
Copyright © 2005. The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Introduction to MATLAB 7
for Engineers

Chapter 5
Advanced Plotting
and Model Building

PowerPoint to accompany

Nomenclature for a typical xy plot. Figure 5.1–1

5-2

More? See
pages 260-
261.

The following MATLAB session plots y = 0.4 √1.8x for
0 ≤ x ≤ 52, where y represents the height of a
rocket after launch, in miles, and x is the horizontal
(downrange) distance in miles.

>>x = [0:0.1:52];
>>y = 0.4*sqrt(1.8*x);
>>plot(x,y)
>>xlabel(’Distance (miles)’)
>>ylabel(’Height (miles)’)
>>title(’Rocket Height as a Function of
Downrange Distance’)

5-3

The resulting plot is shown on the next slide.

The autoscaling feature in MATLAB selects tick-mark
spacing. Figure 5.1–2

5-4

The plot will appear in the Figure window. You can
obtain a hard copy of the plot in several ways:

1. Use the menu system. Select Print on the File
menu in the Figure window. Answer OK when you
are prompted to continue the printing process.

2. Type print at the command line. This command
sends the current plot directly to the printer.

3. Save the plot to a file to be printed later or
imported into another application such as a word
processor. You need to know something about
graphics file formats to use this file properly. See
the subsection Exporting Figures.

5-5

When you have finished with the plot, close the
figure window by selecting Close from the File
menu in the figure window.

Note that using the Alt-Tab key combination in
Windows-based systems will return you to the
Command window without closing the figure
window.

If you do not close the window, it will not reappear
when a new plot command is executed.
However, the figure will still be updated.

5-6

Requirements for a Correct Plot

The following list describes the essential features of any
plot:

1. Each axis must be labeled with the name of the
quantity being plotted and its units! If two or more
quantities having different units are plotted (such as
when plotting both speed and distance versus time),
indicate the units in the axis label if there is room, or in
the legend or labels for each curve.

2. Each axis should have regularly spaced tick marks at
convenient intervals—not too sparse, but not too
dense—with a spacing that is easy to interpret and
interpolate. For example, use 0.1, 0.2, and so on,
rather than 0.13, 0.26, and so on.

(continued …)5-7

3. If you are plotting more than one curve or data set,
label each on its plot or use a legend to distinguish
them.

4. If you are preparing multiple plots of a similar type or
if the axes’ labels cannot convey enough information,
use a title.

5. If you are plotting measured data, plot each data
point with a symbol such as a circle, square, or cross
(use the same symbol for every point in the same
data set). If there are many data points, plot them
using the dot symbol.

5-8

Requirements for a Correct Plot (continued)

(continued …)

6. Sometimes data symbols are connected by lines to
help the viewer visualize the data, especially if there
are few data points. However, connecting the data
points, especially with a solid line, might be
interpreted to imply knowledge of what occurs
between the data points. Thus you should be careful
to prevent such misinterpretation.

7. If you are plotting points generated by evaluating a
function (as opposed to measured data), do not use
a symbol to plot the points. Instead, be sure to
generate many points, and connect the points with
solid lines.

5-9

Requirements for a Correct Plot (continued)

The grid and axis Commands

The grid command displays gridlines at the tick marks
corresponding to the tick labels. Type grid on to add
gridlines; type grid off to stop plotting gridlines. When
used by itself, grid toggles this feature on or off, but
you might want to use grid on and grid off to be
sure.

You can use the axis command to override the
MATLAB selections for the axis limits. The basic syntax
is axis([xmin xmax ymin ymax]). This command
sets the scaling for the x- and y-axes to the minimum
and maximum values indicated. Note that, unlike an
array, this command does not use commas to separate
the values.

More? See pages 264-265.5-10

The effects of the axis and grid commands. Figure 5.1–3

5-11

The plot(y) function plots the values in y versus the
indices. Figure 5.1–4. See pages 265-266.

5-12

The fplot command plots a function specified as a string.
Figure 5.1–5 See pages 266-268.

5-13

The function in Figure 5.1–5 generated with the plot
command, which gives more control than the fplot
command. Figure 5.1–6 See page 267.

5-14

Plotting Polynomials with the polyval Function.

