OPENCOURSEWARE

SCSJ 2733
Fortran — Data Files

Mohsin Mohd Sies
Faculty of Chemical and Energy Engineering

oTSTG
Innovative.Entrepreneurial.Global

ocw.utm.my

Outline

Motivation

OPEN file
Communicate with file
CLOSE file

®UIM

ocw.utm.my '@UTM

Motivation

Running programs fully on the terminal console
(computer screen) can be very limiting

* Permanent record — Usually we want program
output to be saved for
— Later reference
— Further analysis

* large scale — Usually input data is too huge to
be typed by hand for each run

 We need to use data files for these purposes.

ocw.utm.my @LILM
Computer Screen — Default 1/0 Device

« Also known as console, terminal, monitor
« PRINT * or READ * refer to the default I/O device

=] Fig. 9-1
Pl=3.14159 Direct write of
R=6.2 data to the CRT

AREA=PI*R**2 screen
PRINT*,AREA=
PRINT*,AREA

Ic

~ cowutmmy ®UT

Writing to a data file

A Fig. 9-2
PI=3.14159 Writing to a
R=62 data file.
AREA=PI*R**2
WRITE(1,") ‘AREA=

WRITE(],*) AREA
!

1

ocw.utm.my

Writing to a data file

EXAMPLE 9.1
iS 2 si DAT:
Here is a simple example of how to write to a data file named EXPER DA
OPEN (UNIT=8, FILE='EXPER.DAT’, STATUS='NEW')

WRITE(8,*) DIST, TIME, VELOC
CLOSE (8)

ocw.utm.my

Reading from a data file

EXAMPLE 9.2

In the following example, we will read data from a file named 'NOBEL.DAT" and assign
the data to the variables WEIGHT, MASS, and DENSIT. Notice that the file must already
exist in order to read from it.

OPEN (UNIT=3, FILE='NOBEL.DAT’, STATUS='OLD’)
READ(3,*) WEIGHT, MASS, DENSIT
CLOSE(3)

ocw.utm.my @HTWM
Handling a data file

» Three step process
* OPEN the file
« Manipulate the file
e CLOSE the file when finished

* OPEN statement mainly contains
« The file name
 Assigned reference number
« Status of file

OPEN (UNIT=3, FILE='NOBEL.DAT’, STATUS='OLD’)
READ(3,*) WEIGHT, MASS, DENSIT
CLOSE (3)

ocw.utm.my

The READ or WRITE statement

OPEN (UNIT=3, FILE='NOBEL.DAT’, STATUS='OLD’)
READ(3,*) WEIGHT, MASS, DENSIT
CLOSE(3)

READ (3,*) means
« read from unit 3 which is actually the file
NOBEL.DAT and
« * means the data is free format. (the three data
are separated by space or comma)

The WRITE statement works similarly (* means free
format)

READ is usually not formatted, but we usually want
to WRITE in a specified format

READ *, isequivalentto READ (*,%*)

PRINT *, isequivalentto WRITE (*, %)

®UIM

ocw.utm.my .@UTM
The formatted WRITE statement

10

OPEN (UNIT=3, FILE=‘OUTPUT.TXT’, STATUS=‘NEW’)
WRITE (3,10) WEIGHT, MASS, DENSIT

CLOSE (3)

FORMAT(‘’, F7.2,F9.6,F10.1)

WRITE (3,10) means
* writeto unit 3 which is actually the file
OUTPUT.TXT and
* 10 means refer to statement label 10 for the
formatting specifications of the output

Statement line 10 can be written anywhere in the
program (even after CLOSE)

The format line follows the rules as discussed in the
earlier chapter on input/output.

ocw.utm.my .@UTM
Data file Terminologies — Records and Fields

N

Record I_. field | [field,| --+ o .oe |
1 ieidy 1cld, | rIEIda
Record 5 I_ feld. | lgeldl ..o
ield ield,, ﬁeld3
Record I_[field fi T
n] 1e 1 lele ﬁEld3

A12KM0O110
A12KM0O112
A12KM0O113
A12KM0O114
A12KMO115
A12KMO117
A12KMO119
A12KM0120

Data file Terminologies — example file

80.
/8.
12.
/3.
80.
80.
/8.
83.

— 01 © © 0 W U1 ©

ocw.utm.my

92.2
88.9
88.9
87.8
88.9
91.1
91.1
91.1

93
84
85
95
94
93
86
88

32
40
46
44
38
64
36
64

55.
49.
54.
/3.
54.
68.
52.
.90

81

71
05
76
33
29
57
38

86
98
86
92
94
98
98
94

®UIM

ocw.utm.my '@UTM
Data file types

« SEQUENTIAL
« Reads records in the orderthat they are written in
the file
« Writes new data at the end of the file

« DIRECT ACCESS
« Can read from anywhere in the file
« (Can write to anywhere in the file (overwrites existing
data) without disturbing any other record

« Engineers and scientists usually deal with sequential
files

ocw.utm.my

Sequential file OPEN options

OPEN ([UNIT =] integer expression, [FILE=] stnng,
[ACCESS =string,]
[ACTION =string.]

