
PowerPoint to accompany

Introduction to MATLAB 7
for Engineers

William J. Palm III

Chapter 1
An Overview Of MATLAB

Copyright © 2005. The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The default MATLAB Desktop. Figure 1.1–1

More? See pages 6-7.11--22

Entering Commands and Expressions

MATLAB retains your previous keystrokes.
Use the up-arrow key to scroll back back
through the commands.
Press the key once to see the previous entry,
and so on.
Use the down-arrow key to scroll forward. Edit a
line using the left- and right-arrow keys the
Backspace key, and the Delete key.
Press the Enter key to execute the command.

1-3

An Example Session

>> 8/10
ans =

0.8000
>> 5*ans
ans =

4
>> r=8/10
r =

0.8000
>> r
r =

0.8000
>> s=20*r
s =

16 More? See pages 8-9.
11--44

Scalar Arithmetic Operations Table 1.1–1

Symbol Operation MATLAB form

^ exponentiation: ab a^b

* multiplication: ab a*b

/ right division: a/b a/b

\ left division: b/a a\b

+ addition: a + b a + b

- subtraction: a - b a - b

11--55

Order of Precedence Table 1.1–2

Precedence Operation

First Parentheses, evaluated starting with the
innermost pair.

Second Exponentiation, evaluated from left to right.

Third Multiplication and division with equal
precedence, evaluated from left to right.

Fourth Addition and subtraction with equal precedence,
evaluated from left to right.

11--66

Examples of Precedence

>> 8 + 3*5
ans =

23
>> 8 + (3*5)
ans =

23
>>(8 + 3)*5
ans =

55
>>4^2-12- 8/4*2
ans =

0
>>4^2-12- 8/(4*2)
ans =

3 (continued …)11--77

Examples of Precedence (continued)

>> 3*4^2 + 5
ans =

53
>>(3*4)^2 + 5
ans =

149
>>27^(1/3) + 32^(0.2)
ans =

5
>>27^(1/3) + 32^0.2
ans =

5
>>27^1/3 + 32^0.2
ans =

11

11--88

The Assignment OperatorThe Assignment Operator ==

Typing Typing x = 3x = 3 assigns the value 3 to the variable assigns the value 3 to the variable x.x.
We can then typeWe can then type x = x + 2.x = x + 2. This assigns the value This assigns the value
3 + 2 = 5 to3 + 2 = 5 to x.x. But in algebra this implies that 0 = 2.But in algebra this implies that 0 = 2.
In algebra we can write x + 2 = 20, but in MATLAB we In algebra we can write x + 2 = 20, but in MATLAB we
cannot.cannot.
In MATLAB the left side of the = operator must be a In MATLAB the left side of the = operator must be a
single variable.single variable.
The right side must be a The right side must be a computable computable value.value.

More? See pages 11-12.
1-9

Commands for managing the work session Table 1.1–3

Command Description
clc Clears the Command window.

clear Removes all variables from memory.

clear v1 v2 Removes the variables v1 and v2 from
memory.

exist(‘var’)Determines if a file or variable exists
having the name ‘var’.

quit Stops MATLAB.

(continued …)11--1010

Commands for managing the work session
Table 1.1–3 (continued)

who Lists the variables currently in memory.
whos Lists the current variables and sizes,

and indicates if they have imaginary
parts.

: Colon; generates an array having
regularly spaced elements.

, Comma; separates elements of an
array.

; Semicolon; suppresses screen printing;
also denotes a new row in an array.

... Ellipsis; continues a line.

1-11 More? See pages 12-15.

Special Variables and Constants Table 1.1–4

Command Description
ans Temporary variable containing the most recent

answer.
eps Specifies the accuracy of floating point

precision.

i,j The imaginary unit √−1.

Inf Infinity.

NaN Indicates an undefined numerical result.

pi The number π.

11--1212

Complex Number Operations

• The number c1 = 1 – 2i is entered as follows:
c1 = 1-2i.

• An asterisk is not needed between i or j and
a number, although it is required with a
variable, such as c2 = 5 - i*c1.

• Be careful. The expressions
y = 7/2*i

and
x = 7/2i

give two different results: y = (7/2)i = 3.5i
and x = 7/(2i) = –3.5i.

