OPENCOURSEWARE

SCSJ 2733
Fortran - Subprograms

Mohsin Mohd Sies
Faculty of Chemical and Energy Engineering

Innovative.Entrepreneurial.Global

ocw.utm.my
Outline
Motivation
Function
Subroutine

COMMON Statement

®UIM

ocw.utm.my '@UTM

Motivation

Modularity — Key to programming success
Break complex problems into simpler subtasks

Recognize that the same subtasks occurs many
times in the same complex problem

The same subtask can also occur in a different
problem

— Reuse the subtask module that we have already
programmed

ocw.utm.my @ L_IT M

Example — Factorial subtask

n!
i (n-1)!

A program to calculate ¢ would require three separate loops to calculate n!, i!, and (n—i)!
as shown in the following program and flowchart:

ocw.utm.my

|

m
, :
k3=Kk3*m c = k1/k2/k3 ‘
e -] !

[T

10

20

30

ocw.utm.my

Program

READ * , N , I
Kl =1
DO 10 K =1 , N

Kl = K1 * K
CONTINUE
K2 =1
DO 20L =1 , I
K2 = K2 * L
CONTINUE
K3 =1
DO 30 M =1, N -
K3 = K3 * M
CONTINUE
C=Kl1/ K2/ K3
PRINT * , C

END

o N

Loop to
calculate N!

Loop to
calculate I!

Loop to
calculate (N—1)!

It works, but 1n a clumsy way

ocw.utm.my

@®uTM

P ep—

Better to code the common task factorial into a

reusable subprogram

.MAIN. program

Subprogram for factorial

READ *, N, I
(calculate Kl=N!)

(calculate K2=I!)

C =K1/ K2 / K3
PRINT *, C
END

/

// :
How to calculate

.—-—"'"

a factorial of
any number

(calcﬁlate K3=(N-I) !)/

Our code now consists of
the main program and
a subprogram

ocw.utm.my '@UTM

Advantages of using Subprograms

Simplify job by focusing on a small task assigned to
the subprogram

Reuse the code in the subprogram

It is portable — can be saved in a library and used by
other programs or other programmers

Other libraries (already optimized and tested) are
available for your use (LAPACK, etc.)

Subprograms make codes smaller — easier to debug

ocw.utm.my '@UTM

Types of Subprograms

* FUNCTION
— Intrinsic Function (Built-in Function)
— User-defined Function

— A Function returns only one value.

 SUBROUTINE

— Can return many values

ocw.utm.my '@UTM

Functions

Returns a single value when called
Intrinsic (built-in) or user defined
Intrinsic function example: SQRT (X)

Y = SQRT(X) < calling statement

— Returns the value for SQRT of X and assigns the
value to variable Y

For other tasks not available as already built-in
in FORTRAN, we need user-defined functions.

ocw.utm.my '@U TM
User-defined Function

* As a separate subprogram, it can be coded as
a separate program file, or separately from
the MAIN program block in the same file.

e The structure of a user-defined function is

type FUNCTION name (list of variables)
subprogram instructions

RETURN

END

ocw.utm.my @L}T M

Examples of first line of function subprogram

List of variables is also called
function arguments

S T

INTEGER FUNCTION IFACT(N) or FUNCTION IFACT (N)

DOUBLE PRECISION FUNCTION COMPUTE(A, B, C)

"

Can be more than one variable

ocw.utm.my @ UTM

s ey

Back to this example, but using function

_ n! Flowchart
Hn =) ¢
Read
n i e o]
| T ifact=
Compute Y
k1=n! | Start=1
i Stop=I
I ‘ Compute l v J
=il
= ifact=ifact*j ‘
Compute 1 (_Return)
k3=(n—i)!
y
I c=k1/k2/k3 ‘

y

Print
¢

v

A PR .ﬂ.TT'T‘h:T

Program

C The MAIN program is primarily concerned with control. Details
C of the factorial calculation are handled in the function.
c*****'lr**********************************t**************tt***i
PRINT *, 'ENTER N & I:’
READ *, N, I

