
SCSJ 2733
Fortran - Subprograms

Mohsin Mohd Sies
Faculty of Chemical and Energy Engineering

Outline

• Motivation
• Function
• Subroutine
• COMMON Statement

Motivation

• Modularity – Key to programming success
• Break complex problems into simpler subtasks
• Recognize that the same subtasks occurs many

times in the same complex problem
• The same subtask can also occur in a different

problem
– Reuse the subtask module that we have already

programmed

Example – Factorial subtask

It works, but in a clumsy way

Better to code the common task factorial into a
reusable subprogram

Our code now consists of
the main program and
a subprogram

Advantages of using Subprograms

• Simplify job by focusing on a small task assigned to
the subprogram

• Reuse the code in the subprogram
• It is portable – can be saved in a library and used by

other programs or other programmers
• Other libraries (already optimized and tested) are

available for your use (LAPACK, etc.)
• Subprograms make codes smaller – easier to debug

8

Types of Subprograms

• FUNCTION
– Intrinsic Function (Built-in Function)
– User-defined Function
– A Function returns only one value.

• SUBROUTINE
– Can return many values

Introduction to FORTRAN 9

Functions

• Returns a single value when called
• Intrinsic (built-in) or user defined
• Intrinsic function example: SQRT(X)

Y = SQRT(X)  calling statement
– Returns the value for SQRT of X and assigns the

value to variable Y

• For other tasks not available as already built-in
in FORTRAN, we need user-defined functions.

Introduction to FORTRAN 10

User-defined Function

• As a separate subprogram, it can be coded as
a separate program file, or separately from
the MAIN program block in the same file.

• The structure of a user-defined function is

type FUNCTION name (list of variables)

subprogram instructions

RETURN

END

Introduction to FORTRAN 11

Examples of first line of function subprogram

List of variables is also called
function arguments

Can be more than one variable

Back to this example, but using function

How it behaves

Main program

The function is called

Function program

The function name occurs three times:
• In the calling statement in the main program
• In the name of the function subprogram
• As the variable whose value is calculated within the

subprogram

Variables are local

Variables are local

Passing of variables (Data passing)
between Main and Subprograms

Subroutines
• Can return more than a single numerical value

– Calculate many variables
– Work on data arrays
– Curve fitting of data
– Etc.

• Three step process:
– Call the subroutine from the main program
– Pass data to the subroutine
– Set up the subroutine to receive the passed data,

process it, and return the results

Introduction to FORTRAN 19

Calling statement for subroutines

Introduction to FORTRAN 20

In the main program;

• subroutinename is the name of the subroutine being
called

• variable1,…variableN are two-way variables, they can
be the variables passed from the main program to the
subroutine, and be the variables returned from the
subroutine to the main program

Structure of a subroutine

subroutinename
• Same as the one in the calling statement
• Follow the standard rules for any variable name

The passed data
• can have different names
• must be the same number of variables
• must be the same types
• must be the same order as their intended meaning

Data passing

Two-way data passing

• Subroutine arguments are two-way variables, they
can be the variables passed from the main program
to the subroutine, and be the variables returned
from the subroutine to the main program

• If the subroutine changes the value of a variable
that it receives from MAIN, the changed value will
also be returned and changed in MAIN

Arrays and Subroutines

To pass arrays between MAIN and subroutine;
• We have to declare the array twice; in MAIN, and in

subroutine
• To pass whole array, just use the array name (without

the index) in the subroutine arguments
• We may also pass individual elements of an array

• This needs the index along with the array name
• The receiving variable will also be a single value

variable

Whole array passing

Passing of individual element of an array

Variable-sized array trick

Variable-sized array is not allowed in MAIN, but
allowed in subroutines

The COMMON data block

• Variables are local, but sometimes it is more
convenient to have data be globally available

• Example below;

• Only the last variable is different, so it is more
convenient to have the other data be the common
data (global data)

• The COMMON block allows us to declare a list of
variables to be global

The COMMON data block

• The syntax of the statement is

COMMON variable1, variable2,…,variableN

• The usage is

The COMMON data block

• Common (global) data vs local variable

The named COMMON block

• Sometimes convenient to group some data into
different blocks

• These blocks are then given different names
• The syntax is

COMMON /name/ variable1, variable2, … , variableN

The named COMMON block

• The usage is

The COMMON data block

Final remarks
• Even though COMMON block is convenient, try to

avoid from using it
• Subprograms are coded to be independent of each

other, but usage of the COMMON block goes against
this

• This might produce errors that are difficult to
debug

FUNCTION application – The dot product

FUNCTION application – The dot product

FUNCTION application – Determining angle between two vectors

FUNCTION application – Determining angle between two vectors

FUNCTION application – Determining angle between two vectors

Functions on the next page

FUNCTION application – Determining angle between two vectors

SUBROUTINE application – Vector coordinate transformation

SUBROUTINE application – Vector coordinate transformation

SUBROUTINE application – Vector coordinate transformation

SUBROUTINE application – Vector coordinate transformation