11--1313

Numeric Display Formats Table 1.1–5

Command Description and Example
format short Four decimal digits (the

default); 13.6745.

format long 16 digits;
17.27484029463547.

format short e Five digits (four decimals)
plus exponent;
6.3792e+03.

format long e 16 digits (15 decimals)
plus exponent;
6.379243784781294e–04.

11--1414

Arrays

• The numbers 0, 0.1, 0.2, …, 10 can be assigned to the
variable u by typing u = [0:0.1:10].

• To compute w = 5 sin u for u = 0, 0.1, 0.2, …, 10, the
session is;

>>u = [0:0.1:10];
>>w = 5*sin(u);

• The single line, w = 5*sin(u), computed the formula
w = 5 sin u 101 times.

11--1515

Array Index

>>u(7)
ans =

0.6000
>>w(7)
ans =

2.8232

• Use the length function to determine
how many values are in an array.

>>m = length(w)
m =

101

More? See pages 19-20.11--1616

Polynomial Roots

To find the roots of x3 – 7x2 + 40x – 34 = 0, the session
is

>>a = [1,-7,40,-34];
>>roots(a)
ans =

3.0000 + 5.000i
3.0000 - 5.000i
1.0000

The roots are x = 1 and x = 3 ± 5i.

11--1717

Some Commonly Used Mathematical Functions Table 1.3–1

Function MATLAB syntax1

ex exp(x)

√x sqrt(x)

ln x log(x)

log10 x log10(x)

cos x cos(x)

sin x sin(x)

tan x tan(x)

cos−1 x acos(x)

sin−1 x asin(x)

tan−1 x atan(x)

1The MATLAB
trigonometric functions
use radian measure.

11--1818

When you type problem1,

1. MATLAB first checks to see if problem1 is
a variable and if so, displays its value.

2. If not, MATLAB then checks to see if
problem1 is one of its own commands, and
executes it if it is.

3. If not, MATLAB then looks in the current
directory for a file named problem1.m
and executes problem1 if it finds it.

4. If not, MATLAB then searches the
directories in its search path, in order,
for problem1.m and then executes it if
found.

More? See pages 22-24.11--1919

When you type problem1,

1. MATLAB first checks to see if problem1 is a
variable and if so, displays its value.

2. If not, MATLAB then checks to see if
problem1 is one of its own commands, and
executes it if it is.

3. If not, MATLAB then looks in the current
directory for a file named problem1.m and
executes problem1 if it finds it.

4. If not, MATLAB then searches the directories in
its search path, in order, for problem1.m and
then executes it if found.

1-20

System, Directory, and File Commands Table 1.3–2

Command Description
addpath dirname Adds the directory

dirname to the search
path.

cd dirname Changes the current
directory to dirname.

dir Lists all files in the current
directory.

dir dirname Lists all the files in the
directory dirname.

path Displays the MATLAB
search path.

pathtool Starts the Set Path tool.

(continued …)11--2121

System, Directory, and File Commands Table 1.3–2
(continued)
Command Description

pwd Displays the current directory.

rmpath dirname Removes the directory dirname from
the search path.

what Lists the MATLAB-specific files found in
the current working directory. Most
data files and other non-MATLAB files
are not listed. Use dir to get a list of all
files.

what dirname Lists the MATLAB-specific files in
directory dirname.

1-22

A graphics window showing a plot. Figure 1.3–1

11--2323

Some MATLAB plotting commands Table 1.3–3

Command Description
[x,y] = ginput(n) Enables the mouse to get n points

from a plot, and returns the x and y
coordinates in the vectors x and y,
which have a length n.

grid Puts grid lines on the plot.

gtext(’text’) Enables placement of text with the
mouse.

(continued …)
11--2424

Some MATLAB plotting commands Table 1.3–3
(continued)

plot(x,y) Generates a plot of the array y
versus the array x on rectilinear
axes.

title(’text’) Puts text in a title at the top of the
plot.

xlabel(’text’) Adds a text label to the horizontal
axis (the abscissa).

ylabel(’text’) Adds a text label to the vertical axis
(the ordinate).

1-25 More? See pages 25-27.

Solution of Linear Algebraic Equations

6x + 12y + 4z = 70
7x – 2y + 3z = 5
2x + 8y – 9z = 64

>>A = [6,12,4;7,-2,3;2,8,-9];
>>B = [70;5;64];
>>Solution = A\B
Solution =

3
5
-2

The solution is x = 3, y = 5, and z = –2.