To plot the polynomial 3x5 + 2x4 – 100x3 + 2x2 – 7x + 90
over the range –6 ≤ x ≤ 6 with a spacing of 0.01, you type

>>x = [-6:0.01:6];
>>p = [3,2,-100,2,-7,90];
>>plot(x,polyval(p,x)),xlabel(’x’), ...
ylabel(’p’)

5-15

More? See page 268.

An example of a Figure window. Figure 5.1–7

5-16

Saving Figures

To save a figure that can be opened in subsequent
MATLAB sessions, save it in a figure file with the .fig
file name extension.

To do this, select Save from the Figure window File
menu or click the Save button (the disk icon) on the
toolbar.

If this is the first time you are saving the file, the Save
As dialog box appears. Make sure that the type is
MATLAB Figure (*.fig). Specify the name you want
assigned to the figure file. Click OK.

5-17

Exporting Figures

To save the figure in a format that can be used by
another application, such as the standard graphics file
formats TIFF or EPS, perform these steps.

1. Select Export Setup from the File menu. This dialog
lets you specify options for the output file, such as the
figure size, fonts, line size and style, and output format.

2. Select Export from the Export Setup dialog. A
standard Save As dialog appears.

3. Select the format from the list of formats in the Save
As type menu. This selects the format of the exported
file and adds the standard file name extension given to
files of that type.

4. Enter the name you want to give the file, less the
extension. Then click Save.

5-18 More? See pages 270-271.

On Windows systems, you can also copy a figure to
the clipboard and then paste it into another
application:

1. Select Copy Options from the Edit menu. The
Copying Options page of the Preferences dialog
box appears.
2. Complete the fields on the Copying Options
page and click OK.
3. Select Copy Figure from the Edit menu.

5-19

Subplots

You can use the subplot command to obtain several
smaller “subplots” in the same figure. The syntax is
subplot(m,n,p). This command divides the Figure
window into an array of rectangular panes with m rows
and n columns. The variable p tells MATLAB to place
the output of the plot command following the
subplot command into the pth pane.

For example, subplot(3,2,5) creates an array of six
panes, three panes deep and two panes across, and
directs the next plot to appear in the fifth pane (in the
bottom-left corner).

5-20

The following script file created Figure 5.2–1, which shows
the plots of the functions y = e−1.2x sin(10x + 5) for 0 ≤ x ≤ 5
and y = |x3 − 100| for −6 ≤ x ≤ 6.

x = [0:0.01:5];
y = exp(-1.2*x).*sin(10*x+5);
subplot(1,2,1)
plot(x,y),axis([0 5 -1 1])
x = [-6:0.01:6];
y = abs(x.^3-100);
subplot(1,2,2)
plot(x,y),axis([-6 6 0 350])

5-21

The figure is shown
on the next slide.

Application of the subplot command. Figure 5.2–1

5-22

More on
subplots?
See page
271.

Data Markers and Line Types

To plot y versus x with a solid line and u versus v with
a dashed line, type plot(x,y,u,v,’--’), where the
symbols ’--’ represent a dashed line.

Table 5.2–1 gives the symbols for other line types.

To plot y versus x with asterisks (*) connected with a
dotted line, you must plot the data twice by typing
plot(x,y,’*’,x,y,’:’).

5-23

To plot y versus x with green asterisks (∗) connected
with a red dashed line, you must plot the data twice by
typing plot(x,y,’g*’,x,y,’r--’).

5-24

Data plotted using asterisks connected with a dotted line.
Figure 5.2–3

5-25

Specifiers for data markers, line types, and colors.
Table 5.2–1

Data markers†

Dot (.)
Asterisk (*)
Cross (×)
Circle ()
Plus sign (+)
Square ()
Diamond ()
Five-pointed star (w)

.
*
×

+
s
d
p

Line types

Solid line
Dashed line
Dash-dotted line
Dotted line

––
– –
– .
….

Colors

Black
Blue
Cyan
Green
Magenta
Red
White
Yellow

k
b
c
g
m
r
w
y

†Other data markers are available. Search for “markers” in MATLAB help.

5-26

Use of data markers. Figure 5.2–2

5-27

More?
See
pages
273-274.