Kl = IFACT (N ***********************************
K2 = IFACT (1
K3 = IFACT (N-1

 C

FhE kR hohokkw sk

FUNCTION IFACT (L) Khkkhhkkkk ko kkk kb hdkdkkrdd
DOlDJ:]_'L
IFACT = IFACT + J
10 CONTINUE

RETURN
END

ocw.utm.my QE}IJIE%
How it behaves

| ~—— Main program
Kl = 1IFACT (N)

—H)

FUNCTION IFACT (L)

‘ . .
. - The functionis called

: < Function program
IFAQT =

RETURN
END

The function name occurs three times:
« In the calling statementin the main program
« In the name of the function subprogram

« As the variable whose value is calculated within the
subprogram

ocw.utm.my

Variables are /oca/

C Main Program
READ *, X, ¥, Z

SUM=X+Y+Z

END

T

Variable SUM not the same!

FUNCTION FUNC(U, V, W)

SUM = U + V + W

END

ocw.utm.my

Variables are /ocal

EXAMPLE 7.4

Trace through the following program segment to see what the output of the program will be:

1.2345
= 9.8765
=X + Y
PRINT *, SUM
*, FUNC(X, Y)
PRINT *, A, B
END
Chhkdkkdhkhhkhhhkhdhhhhhkdhhdkhdkkdh kb ko ko hkk ke r ek kb ke ok hhkhdkdkk
C The values of X and Y are transferred to the local variables
C A and B. The function computes A+B and returns the result.
C***it**
FUNCTION FUNC (A, B)
FUNC = A + B
RETURN
END

ocw.utm.my

Passing of variables (Data passing)
between Main and Subprograms

EXAMPLE 7.5

Assume that we wish to send three variables to a function called ADD. The first twg

variables, X and Y, are real, but the third, J, is an integer:

real real integer

¢ $ ¢
Y=ADD (X, Y, J)

The corresponding function statement variables must match in number, order and type:

real real integer

$ ¢]
FUNCTION ADD (A, X, I)

Note that X from the main will be assigned to A in the function, not to X in the function,
even though they have the same variable name. Position within the list determines the
assignment, not similarity of variable names! This confusion often creeps in when you are
using subprograms written by someone else.

ocw.utm.my '@UTM
Subroutines

* Can return more than a single numerical value
— Calculate many variables
— Work on data arrays
— Curve fitting of data
— Etc.

* Three step process:
— Call the subroutine from the main program
— Pass data to the subroutine

— Set up the subroutine to receive the passed data,
process it, and return the results

Calling statement for subroutines

In the main program;

CALL subroutinename (variablel , variable2 , . . . , variableN)

« subroutinename is the name of the subroutine being
called

« variablel,...variableN are two-way variables, they can
be the variables passed from the main program to the
subroutine, and be the variables returned from the
subroutine to the main program

ocw.utm.my @ UTM

s ey

Structure of a subroutine

SUBROUTINE subroutinename (variablel , variable2 , . . . , variableN)

RETURN
END

subroutinename
« Same as the one in the calling statement
» Follow the standard rules for any variable name

ocw.utm.my @HTWM
Data passing

CALLADD(};. » SUM)

NN
INANANANAN

SUBROUTINE ADD (A ,\a X c\, L \TOT)

RETURN
END

The passed data

can have different names

must be the same number of variables

must be the same fypes

must be the same order as their intended meaning

Two-way data passing

« Subroutine arguments are two-way variables, they
can be the variables passed from the main program
to the subroutine, and be the variables returned
from the subroutine to the main program

 If the subroutine changes the value of a variable
that it receives from MAIN, the changed value will
also be returned and changed in MAIN

