). Note also that VALUE must be declared as an
C integer since we will be using it later as a subscript to store
C a value in C(VALUE)

INTEGER C(0:10), VALUE

PRINT *, ‘Number of values?’
READ *, N

C First, we initialize all elements of C to zero.
DO 10 I = 0, 10
C(I) = 0
10 CONTINUE

C Read in a value and increment the appropriate list position.
DO 20 I =31, N
READ *, VALUE
C(VALUE) = C(VALUE) + 1
20 CONTINUE
C Print out the results
DO 40 I = 0, 10
PRINT *, ’‘Number of’, I
40 CONTINUE
END

, '''s were'’, C(I)

Application — Locating/Location of Certain Values in a List

EXAMPLE 6.9

The following example illustrates a search algorithm for locating a value in a list. The
program requires that the entered list be sorted in ascending order. The process to locate a
given number will be to read down the list until the value being sought is located. Once
found, the index value (or position within the list) will be reported. As an example, assume
that we have the following list of numbers and we are searching for a specific value of 19

Search value = 19 -4 5 11 13 19 20 41 52

When the search is completed, we find that the search value (19) is in the fifth position.

The reason that the list must be in ascending order (such as that shown in Example 6.7) is
that we will stop the search once any value exceeds the search value. If the list were not in
ascending order, then we would have to test every number before we say that the number is
not in the list. By requiring the list to be in ascending order, the search is more rapid.

Program

C Declare the list as L(100)
INTEGER L(100), VALUE
PRINT *, ‘Number of values?’
READ *, N
PO 10 X = 1, N

READ *, L(I)
10 CONTINUE

C Enter the value to be sought
PRINT *, ‘'Enter search value’
READ *, VALUE

C Check every value of L(I). If

C any value equals VALUE, then

C print out location and stop.
DO 40 I = 1, N
IF (L(I) .EQ. VALUE) THEN Print I
PRINT *, ‘Found at’, I "Not found”
STOP
END IF
40 CONTINUE
PRINT *, ’‘Not found’
END
Print
"Found at," {

Application — Binary Search for
Locating/Location of Certain Values in a List

EXAMPLE 6.10

The binary search method works by bracketing a group of values with.in a list that_is ip
ascending order. By comparing the search value with the value in the middle of the. list, 1t
is possible to determine which half of the list contains the value. This process is then
repeated on the narrowed portion of the list until the value is found or the range goes to 0.
To demonstrate how this works, consider the following list already in ascending order:

Starting values 2

11

23

49

We start by comparing the search value (e.g., 23), with the value at the center of the list:

Compare search value (23) with midpoint value 2

11

23

49

t

If the search value (23) is less than the value in this position, then the number is in the lower

half of the list; otherwise, it is in the upper half. In this case,
than the value in_thc .middle (11), so the search will focus on the second half. We the
the process by dividing the remaining numbers into two halves:

the search value (23) is larger
n repeat

Cut search area in half and repeat previous step L

11

23

49

The value in the center of the reduced search area is now equ
our search stops. The program will then print out that it found the value

f

al to the search value (23), so
in the fourth

position. If the search area ever goes to zero, then the search number is not in the list.

Flowchart

start=1 end=n
range=end—start
mid=(start+end)/2

-

range=end—start
mid=(start +end)/2

J

Program

INTEGER X (100)
INTEGER RANGE
INTEGER START, END

C The input section)
PRINT *, ’'Number of values?

READ *, N
DO 10 I =1, N
READ *, X(I)

10 CONTINUE
C Enter the value to be sought
PRINT *, ’‘Enter value’
READ *, VAL
C Define the range and midpoint

START = 1

END = N

RANGE = END - START

MID = (START + END)/2 cut the range in half

C As long as the value is not found,
C and check which half the value mig
DO WHILE (X(MID) .NE. VAL .AND. RANG

IF (VAL .GT. X(MID)) THEN

ht be in.
E .NE. 0)

START = MID
ELSE

END = MID
ENDIF

RANGE = END - START
MID = (START + END)/2

END DO ,
C If the value being sought is not in the middle of the last

C range, then the value is not in the original list.
IF (X(MID) .NE. VAL) THEN
PRINT *, VAL, ‘not found’