Labeling Curves and Data

The legend command automatically obtains from
the plot the line type used for each data set and
displays a sample of this line type in the legend
box next to the string you selected. The following
script file produced the plot in Figure 5.2–4.

x = [0:0.01:2];
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,’--’),xlabel(’x’), ...
ylabel(’Hyperbolic Sine and
Tangent’), ...
legend(’sinh(x)’,’tanh(x)’)

5-28

Application of the legend command. Figure 5.2–4

5-29

The gtext and text commands are also useful. Figure 5.2–5

5-30

See page
276.

Graphical solution of equations: Circuit representation of a
power supply and a load. Example 5.2-1. Figure 5.2–6

5-31

Plot of the load line and the device curve for Example 5.2–1.
Figure 5.2–7

5-32

Application of the hold command. Figure 5.2–8

5-33

See page
279.

Hints for Improving Plots

The following actions, while not required, can
nevertheless improve the appearance of your plots:

1. Start scales from zero whenever possible. This
technique prevents a false impression of the
magnitudes of any variations shown on the plot.

2. Use sensible tick-mark spacing. If the quantities are
months, choose a spacing of 12 because 1/10 of a
year is not a convenient division. Space tick marks as
close as is useful, but no closer. If the data is given
monthly over a range of 24 months, 48 tick marks
might be too dense, and also unnecessary.

5-34
(continued …)

3. Minimize the number of zeros in the data being
plotted. For example, use a scale in millions of dollars
when appropriate, instead of a scale in dollars with
six zeros after every number.

4. Determine the minimum and maximum data values
for each axis before plotting the data. Then set the
axis limits to cover the entire data range plus an
additional amount to allow convenient tick-mark
spacing to be selected.

For example, if the data on the x-axis ranges from 1.2
to 9.6, a good choice for axis limits is 0 to 10. This
choice allows you to use a tick spacing of 1 or 2.

5-35

Hints for Improving Plots (continued)

(continued …)

5. Use a different line type for each curve when
several are plotted on a single plot and they cross
each other; for example, use a solid line, a dashed
line, and combinations of lines and symbols. Beware
of using colors to distinguish plots if you are going to
make black-and-white printouts and photocopies.

6. Do not put many curves on one plot, particularly if
they will be close to each other or cross one another
at several points.

7. Use the same scale limits and tick spacing on each
plot if you need to compare information on more
than one plot.

5-36

Hints for Improving Plots (continued)

Why use log scales? Rectilinear scales cannot properly
display variations over wide ranges. Figure 5.3–1

5-37

A log-log plot can display wide variations in data values.
Figure 5.3–2

5-38

See
page
282.

Logarithmic Plots

It is important to remember the following points when
using log scales:

1. You cannot plot negative numbers on a log scale,
because the logarithm of a negative number is not
defined as a real number.

2. You cannot plot the number 0 on a log scale,
because log10 0 = ln 0 = −∞. You must choose an
appropriately small number as the lower limit on the
plot.

5-39
(continued…)

3. The tick-mark labels on a log scale are the actual
values being plotted; they are not the logarithms of
the numbers. For example, the range of x values in
the plot in Figure 5.3–2 is from 10−1 = 0.1 to 102 =
100.

4. Gridlines and tick marks within a decade are
unevenly spaced. If 8 gridlines or tick marks occur
within the decade, they correspond to values equal
to 2, 3, 4, . . . , 8, 9 times the value represented by
the first gridline or tick mark of the decade.

5-40

Logarithmic Plots (continued)

(continued…)

5. Equal distances on a log scale correspond to
multiplication by the same constant (as opposed to
addition of the same constant on a rectilinear
scale).

For example, all numbers that differ by a factor of 10
are separated by the same distance on a log
scale. That is, the distance between 0.3 and 3 is
the same as the distance between 30 and 300.
This separation is referred to as a decade or cycle.

The plot shown in Figure 5.3–2 covers three decades
in x (from 0.1 to 100) and four decades in y and is
thus called a four-by-three-cycle plot.

5-41

Logarithmic Plots (continued)

MATLAB has three commands for generating
plots having log scales. The appropriate
command depends on which axis must have a
log scale.

1. Use the loglog(x,y) command to have both
scales logarithmic.

2. Use the semilogx(x,y) command to have the
x scale logarithmic and the y scale rectilinear.

3. Use the semilogy(x,y) command to have the
y scale logarithmic and the x scale rectilinear.

5-42

Command

bar(x,y)

plotyy(x1,y1,x2,y2)

polar(theta,r,’type’)

stairs(x,y)

stem(x,y)

Description

Creates a bar chart of y versus x.