More? See page 28.11--2626

You can perform operations in MATLAB in two
ways:

1. In the interactive mode, in which all
commands are entered directly in the
Command window, or

2. By running a MATLAB program stored in
script file.

This type of file contains MATLAB
commands, so running it is equivalent to
typing all the commands—one at a time—
at the Command window prompt.

You can run the file by typing its name at
the Command window prompt.

More? See pages 29-32.11--2727

COMMENTS

The comment symbol may be put anywhere in the
line. MATLAB ignores everything to the right of the
% symbol. For example,

>>% This is a comment.
>>x = 2+3 % So is this.
x =

5

Note that the portion of the line before the % sign is
executed to compute x.

11--2828

The MATLAB Command window with the Editor/Debugger
open. Figure 1.4–1

11--2929

Keep in mind when using script files:

1. The name of a script file must begin with a letter, and
may include digits and the underscore character, up to
31 characters.

2. Do not give a script file the same name as a variable.

3. Do not give a script file the same name as a MATLAB
command or function. You can check to see if a
command, function or file name already exists by using
the exist command.

1-30

Debugging Script Files

Program errors usually fall into one of the
following categories.

1. Syntax errors such as omitting a parenthesis
or comma, or spelling a command name
incorrectly. MATLAB usually detects the
more obvious errors and displays a message
describing the error and its location.

2. Errors due to an incorrect mathematical
procedure, called runtime errors. Their
occurrence often depends on the particular
input data. A common example is division by
zero.

11--3131

To locate program errors, try the following:

1. Test your program with a simple version of
the problem which can be checked by hand.

2. Display any intermediate calculations by
removing semicolons at the end of
statements.

3. Use the debugging features of the
Editor/Debugger.

More? See pages 32-33.11--3232

Programming Style

1. Comments section
a. The name of the program and any key

words in the first line.
b. The date created, and the creators' names

in the second line.
c. The definitions of the variable names for

every input and output variable. Include
definitions of variables used in the calculations
and units of measurement for all input and all
output variables!

d. The name of every user-defined function
called by the program.

(continued …)11--3333

Programming Style (continued)

2. Input section Include input data
and/or the input functions and
comments for documentation.

3. Calculation section

4. Output section This section might
contain functions for displaying the
output on the screen.

More? See pages 34-37.1-34

Input/output commands Table 1.4–2

Command Description
disp(A) Displays the contents, but

not the name, of the array
A.

disp(’text’) Displays the text string
enclosed within quotes.

x = input(’text’) Displays the text in
quotes, waits for user
input from the keyboard,
and stores the value in x.

x = input(’text’,’s’) Displays the text in
quotes, waits for user
input from the keyboard,
and stores the input as a
string in x.

11--3535

Example of a Script File

Problem:

The speed v of a falling object dropped with no initial
velocity is given as a function of time t by v = gt.

Plot v as a function of t for 0 ≤ t ≤ tf, where tf is the final
time entered by the user.

(continued …)
11--3636

Example of a Script File (continued)

% Program falling_speed.m:
% Plots speed of a falling object.
% Created on March 1, 2004 by W. Palm
%
% Input Variable:
% tf = final time (in seconds)
%
% Output Variables:
% t = array of times at which speed is
% computed (in seconds)
% v = array of speeds (meters/second)
%

(continued …)1-37

Example of a Script File (continued)

% Parameter Value:
g = 9.81; % Acceleration in SI units
%
% Input section:
tf = input(’Enter final time in seconds:’);
%

(continued …)
1-38

Example of a Script File (continued)

% Calculation section:
dt = tf/500;
% Create an array of 501 time values.
t = [0:dt:tf];
% Compute speed values.
v = g*t;
%
% Output section:
Plot(t,v),xlabel(’t (s)’),ylabel(’v m/s)’)

More? See pages 37-38.11--3939

Getting HelpGetting Help

Throughout each chapter margin notes identify where
key terms are introduced.
Each chapter contains tables summarizing the MATLAB
commands introduced in that chapter.
At the end of each chapter is a summary guide to the
commands covered in that chapter.
Appendix A contains tables of MATLAB commands,
grouped by category, with the appropriate page
references.
There are three indexes. The first lists MATLAB
commands and symbols, the second lists Simulink
blocks, and the third lists topics.