ELSE
PRINT *, ’‘Value at’, MID

ENDIF
END

2-D and Higher-order Arrays

e Array dimension could be thought of as the number of subscripts required to
locate a value stored in the array

e 1-D array represents a list of variables
e 2-D array can be thought of as representing a table of information

e To select a value from a table, we need to specify the row and column. Thus,
two subscripts are required

e Processing of 2-D arrays is similar to that of 1-D arrays except that the is a
second index

Abu Hasan Abdullah (B) 2009 11

A B
—_—
4

G ———
3 -2 30
- 47 | 15 | o0
18 70 | -8 | 39

Since a list requires only one subscript to locate a value, we can see immediately that A(2)
has the value 7. A table, however, requires two subscripts to locate a value. The only
question 1s which subscript (row or column) comes first? Fortran adopts the convention that
the row will come first. Thus, B(2,3) has the value 0. Similarly, B(3,2) has the value -8.
Note very carefully that B(3,2) is not equal to B(2,3). If we wanted to add the values in the
second column, we could do this with B(1,2) + B(2,2) + B(3,2) = 5. As we did when
processing one-dimensional arrays, we will use subscripts to process the data contained
within an array. But this time, we will need two subscripts.

2-D and Higher-order Arrays

e Turn Examples 6.11-6.14 into complete programs, compile and run them to
study various 2-D array manipulation

Abu Hasan Abdullah 3) 2009 12

Application — Matrix Multiplication

EXAMPLE 6.14
The process of multiplying two arrays together can be expressed using sigma notation.

Cij =); a;; by

This expression indicates how to calculate each entry in the product array c. Note that the
number of columns in the 4 array must match the number of rows in the b array. The
resulting array will have the same number of rows as g and the same number of columns

as b. To illustrate how this summation works, let’s compute the term c,,. This will require
the summation of the individual products of a,,by,. Assume for example, that we have the

a matrjx olf size 3X 2 and the b matrix of size 2 X 3, which when multiplied produce a
¢ matrix with 3 columns and 3 rows:

(1 2]
10 30 7

The desired term Ci12 would be a, 1b|2 + ﬂlzbzz or (1)(1) -+ (2)(0) = 1. In a similar way, wt
can generate all other elements in ¢, which will have three rows and three columns:

(1)(2) +(2)(3) (1)(1) +(2)(0) (1)(4) +(2)(7)°
c =1 (H)(2) +(6)(3) (4)(1) +(6)(0) (4)(4) +(6)(7)
(1)(2) +(0)(3) (1)(1) +(0)(0) (1)(4) +(0)(7) |

Input Matrices

Matrix

of rows in A

of Columns in B
of rows in B, and

Program

C VARIABLE LISTING:
C A,B =

C C = Output
C IMAX = Number
C JMAX = Number
C KMAX = Number
2 = Number

(assume A,B, and C

of columns in A

already declared)

IMAX
1, JMAX
0.0

= 1, KMAX

Cc(I,J)=C(I,J)+A(I,K)*B(K,J)

DO 10 I = 1,
DO 20 J =
C(I1,J)
DO 30 K
30 CONTINUE
20 CONTINUE
10 CONTINUE
END

1/0 of Arrays

e The simplest is to refer to each element individually as one would with a

single-valued variable (also called scalar)
PRINT *, X(1), X(2), Y(5)

but this impractical for a long list of array elements

e We can instead use loop with |/O statement to simplify the process

DO 10 I=1,100
PRINT *, A(I)
10 CONTINUE

with each encounter of a PRINT statement, a new line is created

Abu Hasan Abdullah () 2009

13

1/0 of Arrays

e There is also a special form of DO loop known as implied DO loop, limited to
|/O and DATA statements

e General form of implied DO loop

I/0 Command (array(LCV),LCV=start,stop[,step])

where
I/0 Command READ, PRINT or WRITE
LCV loop control variable

e Sample code

READ *,(A(I), I = 1,10,1)

Abu Hasan Abdullah (B) 2009 14

EXAMPLE 6.15
Listed below are examples of explicit forms of I/0 and their equivalent implied DO loops:

Explicit Form Implied Form Comments
DO 101=1, 10 READ *,(A(I),I=1, 10) Reads 10 values into
READ *, A(l) array A.
10 CONTINUE
DO 201=1, 10 READ *,(X(I),Y(D),I=1, 10) Reads in 10 sets of data
READ *, X(I), Y(I) as (x 1, y1), (X2, ¥2)
20 CONTINUE through (x5, y10)-

Explicit Form

Implied Form Comments
DO 301=1,20 '
DO 30J=1,10 READ *((Z())J=1,10),1=1,20) An implied DO
READ*, Z(1,1) loop wnhm amther
30 CONTINUE implied DO loop is

permitted.

