
Program Structure and Format

PROGRAM program-name

IMPLICIT NONE

specification part

execution part

subprogram part

END PROGRAM program-name

Comments

Comments should be used liberally to improve readability. The

following are the rules for making comments:

1. All characters following a exclamation mark !, except in a char-

acter string, are commentary, and are ignored by the compiler.

PROGRAM TestComment1

..........

READ(*,*) Year ! read in the value of Year

..........

Year = Year + 1 ! add 1 to Year

..........

END PROGRAM TestComment1

2. An entire line may be a comment

! This is a comment line

!

PROGRAM TestComment2

.........

! This is a comment line in the middle of a program

.........

END PROGRAM TestComment2

3. A blank line is also interpreted as a comment line

PROGRAM TestComment3

..........

READ(*,*) Count

! The above blank line is a comment line

WRITE(*,*) Count + 2

END PROGRAM TestComment3

Continuation Lines

If a statement is too long to �t on a line, it can be continued with

the following methods:

1. If a line is ended with an ampersand &, it will be continued on

the next line.

A = 174.5 * Year & A = 174.5 * Year + Count / 100

+ Count / 100

2. Continuation is normally to the �rst character of the next

non-comment line

A = 174.5 * Year & A = 174.5 * Year + Count / 100

! this is a comment line

+ Count / 100

3. If the �rst non-blank character of the continuation line is &,

continuation is to the �rst character after the &:

A = 174.5 + ThisIsALong& A = 174.5 + ThisIsALongName

&Name

There should be no spaces between the last character and the

& on the �rst line.

A = 174.5 + ThisIsALong & A = 174.5 + ThisIsALong Name

&Name

An Example

! Calculates number of accumulated

! AIDS cases in USA

PROGRAM AidsCases

IMPLICIT NONE ! this is required

INTEGER :: Year

REAL :: Ans

READ(*,*) Year ! Read in a value for Year

Ans = 174.6 * (Year - 1981.2) ** 3

WRITE(*,*) 'AIDS cases by year ', Year, ':', Ans

END PROGRAM AidsCases ! end of program

FORTRAN Alphabets

� Letters: Upper and lower case letters:

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

� Digits:

0 1 2 3 4 5 6 7 8 9

� Special Characters:

space

' " () * + - / : = _

! & $; < > % ? , .

Data Types and Constants

1. INTEGER { a string of digits with an optional sign

� Correct: 0, -345, 768, +12345

� Incorrect:

{ 1,234 (comma not allowed)

{ 12.0 (no decimal point),

{ --4 and ++3 (too many signs),

{ 5- and 5+ (sign must precede the string of digits)

2. REAL { may be in scienti�c (exponential) form

� Correct:

{ Decimal Form: 123.45, .123, 123., -0.12, +12.0

{ Exponential Form: 12.34E3, 12.3E+3, -1.2E-3,

45.67E0, 123E4, -123E3. (E-3 is equal to �10

�3

)

� Incorrect:

{ 12,345.99 (no comma)

{ 65 (this is an INTEGER)

3. CHARACTER: a string of characters enclosed between apostrophes

or double quotes:

� Correct:

{ 'John' and "John" (content: John and length: 4),

{ ' ' and " " (content: space and length: 1),

{ 'John Dow #2' and "John Dow #2" (content: John Dow #2

and length: 11)

� Special Case:

{ 'Lori''s apple' (content: Lori's apple and length:

12), or equivalently, "Lori's apple"

{ 'Don''t forget Jim''s book'

(content: Don't forget Jim's book and length: 23),

or equivalently, "Don't forget Jim's book"

� Incorrect:

{ 'you and me (missing a closing apostrophe { a com-

mon error)

{ 'Tech's seminar' { another common error.

{ 'Have a nice day" { don't mix appostrophes and dou-

ble quotes

Identi�ers

A FORTRAN identi�er consists of

1. No more than 31 characters

2. The �rst character must be a letter

3. The remaining, if any, may be letters, digits or under-

scores

� Correct:

{ MTU, MI, John, Count

{ I, X

{ I1025, a1b2C3, X9900g

{ R2_D2, R2D2_, A__ (yes, this one is correct)

� Incorrect:

{ M.T.U., R2-D2 { only letters, digits and under-

score are allowed.

{ 6feet { cannot start with a digit

{ _System { the �rst character must be a letter

4. Please use meaningful identi�ers

� Good: Total, Rate, Length

� Not so good: ThisIsALongIdentifierName,

X321, A_B_012, OPQ

Declare the Type of an Identi�er

PROGRAM program-name

IMPLICIT NONE

INTEGER :: name, name, name, ...

REAL :: name, name, name, ...

CHARACTER :: name, name, name, ...

CHARACTER(LEN=n) :: name, name, name, ...

CHARACTER(n) :: name, name, name, ...

................

END PROGRAM program-name

1. Variables ZIP, Mean, and Total are of type INTEGER:

INTEGER :: ZIP, Mean, Total

2. Variables Average, error, sum and ZAP are of type REAL:

REAL :: Average, error, sum, ZAP

3. Variables Name and Street can hold a character string up to 15 charac-

ters

CHARACTER(LEN = 15) :: Name, Street

The following is an equivalent form:

CHARACTER(15) :: Name, Street

4. Variables letter and digit can only hold one character:

CHARACTER :: letter, digit

5. Variables City and BOX can hold a character string up to 10 characters,

Nation can hold a character string up to 20 characters and bug can only

hold one character.