1-40

The Help Navigator contains four tabs:

Contents: a contents listing tab,
Index: a global index tab,
Search: a search tab having a find function and
full text search features, and
Demos: a bookmarking tab to start built-in
demonstrations.

1-41

The MATLAB Help Browser. Figure 1.5–1

11--4242

Help Functions

help funcname: Displays in the Command
window a description of the specified function
funcname.
lookfor topic: Displays in the Command
window a brief description for all functions
whose description includes the specified key
word topic.
doc funcname: Opens the Help Browser to
the reference page for the specified function
funcname, providing a description, additional
remarks, and examples.

1-43 More? See pages 38-43.

Relational operators Table 1.6–1

Relational Meaning

operator

< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal to.
== Equal to.
~= Not equal to.

11--4444

Examples of Relational Operators
>> x = [6,3,9]; y = [14,2,9];
>> z = (x < y)
z =
1 0 0

>>z = (x > y)
z =
0 1 0

>>z = (x ~= y)
z =
1 1 0

>>z = (x == y)
z =
0 0 1

>>z = (x > 8)
z =
0 0 1 More? See pages 44-45.11--4545

The find Function

find(x) computes an array containing the indices of the
nonzero elements of the numeric array x. For example

>>x = [-2, 0, 4];
>>y = find(x)
Y =
1 3

The resulting array y = [1, 3] indicates that the first
and third elements of x are nonzero.

11--4646

Note the difference between the result obtained by
x(x<y) and the result obtained by find(x<y).

>>x = [6,3,9,11];y = [14,2,9,13];
>>values = x(x<y)
values =

6 11
>>how_many = length(values)
how_many =

2
>>indices = find(x<y)
indices =

1 4

More? See pages 45-46.11--4747

The if Statement

The general form of the if statement is

if expression
commands

elseif expression
commands

else
commands

end

The else and elseif statements may be omitted if
not required.

11--4848

Suppose that we want to compute y such that

15√4x + 10 if x ≥ 9
10x + 10 if 0 ≤ x < 9
10 if x < 0

y =

The following statements will compute y, assuming that the
variable x already has a scalar value.
if x >= 9
y = 15*sqrt(4x) + 10

elseif x >= 0
y = 10*x + 10

else
y = 10

end
Note that the elseif statement does not require a
separate end statement.

More? See pages 47-48.11--4949

Loops

There are two types of explicit loops in
MATLAB;

• the for loop, used when the number of
passes is known ahead of time, and

• the while loop, used when the looping
process must terminate when a specified
condition is satisfied, and thus the number of
passes is not known in advance.

11--5050

A simple example of a for loop is

m = 0;

x(1) = 10;

for k = 2:3:11

m = m+1;

x(m+1) = x(m) + k^2;

end

k takes on the values 2, 5, 8, 11. The variable m
indicates the index of the array x. When the loop
is finished the array x will have the values
x(1)=14,x(2)=39,x(3)=103,x(4)=224.

11--5151

A simple example of a while loop is

x = 5;k = 0;

while x < 25

k = k + 1;

y(k) = 3*x;

x = 2*x-1;

end

The loop variable x is initially assigned the value 5, and it
keeps this value until the statement x = 2*x - 1 is
encountered the first time. Its value then changes to 9.
Before each pass through the loop, x is checked to see if
its value is less than 25. If so, the pass is made. If not, the
loop is skipped.

11--5252

Example of a for Loop

Write a script file to compute the sum of the first
15 terms in the series 5k2 – 2k, k = 1, 2, 3, …,
15.

total = 0;

for k = 1:15

total = 5*k^2 - 2*k + total;

end

disp(’The sum for 15 terms is:’)

disp(total)

The answer is 5960.