Produces a plot with two y-axes, y1
on the left and y2 on the right.

Produces a polar plot from the polar
coordinates theta and r, using the
line type, data marker, and colors
specified in the string type.

Produces a stairs plot of y versus x.

Produces a stem plot of y versus x.

Specialized plot commands. Table 5.3–1

5-43

Two data sets plotted on four types of plots. Figure 5.3–3

5-44

See
page
285.

Application of logarithmic plots: An RC circuit. Figure 5.3–4

5-45

Frequency-response plot of a low-pass RC circuit.
Figure 5.3–5

5-46

See
pages
286-
287.

An example of controlling the tick-mark labels with the set
command. Figure 5.3–6

5-47

See
pages
287-289.

A polar plot showing an orbit having an eccentricity of 0.5.
Figure 5.3–7

5-48

See pages
290-291.

Interactive Plotting in MATLAB

This interface can be advantageous in situations where:

• You need to create a large number of different types of
plots,

• You must construct plots involving many data sets,
• You want to add annotations such as rectangles and

ellipses, or
• You want to change plot characteristics such as tick

spacing, fonts, bolding, italics, and colors.

5-49
More? See pages 292-298.

The interactive plotting environment in MATLAB is a set of
tools for:

• Creating different types of graphs,
• Selecting variables to plot directly from the Workspace

Browser,
• Creating and editing subplots,
• Adding annotations such as lines, arrows, text,

rectangles, and ellipses, and
• Editing properties of graphics objects, such as their color,

line weight, and font.

5-50

The Figure window with the Figure toolbar displayed.
Figure 5.4–1

5-51

The Figure window with the Figure and Plot Edit toolbars
displayed. Figure 5.4–2

5-52

The Plot Tools interface includes the following three
panels associated with a given figure.

• The Figure Palette: Use this to create and arrange
subplots, to view and plot workspace variables, and to
add annotations.

• The Plot Browser: Use this to select and control the
visibility of the axes or graphics objects plotted in the
figure, and to add data for plotting.

• The Property Editor: Use this to set basic properties
of the selected object and to obtain access to all
properties through the Property Inspector.

5-53

The Figure window with the Plot Tools activated.
Figure 5.4–3

5-54

Function Discovery. The power function y = 2x −0.5 and
the exponential function y = 101−x . Figure 5.3–8

5-55

Using the Linear, Power, and Exponential Functions
to Describe data.

Each function gives a straight line when plotted using a
specific set of axes:

1. The linear function y = mx + b gives a straight line
when plotted on rectilinear axes. Its slope is m and its
intercept is b.

2. The power function y = bxm gives a straight line when
plotted on log-log axes.

3. The exponential function y = b(10)mx and its
equivalent form y = bemx give a straight line when
plotted on a semilog plot whose y-axis is logarithmic.

5-56
More? See pages 299-300.

Steps for Function Discovery

1. Examine the data near the origin. The
exponential function can never pass through the
origin (unless of course b = 0, which is a trivial
case). (See Figure 5.5–1 for examples with b =
1.)

The linear function can pass through the origin only
if b = 0. The power function can pass through the
origin but only if m > 0. (See Figure 5.5–2 for
examples with b = 1.)

5-57

Examples of exponential functions. Figure 5.5–1

5-58

Examples of power functions. Figure 5.5–2

5-59

2. Plot the data using rectilinear scales. If it forms a straight
line, then it can be represented by the linear function and
you are finished. Otherwise, if you have data at x = 0,
then
a. If y(0) = 0, try the power function.
b. If y(0) ≠ 0, try the exponential function.
If data is not given for x = 0, proceed to step 3.

5-60

Steps for Function Discovery (continued)

(continued…)

3. If you suspect a power function, plot the data using log-
log scales. Only a power function will form a straight line
on a log-log plot. If you suspect an exponential function,
plot the data using the semilog scales. Only an
exponential function will form a straight line on a semilog
plot.

5-61

Steps for Function Discovery (continued)

(continued…)

4. In function discovery applications, we use the
log-log and semilog plots only to identify the
function type, but not to find the coefficients b and
m. The reason is that it is difficult to interpolate on
log scales.