[BLANK =smming)

[DELIM =string]

[ERR =srarement label n,)
[FORM =srring.]

[IOSTAT =inreger vanable)
[PAD=stnng.)

[POSITION =string.)
[RECL =1nreger expression,)
[STATUS =stning.))

« Only a few options are usually needed and used

ocw.utm.my

Sequential file OPEN options

* File NAME as a variable

EXAMPLE 9.5

You may specify the file name to be a variable that is read in at execution time, provided

that you have properly set up the name as a character variable. In the following example,
we use the character string stored in NAME to create the desired file entered by the user:

CHARACTER*10 NAME

PRINT *, ’‘Enter output file name:’
READ *, NAME

OPEN (UNIT=16, FILE=NAME,...)
WRITE (16,*) X, Y

ocw.utm.my '@UTM
Sequential file OPEN options - STATUS

STATUS=“NEW’

« Creates new file for WRITE

STATUS=“0OLD’

« Use an existing file

* READ requires this

 WRITE can also use this
STATUS=“SCRATCH’

« Creates a temporary file
STATUS=“UNKNOWN’

« If the file exists, it will be treated as OLD
« If the file doesn’t exist, it will be treated as NEW

If STATUS is omitted, it will be assumed as UNKNOWN

ocw.utm.my

Closing the sequential file

Files have to be closed after use

The CLOSE statement can be anywhere in the
program after it has been used but before the END
statement of the program

If the file is assigned to UNIT 3 (for example), then

e CLOSE (UNIT=3) is equivalent to CLOSE (3)

®UIM

9.6

ocw.utm.my ®UTM
Example

Write a program to read a file CONCENTR.DAT whose records contain concentrations of
various species, [a], [b], and [c] in a chemical reaction. Assume that the data are written
to the file with the format specifier (3F10.6). Read in one record at a time, and for cach set
of concentrations compute the rate constant defined by

klillz[]_bl

Print the results ([a], [b], [c], and k) to the screen. If an error occurs during the read
operation, print the message “Input Error!" When the end-of-file occurs, terminate the
program and print the message “Calculations Complete. "

ocw.utm.my iidﬂﬂﬂ
Example

ct*******************i*****t****t************ii*i******iiiiiii

C Open the file and then read one sget of (a], [b], and [c]
C values at a time. Use these to compute k and print the
C results. Include in the READ statement the options ERR=
C and END=. These will detect read errors and end-of-file
C respectively.
C**ii*******************i***i***i**i*******iii******ti*ttiiii*
REAL K
OPEN (UNIT=1, FILE='CONCENTR.DAT', STATUS='OLD')
DO WHILE(.TRUE.)
READ(1,10, ERR=20, END=30) A, B; C

10 FORMAT (3F10.6)
K=A*B/C
PRINT *, A, B, C, K
END DO

20 STOP ’‘Input Error|!’
30 STOP ’Calculations Complete’
END

ocw.utm.my @ UTM
Example

'"GROWTH.DAT' 'POTENCY.DAT’

10/12/93 23:47 1234568
10/13/93 11:47 1458450
10/14/93 06:34 1534389
10/15/93 09:23 1637238
<ecnd of file>

10/12/93 23:47 147.345
10/13/93 11:47 146.234
10/14/93 06:34 148.346
10/15/93 09:23 147.225
<end of file>

The first two columns in each file represents the date and time, respectively, at which the
data were taken. The third column represents the number of cells (in '"GROWTH.DAT") and
their potency (in 'POTENCY.DAT"). Write a program that opens both files and merges
them into a new file 'BACTERIA.DAT' with the following format:

10/12/93 23:47 1234568 147.345
10/13/93 11:47 1458450 146.234
10/14/93 06:34 1534389 148.346
10/15/93 09:23 1637238 147.225

<end of file>

ocw.utm.my g:ilrrha
Example

Citti**it*tiii*i*i*tit*iii*iii**tti*i**iit********i**i********
C Open all three files at the same time, but give each a
C different unit number.
Ctt**i***tii*i#i**t*!iiiiiii**i***ti****i*****itt***i*ii******
CHARACTER DATE*12, TIME*7
REAL NUMCEL

OPEN (UNIT=1, FILE='GROWTH.DAT’, STATUS='OLD’)

OPEN (UNIT=2, FILE='POTENCY.DAT’', STATUS='OLD’)

OPEN (UNIT=3, FILE='BACTERIA.DAT’, STATUS='NEW’)
ct**iiittt**tttt*tiii*i*itittitt*****i*tit**i**i*******i******
C Set up a loop to read the data from GROWTH.DAT and POTENCY.DAT
C and merge them. Be sure to remove redundant information before

C writing it to the new file. If an end-of-file specification
C is encountered, stop.

e e el
DO WHILE (.TRUE.)
READ(1,*, END=10) DATE, TIME, NUMCEL
READ(2,*, END=10) DATE, TIME, POTENC

WRITE(3,*) DATE, TIME, NUMCEL, POTENC
END DO

10 STOP 'End of Input Data’
END