DATA X, Y, 2, I/2.0, 3.0, 4.0, 3/
CALL ADD (X , Y, Z, I, SUM)
PRINT *, SUM

SUBROUTINE ADD(A , B, C , L ,TOTAL)
DO 10 K=1, L
TOTAL = TOTAL + A / B
10 CONTINUE
A = TOTAL/C
RETURN
END

ocw.utm.my .@U T™
Arrays and Subroutines

To pass arrays between MAIN and subroutine;

We have to dgeclare the array twice; in MAIN, and in
subroutine
To pass whole array, just use the array hame (without
the index) in the subroutine arguments
We may also pass individual elements of an array

» This needs the index along with the array name

« The receiving variable will also be a single value

variable

ocw.utm.my

Whole array passing

EXAMPLE 7.8 -

When we pass the entire array A to the subroutine SUM, we have to declare the array twice:

REAL A(100)
CALL SUM (A, TOT)

END

SUBROUTINE SUM(X , TOTAL)
REAL X(100)

RETURN
END

ocw.utm.my

Passing of individual element of an array

INTEGER COUNT (25) , A(25)

CALL S:UM (A(1), A(2), 7.2, COUNT, TOT)

R N O A

\ \ / /

\]
SUBROUTINE SUM (X, v, z, L, TO/TAL)

INTEGER L(25), X, v

RETURN
END

ocw.utm.my

Variable-sized array trick

REAL A(100), B(10)
CALL AbD (A, 100 , TOTAL1)
CALL A:DD (B, 10 , TOTAL2)

END

R

SUBROUTINE ADD(X , M , SUM)
REAL X(M)

RETURN
END

L

Variable-sized array is not allowed in MAIN, but

allowed in subroutines

©®UIM

s ey

—

A(100)

B(10)

—

The COMMON data block

Variables are local, but sometimes it is more
convenient to have data be globally available
Example below;

CALL DUMMY (A, B, I, J,
CALL DUMMY (A, B, I, J,
CALL DUMMY (A, B, I, J

-
-

NN
OO0

-

ealies ey
] 1] ']
=sg

’

-
-

I

Only the last variable is different, so it is more
convenient to have the other data be the common
data (global data)

The COMMON block allows us to declare a list of
variables to be global

ocw.utm.my

The COMMON data block

* The syntax of the statement is

COMMON variablel, variable?, ..., variableN

* The usage is

COMMON (3] /B.I,J,C,D,E,F

——
—

CALL l:;UMMY(U)
CALL DUMMY(V)
CALL DUMMY(W)

END

~—~— Common

T \l Memory Storage

/

SUBROUTINE DUMMY (T)

COMMON E X2,K,L,U,V,W,2

RETURN
END

ocw.utm.my

The COMMON data block

« Common (global) data vs local variable

commoN (2] .8.1,J,C,D,E,F

S
—

CALL DUMMY(U) e Common
CALL DUMMY(V) \I Memory Storage
CALL DUMMY(W) v

_ |

/

SUBROUTINE DUMMY (T)
COMMON ;’K2,K,L,U,V,W,Z

RETURN
END

SUBROUTINE OUTPUT (A, B, C)
REAL A,B,C

——

RETURN e Local
END T Memory Storage

]

The named COMMON block

« Sometimes convenient to group some data into

different blocks
« These blocks are then given different names

* The syntax is

COMMON /name/ variablel, variable?2, ... , variableN

ocw.utm.my

The named COMMON block

* The usage is

COMMON /JACK/ A , B, C ,
COMMON /JILL/ E , F, G ,

D

H
CALL SlUBl (U) \l Common Block
CALL éUB2 (X) HACK/

SUBROUTINE SUB1(T) -
COMMON /JACK/ X1, X2, X3, X4

!
’

Common Block
{JILL/

RETURN
END

SUBROUTINE SUB2 (2) |
COMMON /JILL/ Y1, Y2, Y3, Y4 -

RETURN
END

The COMMON data block

Final remarks

« Even though COMMON block is convenient, try to
avoid from using it o

« Subprograms are coded to be independent of each
other, but usage of the COMMON block goes against
this