5-62

Steps for Function Discovery (continued)

Command

p =
polyfit(x,y,n)

Description

Fits a polynomial of degree n to
data described by the vectors x and
y, where x is the independent
variable. Returns a row vector p of
length n + 1 that contains the
polynomial coefficients in order of
descending powers.

The polyfit function. Table 5.5–1

5-63

Using the polyfit Function to Fit Equations to
Data.

Syntax: p = polyfit(x,y,n)

where x and y contain the data, n is the order of the
polynomial to be fitted, and p is the vector of
polynomial coefficients.

The linear function: y = mx + b. In this case the
variables w and z in the polynomial w = p1z+ p2 are
the original data variables x and y, and we can find
the linear function that fits the data by typing p =
polyfit(x,y,1). The first element p1 of the vector
p will be m, and the second element p2 will be b.

5-64

The power function: y = bxm. In this case

log10 y = m log10x + log10b (5.5–5)

which has the form
w = p1z + p2

where the polynomial variables w and z are related to the
original data variables x and y by w = log10 y and z = log10x.
Thus we can find the power function that fits the data by
typing

p = polyfit(log10(x),log10(y),1)

The first element p1 of the vector p will be m, and the
second element p2 will be log10b. We can find b from b =
10p2 .

5-65

The exponential function: y = b(10)mx. In this case

log10 y = mx + log10b (5.5–6)

which has the form
w = p1z + p2

where the polynomial variables w and z are related to the
original data variables x and y by w = log10 y and z = x. We
can find the exponential function that fits the data by typing

p = polyfit(x, log10(y),1)

The first element p1 of the vector p will be m, and the
second element p2 will be log10b. We can find b from b =
10p2 .

More? See pages 302-303.5-66

Fitting a linear equation: An experiment to measure force and
deflection in a cantilever beam. Example 5.5-1.
Figure 5.5–3

5-67

Plots for the cantilever beam example. Figure 5.5–4

5-68

Fitting an exponential function. Temperature of a cooling cup
of coffee, plotted on various coordinates. Example 5.5-2.
Figure 5.5–5

5-69

Fitting a power function. An experiment to verify Torricelli’s
principle. Example 5.5-3. Figure 5.5–6

5-70

Flow rate and fill time for a coffee pot. Figure 5.5–7

5-71

The Least Squares Criterion: used to fit a function f (x).
It minimizes the sum of the squares of the residuals, J. J
is defined as

We can use this criterion to compare the quality of the
curve fit for two or more functions used to describe the
same data. The function that gives the smallest J value
gives the best fit.

m
Σ

i=1
J = [f (xi) – yi]2 (5.6–1)

5-72

Illustration of the least squares criterion. Figure 5.6–1

5-73

The least squares fit for the example data. Figure 5.6–2

5-74

See pages
312-315.

p =
polyfit(x,y,n)

Fits a polynomial of degree n to
data described by the vectors x
and y, where x is the independent
variable. Returns a row vector p of
length n+1 that contains the
polynomial coefficients in order of
descending powers.

5-75

The polyfit function is based on the least-squares
method. Its syntax is

See page 315, Table 5.6-1.

Regression using polynomials of first through fourth degree.
Figure 5.6–3

5-76

The program
is on pages
315 to 316.

Beware of using polynomials of high degree. An example of
a fifth-degree polynomial that passes through all six data
points but exhibits large excursions between points. Figure
5.6–4

5-77

Assessing the Quality of a Curve Fit:

Denote the sum of the squares of the deviation of
the y values from their mean y by S, which can be
computed from

(yt – y)2 (5.6–2)
m
Σ
i=1

S =

5-78

This formula can be used to compute another measure of
the quality of the curve fit, the coefficient of determination,
also known as the r-squared value. It is defined as

(5.6–3)J
Sr 2 = 1 −

5-79

The value of S indicates how much the data is spread
around the mean, and the value of J indicates how
much of the data spread is unaccounted for by the
model.

Thus the ratio J / S indicates the fractional variation
unaccounted for by the model.

For a perfect fit, J = 0 and thus r 2 = 1. Thus the closer
r 2 is to 1, the better the fit. The largest r 2 can be is 1.

It is possible for J to be larger than S, and thus it is
possible for r 2 to be negative. Such cases, however,
are indicative of a very poor model that should not be
used.