11--5353

Example of a for Loop

Write a script file to determine how many terms are
required for the sum of the series 5k2 – 2k, k = 1, 2, 3, …
to exceed 10,000. What is the sum for this many terms?

total = 0;k = 0;
while total < 1e+4

k = k + 1;
total = 5*k^2 - 2*k + total;

end
disp(’The number of terms is:’)
disp(k)
disp(’The sum is:’)
disp(total)

The sum is 10,203 after 18 terms.
11--5454

Example of a while Loop

Determine how long it will take to accumulate at least
$10,000 in a bank account if you deposit $500 initially
and $500 at the end of each year, if the account pays 5
percent annual interest.

amount = 500; k=0;
while amount < 10000
k = k+1;
amount = amount*1.05 + 500;

end
amount
k

The final results are amount = 1.0789e+004, or $10,789,
and k = 14, or 14 years.

11--5555 More? See pages 48-51.

Steps in engineering problem solving Table 1.7–1

1. Understand the purpose of the problem.
2. Collect the known information. Realize that some of it

might later be found unnecessary.
3. Determine what information you must find.
4. Simplify the problem only enough to obtain the

required information. State any assumptions you
make.

5. Draw a sketch and label any necessary variables.
6. Determine which fundamental principles are

applicable.
7. Think generally about your proposed solution

approach and consider other approaches before
proceeding with the details.

(continued …)1-56

Steps in engineering problem solving Table 1.7–1
(continued)

8. Label each step in the solution process. Understand the
purpose of the problem

9. If you solve the problem with a program, hand check the
results using a simple version of the problem.

Checking the dimensions and units and printing the
results of intermediate steps in the calculation sequence
can uncover mistakes.

(continued …)1-57

Steps in engineering problem solving Table 1.7–1
(continued)

10. Perform a “reality check” on your answer. Does it make
sense? Estimate the range of the expected result and
compare it with your answer. Do not state the answer
with greater precision than is justified by any of the
following:
(a) The precision of the given information.
(b) The simplifying assumptions.
(c) The requirements of the problem.

Interpret the mathematics. If the mathematics produces
multiple answers, do not discard some of them without
considering what they mean. The mathematics might be
trying to tell you something, and you might miss an
opportunity to discover more about the problem.

1-58 More? See pages 52-56.

Steps for developing a computer solution Table 1.7–2

1. State the problem concisely.
2. Specify the data to be used by the program. This is the

“input.”
3. Specify the information to be generated by the

program. This is the “output.”
4. Work through the solution steps by hand or with a

calculator; use a simpler set of data if necessary.
5. Write and run the program.
6. Check the output of the program with your hand

solution.
7. Run the program with your input data and perform a

reality check on the output.
8. If you will use the program as a general tool in the

future, test it by running it for a range of reasonable
data values; perform a reality check on the results.

1-59 More? See pages 56-60.

Key Terms with Page References

Argument, 9 Local variable, 32
Array, 19 Logical variable, 44
Array index, 20 Loop, 48
ASCII files, 22 MAT-files, 22
Assignment operator, 11 Model, 52
Command window, 7 Overlay plot, 26
Comment, 30 Path, 23
Conditional statement, 47 Precedence, 9
Current directory, 17 Relational operator, 43
Data file, 22 Scalar, 9
Data marker, 27 Script file, 29
Debugging, 33 Search path, 23
Desktop, 6 Session, 8
Editor/Debugger, 29 String variable, 37
Global variable, 30 Variable, 8
Graphics window, 25 Workspace, 12

11--6060

The following slides contain figures from
the chapter and its homework problems.

1-61

Sketch of the dropped-package problem.

Figure 1.7–1

11--6262

A piston, connecting rod, and crank for an internal combustion engine.

Figure 1.7–2

11--6363

Plot of the piston motion versus crank angle.

Figure 1.7–3

11--6464

Figure P28

11--6565

Figure P29

11--6666

Figure P30

11--6767

	1-2
	Entering Commands and Expressions
	1-4
	1-7
	1-8
	The Assignment Operator =
	1-13
	1-15
	1-16
	1-17
	1-19
	When you type problem1,
	1-23
	1-26
	1-27
	1-28
	1-29
	Keep in mind when using script files:
	1-31
	1-32
	1-33
	Programming Style (continued)
	1-36
	1-39
	Getting Help
	The Help Navigator contains four tabs:
	1-42
	Help Functions
	1-45
	1-46
	1-47
	1-48
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	Steps in engineering problem solving Table 1.7–1
	Steps in engineering problem solving Table 1.7–1(continued)
	Steps in engineering problem solving Table 1.7–1(continued)
	Steps for developing a computer solution Table 1.7–2
	1-60
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67