« This might produce errors that are difficult to
debug

ocw.utm.my @UTM
FUNCTION application - The dot product

EXAMPLE 7.12

Assume that we have two vectors, f I and f2. The dot product of the two vectors (indicated
by the symbol ©) is defined by summing the products of the components of each vector:

i=3
O =X fifi <A +hE A8

Flowchart
Read M @mction DOD
(1) to f'(M) 7
f42) to fA(M)
* dot =0
z= v
1 £2
DORT05M) start=

9
rint Z l !
/ P ‘ j dot = dot + (_Reum)

£ x 4
RS

ocw.utm.my

FUNCTION application - The dot product

Program

Chddhdddddddhhddddd ik kb ek ke bk o e e e e o e e ok o

C Main program reads in A and B vectors and calls function DOT
C to compute the dot product of A and B
O dede et s ok e ek ok e sk ok ok ok ke sk ok ke e e sk sk ok ok ke sk e e ek ke ok e ke sk ek ek
REAL A(100), B(100)
PRINT *, ’‘Enter number of components, and A & B vectors:’
READ *, M, (A(I), I =1, M), (B(I), I =1, M)
Z = DOT(A, B, M)
PRINT *, ’'DOT PRODUCT = ', 2
END

LA AL AL LS L L T O

¢ Function subprogram to
c of arbitrary size (L)
Yok ok ok ko ok
e FUNCT;;;*;g;:;IT*;;?*;;********************************
REAL F1(L), F2(L)
DOT = 0.0
DO 10 I = 1, L
DOT = DOT + F1(I)*F2
10 CONTINUE (1)
RETURN
END

WA Y 2R R 22222 R R At
calculate the dot product of two vectors

ocw.utm.my @“
FUNCTION application - Determining angle between two vec
EXAMPLE 7.13

Consider two vectors, F ! and F 2, where we wish to know the angle between them:

FI

1]

We can find the angle o between the two vectors, F' and F?, with the formula:

F'O F?
|F!| | F?

cos(a) =

2
where F 'O F? = the dot product of the two vectors, and |F '| and |F 7| are the lengths
of the vectors respectively. The length can be computed by

IF|= [(F)? + (Fy* + (F]"

ocw.utm.my

®UTM

T p—

FUNCTION application - Determining angle between two vectors

Flowchart

Calculate

Angle

Calculate
Dot Product
of F' and F?

i=M

A_=\ Y (F'y B=J‘E(Ff)’
i=1 i=1

T

dot=dot +
F' ()X F? (i)

Program

C In the main program, we read in the vectors and call the
C appropriate functions. We use the main program to control the

C sequence of operations and leave the details to the functions.
titssssad i se R s R R Rt Rl Rl Y 22222

REAL F1(100), F2(100)
PRINT *, ’‘Enter number of elements and F1 and F2:°’

READ *, M, (F1(I), I=1,M). (F2(I). I=1.M
ANS = ANGLE(F1, F2, M) i il TSl

PRINT *, 'Angle = ', ANS «
END 57.296

Functions on the next page

©UTM

e e e

ocw.utm.my

FUNCTION application - Determining angle between two vectors

il bbb bbb £ L 2 2 5 1 1 3 T PP S 3 T L 2 S

C Funct%on Angle to compute the angle between two vectors. This
c function calls another function (DOT) to compute the dot

c product that is needed for the computation of the angle.
ok AR iR R A A A R R R & £ 2" 2 R R R e 3 X X £ & 8

10

FUNCTION ANGLE(F1, F2, M)
REAL F1 (M), F2(M)

A=0.0
B = 0.0
DO 10 I =1, M
A=A + F1(I)**2
B =B + F2(I)#**2
CONTINUE

DOTPROD = DOT(F1, F2, M)