As a rule of thumb, a good fit accounts for at least 99
percent of the data variation. This value corresponds
to r 2 ≥ 0.99.

5-80

More? See pages 319-320.

Scaling the Data

The effect of computational errors in computing the
coefficients can be lessened by properly scaling the
x values. You can scale the data yourself before
using polyfit. Some common scaling methods
are

1. Subtract the minimum x value or the mean x value
from the x data, if the range of x is small, or

2. Divide the x values by the maximum value or the
mean value, if the range is large.

5-81

More? See pages 323-324.

Effect of coefficient accuracy on a sixth-degree polynomial.
Top graph: 14 decimal-place accuracy. Bottom graph: 8
decimal-place accuracy. Figure 5.6–5

5-82

More? See
pages 320-
321.

Avoiding high degree polynomials: Use of two cubics to fit
data. Figure 5.6–6

5-83

See
pages
321-
322.

Using Residuals: Residual plots of four models. Figure 5.6–7

5-84

See pages
325-326.

Linear-in-Parameters Regression: Comparison of first- and
second-order model fits. Figure 5.6–8

5-85

See
pages
329-331.

Basic Fitting Interface

MATLAB supports curve fitting through the Basic Fitting
interface. Using this interface, you can quickly perform
basic curve fitting tasks within the same easy-to-use
environment. The interface is designed so that you can:

• Fit data using a cubic spline or a polynomial up to
degree 10.
• Plot multiple fits simultaneously for a given data set.
• Plot the residuals.
• Examine the numerical results of a fit.
• Interpolate or extrapolate a fit.
• Annotate the plot with the numerical fit results and
the norm of residuals.
• Save the fit and evaluated results to the MATLAB
workspace.

5-86

The Basic Fitting interface. Figure 5.7–1

5-87

A figure produced by the Basic Fitting interface.
Figure 5.7–2

5-88

More?
See
pages
331-334.

Three-Dimensional Plotting in Matlab 7

In Chapter 1 (and more recently, in Chapter 5), Palm
introduced you to the 2-D plot. You learned how to plot on
rectilinear, semi-log, and log-log scales using the plot and
fplot commands. Now Palm introduces you to the 3-D plot
which is useful for visualizing certain functions of two variables
(these functions are often difficult to visualize with a 2-D plot).
The Matlab help feature provides a good overview of 3-D
plotting too. graph 3d

With 2-D plots you learned about xlabel and ylabel. With 3-
D plots you will add a third label, zlabel. All of the other
features of plotting (e.g. grid, title, legend, etc.) work with 3-D
plots. In Section 5-8, you will learn about 3-D line, surface, and
contour plots.

Three-Dimensional Line Plots:

The following program uses the plot3 function to
generate the spiral curve shown in Figure 5.8–1 (p.338).

>>t = [0:pi/50:10*pi];
>>plot3(exp(-0.05*t).*sin(t),...
exp(-0.05*t).*cos(t),t),...
xlabel(’x’),ylabel(’y’),zlabel(’z’),grid

x = e-0.05tsin t

y=e-0.05tcos t

z=t

5-89

Remember: When you plot in 2-D and 3-D, don’t forget to
set your range and make sure you choose an increment
that allows you to visualize your data.

The curve x = e−0.05t sin t, y = e−0.05t cos t, z = t plotted with the
plot3 function. Figure 5.8–1

5-90

More? See
pages 334-
335.

Surface Plots: An Overview

5-91

The function z = f(x,y) represents a surface when plotted on
xyz axes, and the mesh function provides the means to
generate a surface plot. Before you can use this function, you
must generate a grid of points on the xy plane, and then
evaluate the function f(x,y) at these points. The mesgrid
function generates the grid.

Continues on next slide……

Its syntax is [X,Y] = meshgrid(x,y). If x =
[xmin:xspacing:xmax] and

Y = [ymin:yspacing:ymax], then this function will generate the
coordinates of a rectangular grid with one corner at (xmin, ymin) and the
opposite corner at (xmax, ymax). Each rectangular panel in the grid will
have a width equal to xspacing and a depth equal to yspacing. The
resulting matrices X and Y contain the coordinate pairs of every point in the
grid. These pairs are then used to evaluate the function.