1/0 of Arrays

e Turn Examples 6.15-6.17 into complete programs, compile and run them to
study various 1/O operations on 2-D arrays

Abu Hasan Abdullah (B) 2009 15

EXAMPLE 6.16

For the following example, A is a one-dimensional integer array of 10 elements and B is a
3 X 3 two-dimensional integer array. The value assigned to each element is:

Al 1 2 3 4 | 5 6 | 7 8 9 110

Program Segment

) PRINT *, A(1), A(2), AG)

b) PRINT *, (A(D, I = 1, 3)

c) PRINT *, (A(I), 1 =2, 8,2)

d) PRINT *, ((B(1,J), I=1,3), J=1,3)
e) PRINT * B

f) PRINT *, ((B(1,J), J=1,3), I=1,3)
g) DO 10I=1, 3

PRINT *, (B(L,J)), J=1,3)
10 CONTINUE
h) PRINT *, (+°, I=1,10)

EXAMPLE 6.17

The following program will print out a crude graph of a sine wave over a range of 0 to 2.

DO 10 I = 0, 20
X = I*2%3,1416/20.
Y = SIN(X)
N = NINT(30+Y*30+1)
PRINT *, (‘*', J = 1, N)
10 CONTINUE
END

Formatting of Array Output

EXAMPLE 6.18

In the following example, A is a one-dimensional real array of 10 elements and B is a
3 X 3 two dimensional real array. The value assigned to each element is:

A 1 2 3 4 - 6 7 8 9 | 10

Program Segment Outp
| utput

a) PRINT 10, (A(), I = 1, 5)
10 FORMAT (', 5(F4.1, 1X)) 1.0 2.0 3.0 4.0 5.0
b) PRINT 10, (A(D), I = 1, 5)
10 FORMAT (' ’, 20(F4.1, 1X)) 1.0 2.0 3.0 4.0 5.0
c) PRINT 10, (A(D, I = 1, 10)
’ . ’ e * 1-0 2.0 3.
10 FORMAT (', 5(F4.1, 1X)) 6.0 7.0 3.00 ;60 1%%
d) PRINT 10
, (B, J=1, 3), I=1, 3) B:
l g 2 L] L] ¥ 5
0 FORMAT (’ B, 3(/, 1X, 3(F4.1, 1X))) 1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0
€
) o Eglm 10, (B(L), I=1, 3), 1=1,3) 1.0 2.0 3.0
AT (’, 3(F4.1, 1X)) 4.0 5.0 6.0
7.0 8.0 9.0
f) N =3
1.0 2.0 3.0
D(; I%IONI =1,N 4.0 5.0 6.0
T 10, (BQ,J),J = 1, N) 7.0 8.0 9.0

10 FORMAT (’, 100
. 100(F4.
20 CONTINUE (Pt T

PARAMETER and DATA Statements

e PARAMETER statement is an easy way of creating named constants . . .

e ... whose value cannot be changed under any circumstances

e General form of array declaration

PARAMETER (variablel=value, variable2=value,

e Example: value of 7

PARAMETER (PI=3.1415)

»

Abu Hasan Abdullah (3) 2009

16

PARAMETER and DATA Statements

e DATA statement is used to assign initial values to a variable

e Whereas PARAMETER statement assign permanent values, DATA statement
assigns temporary values

e Most useful to replace READ statements at the beginning of a program

e General form of array declaration
DATA varl,var2, .../ vall, v&l3, .../
If arrays are specified

DATA (array(subs),subs=start,stop,step)/vall, val2,

Abu Hasan Abdullah (B) 2009 17

PARAMETER and DATA Statements

o Example:
Without DATA statements

VOLTS = 5.3
RESIST = 1000.0
CAPICT = 0.000035

With DATA statement
DATA VOLTS, RESIST, CAPICT /5.3, 1000.0, 0.000035/

e Turn Example 6.19-6.20 into complete programs, compile and run them to
study various ways of implementing PARAMETER and DATA statements

Abu Hasan Abdullah 3) 2009 18