ANGLE = ACOS (DOTPROD/SQRT (A*B))
RETURN

END

Chrkhhkhkdhkhkdd kb bk ko kb kb kbbb r ek r ok hdk kX

C Function to compute the dot product of two vectors

C of arbitrary size (L)
Chukddkhddkhkdhdhdkhkddhhdwhhkdddhddhdhhddddddkdkhddddddhddoddhikdr

10

FUNCTION DOT(Fl1l, F2, L)
REAL F1(L), F2(L)
DOT = 0.0
DO 10 I =1, L
DOT = DOT + F1(I)*F2(I)
CONTINUE
RETURN
END

ocw.utm.my

SUBROUTINE application - Vector coordinate transformation

EXAMPLE 7.14

i it i imes easier to Work in a
' 2 & inate system, it is sometim
If we have a vector F in the X-Y-Z coord y e T

different coordinate system such as X'-Y'-Z' shown below (Z an .
clarity). The new, transformed coordinate system might be more .chIrabIe_ dut‘:fl :,T) lt:t“i) E:ct a;hat
the mathematics might be simpler. The simplest transformation is a rotation is:

X

In this transformation, we have taken a rotation through an angle o about. the axis
perpendicular to the page. Notice that the vector has not changed position, nor has its length
changed. But the components in the new X'-Y'-Z' coordinate system have changed. If the
vector coordinates in the old X-Y-Z system were F = (F,, 5, F3), then we can calculate the
components of the new vector as (F ', F ', F '3) with the aid of the equation:

Fy cos(a) -sin(a) 0 F,
F'j] = | sin(@) cos(a) 0 ||F
R4 0 0 1]|F,

ocw.utm.my @L‘TTWM
SUBROUTINE application - Vector coordinate transformation

Flowchart
e
F and &
cos(a) -sin(a) 0
Use Rotate R+ sin(a) cosgag 0
to Calculate 0 0 1
New F

Y

' _
[Print / Multiply
New F Matrices
I ‘ ‘ | Rand F

“ X8,

ocw.utm.my

SUBROUTINE application - Vector coordinate transformation
Pngnun

C Main program reads in F and angle alpha, then calls the
C subroutine Rotate to perform the transformation.
Chhkdhhdhhdbhhhhhhhdbhhhhdrbhhddbbb bbbk ke F Ak A A Ak A A Ak b dhhk
REAL F(3), F2(3) '
PRINT *, '‘ENTER THE VECTOR AND THE ROTATION ANGLE:'
READ *, (F(I), I =1, 3), ANGLE
CALL ROTATE (F, ANGLE, F2)
END

Chhdkdkdkhkdhdkhdkddkhddbdhbdbdbrdbbbrddhbbhbdbdbbbdbhbbbbbbdddddddddkddddibdddsn

C Subroutine rotate for a simple rotation about the Z axis
C**i**t****t**
SUBROUTINE ROTATE (F, ANGLE, F2)
REAL F(3), F2(3), RI(3,3)
ANGLE=ANGLE/57.2958
R(1,1) = COS(ANGLE)
R(1,2) = -SIN(ANGLE)
R(2,1) = SIN(ANGLE)

R(2,2) = COS(ANGLE)

R(3,;3) i B |
CALL MATMUL(R, F, F2, 3, 3)
RETURN

END

ocw.utm.my @“
SUBROUTINE application - Vector coordinate transformation

dodedede ot ek ke W ek ek e gy

* 'TE 2 &R
W od ke ok ok ok ok ok t*************** g
C kb hkhkhkhhhd

C Subroutine MATMUL performs multip}icaiig? g
C (A and B n ing the result in a -
C*********l*f*f*ff?fi*g***************************************
SUBROUTINE MATMUL(A, B, C, M, N)
REAL A(M,N), B(N), C(M)

DO 10 I =1, M
C(I) = 0.0
DO 10 J =1, N
C(I) = C(I) + A(I,J)*B(J)
10 CONTINUE
RETURN

END