The function [X,Y] = meshgrid(x)is the equivalent to [X,Y] =
meshgrid(x,x) and can be used if x and y have the same minimum
values, the same maximum values, and the same spacing. Using this form,
you can type [X,Y] = meshgrid (min:spacing:max), where min
and max specify the minimum and maximum values of both x and y and
spacing is the desired spacing of the x and y values.

After the grid is computed, you create the surface plot with the mesh
function. Its syntax is mesh(x,y,z). As always, the grid, label, and text
functions can be used with the mesh function.

The following session shows how to generate the surface plot of the
function z = xe-[(x-y2)2+y2], for -2 ≤ x ≤ 2 and -2 ≤ y ≤ 2, with a
spacing of 0.1. This plot appears in Figure 5.8–2.

>>[X,Y] = meshgrid(-2:0.1:2);
>>Z = X.*exp(-((X-Y.^2).^2+Y.^2));
>>mesh(X,Y,Z),xlabel(’x’),ylabel(’y’),zlabel(’z’)

The next slide shows the resulting surface plot.

A plot of the surface z = xe−[(x−y2)2+y2] created with the mesh
function. Figure 5.8–2

5-92
More? See pages 335-336.

Contour Plots: An Overview

Topographic plots show the contours of the land by means
of constant elevation lines also called contour lines.
Such a plot is called a contour plot. These plots help
engineers to visual the shape of a function. You use the
contour function whose syntax is contour(X,Y,Z)
and you use this function the same way you use the
mesh function—first use the meshgrid function to
generate the grid and then generate the function lines.
The following slide provides a good example.

The following session generates the contour plot of the
function whose surface plot is shown in Figure 5.8–2;
namely, z = xe−[(x−y2)2+y2], for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2,
with a spacing of 0.1. This plot appears in Figure 5.8–3.

>>[X,Y] = meshgrid(-2:0.1:2);
>>Z = X.*exp(-((X- Y.^2).^2+Y.^2));
>>contour(X,Y,Z),xlabel(’x’),ylabel(’y’)

5-93

See the next slide.

A contour plot of the surface z = xe−[(x−y2)2+y2] created with the
contour function. Figure 5.8–3

5-94

More? See
page 337.

Contour plots and surface plots can be used together to
clarify a function. For example, unless the elevations are
labeled on contour lines, you cannot tell whether there is a
minimum or a maximum point. However, a surface plot will
provide that information. On the other hand, accurate
measurements are not possible on a surface plot; these can
be done on the contour plot because no distortion is involved.

The meshc function can be useful—it shows the contour lines
beneath a surface plot; the meshz function draws a series of
vertical lines under a surface plot and the waterfall
function draws mesh lines in one direction only. The following
slides will illustrate this using the following function:

z=xe -(x2+y2) [note: x squared and y squared]

Plots of the surface z = xe−(x2+y2) created with the mesh
function and its variant forms: meshc, meshz, and
waterfall. a) mesh, b) meshc, c) meshz, d) waterfall.
Figure 5.8–4

5-96

Function
contour(x,y,z)

mesh(x,y,z)

meshc(x,y,z)

meshz(x,y,z)

surf(x,y,z)

surfc(x,y,z)

[X,Y] = meshgrid(x,y)

[X,Y] = meshgrid(x)

waterfall(x,y,z)

Description
Creates a contour plot.

Creates a 3D mesh surface plot.

Same as mesh but draws contours under the
surface.

Same as mesh but draws vertical reference lines
under the surface.

Creates a shaded 3D mesh surface plot.

Same as surf but draws contours under the
surface.

Creates the matrices X and Y from the vectors x
and y to define a rectangular grid.

Same as [X,Y]= meshgrid(x,x).

Same as mesh but draws mesh lines in one
direction only.5-95

Three-dimensional plotting functions. Table 5.8–1

The following slides contain
figures from the chapter’s
homework problems.

5-97

Figure P27

5-98

Figure P28

5-99

Figure P56

5-100

	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-82
	5-83
	5-84
	5-85
	5-86
	5-87
	5-88
	Three-Dimensional Plotting in Matlab 7
	5-89
	5-90
	5-91
	5-92
	Contour Plots: An Overview
	5-93
	5-94
	5-96
	5-95
	5-98
	5-99
	5-100