CHARACTER(LEN = 10) :: City, Nation*20, BOX, bug*1

Giving Constants Names

The PARAMETER Attribute

Syntax

type, PARAMETER :: name = value, name = value, : : :

Examples

� INTEGER, PARAMETER :: Limit = 100

REAL, PARAMETER :: PI = 3.14159, TWOPI = 2.0 * PI

CHARACTER(LEN = 4), PARAMETER :: Name = 'Smith', city = "LA"

CHARACTER(*), PARAMETER :: NAME = 'Smith', CITY = "LA"

CHARACTER(*) is an assumed length speci�er. That is, the length of

a constant is determined by the lengths of the string.

� INTEGER, PARAMETER :: Count = 10

REAL, PARAMETER :: degree = 37.5, total = Count * degree

CHARACTER(*), PARAMETER :: FirstName = 'John', MiddleName = 'F'

CHARACTER(*), PARAMETER :: LastName = 'Kennedy'

Important Notes

{ If string length is longer, truncation to the right

will happen: Name = 'Smit'

{ If string length is shorter, spaces will be added to

the right: city = 'LA '

Variable Initialization

The way of initializing a variable is very similar to

the use of PARAMETER attribute. More precisely, to initial

variable with the value of an expression, do the follow-

ing:

1. add an equal sign = to the right of the variable name

2. to the right of the equal sign, write an expression.

Initializing a variable is only done exactly once when

the computer loads the program into memory for exe-

cution.

1. Initializes variables Offset to 0.1, Length to 10.0, and tolerance

to 1.E-7.

REAL :: Offset = 0.1, Length = 10.0, tolerance = 1.E-7

2. Initializes variables State1 to "MI", State2 to "MN", and State3

to "MD".

CHARACTER(LEN=2) :: State1 = "MI", State2 = "MN", State3 = "MD"

3. The following de�nes three named integer constants using PARAMETER

and initializes Pay and Received to 4350=10*435 and 15 =3*5.

INTEGER, PARAMETER :: Quantity = 10, Amount = 435, Period = 3

INTEGER :: Pay = Quantity*Amount, Received = Period+5

4. The following example contains a mistake.

INTEGER, PARAMETER :: Quantity = 10, Amount = 435

INTEGER :: Pay = Quantity*Amount, Received = Period+5

INTEGER, PARAMETER :: Period = 3

Operators and Their Priority

Type Operators Associativity

** right-to-left

Arithmetic * / left-to-right

+ - left-to-right

< <=

Relational > >= left-to-right

== /=

.NOT. right-to-left

Logical .AND. left-to-right

.OR. left-to-right

.EQV. .NEQV. left-to-right

Important Note

A**B**C is equal to A**(B**C) rather than (A**B)**C

since ** is right associative!

Single Mode Arithmetic Expressions

1. The result is 4 rather than 4.444444 since the operands are all

integers.

2 * 4 * 5 / 3 ** 2

--> [2 * 4] * 5 / 3 ** 2

--> 8 * 5 / 3 ** 2

--> [8 * 5] / 3 ** 2

--> 40 / 3 ** 2

--> 40 / [3 ** 2]

--> 40 / 9

--> 4

2. As in mathematics, subexpressions in parenthesis must be eval-

uated �rst.

100 + (1 + 250 / 100) ** 3

--> 100 + (1 + [250 / 100]) ** 3

--> 100 + (1 + 2) ** 3

--> 100 + ([1 + 2]) ** 3

--> 100 + 3 ** 3

--> 100 + [3 ** 3]

--> 100 + 27

--> 127

3. In the following example, x**0.25 is equivalent to

4

p

x In gen-

eral, taking the k-th root of x can be done with x**(1.0/k).

1.0 + 2.0 * 3.0 / (6.0*6.0 + 5.0*44.0) ** 0.25

--> 1.0 + [2.0 * 3.0] / (6.0*6.0 + 5.0*44.0) ** 0.25

--> 1.0 + 6.0 / (6.0*6.0 + 5.0*55.0) ** 0.25

--> 1.0 + 6.0 / ([6.0*6.0] + 5.0*44.0) ** 0.25

--> 1.0 + 6.0 / (36.0 + 5.0*44.0) ** 0.25

--> 1.0 + 6.0 / (36.0 + [5.0*44.0]) ** 0.25

--> 1.0 + 6.0 / (36.0 + 220.0) ** 0.25

--> 1.0 + 6.0 / ([36.0 + 220.0]) ** 0.25

--> 1.0 + 6.0 / 256.0 ** 0.25

--> 1.0 + 6.0 / [256.0 ** 0.25]

--> 1.0 + 6.0 / 4.0

--> 1.0 + [6.0 / 4.0]

--> 1.0 + 1.5

--> 2.5

Mixed Mode Arithmetic Expressions

Operation Conversion Result

INTEGER
 REAL REAL
 REAL REAL

� 6.0 ** 2 is not converted to 6.0 ** 2.0. It is computed as

6.0 * 6.0.

5 * (11.0 - 5) ** 2 / 4 + 9

--> 5 * (11.0 - {5}) ** 2 / 4 + 9

--> 5 * (11.0 - 5.0) ** 2 / 4 + 9

--> 5 * ([11.0 - 5.0]) ** 2 / 4 + 9

--> 5 * 6.0 ** 2 / 4 + 9

--> 5 * [6.0 ** 2] / 4 + 9

--> 5 * 36.0 / 4 + 9

--> {5} * 36.0 / 4 + 9

--> 5.0 * 36.0 / 4 + 9

--> [5.0 * 36.0] / 4 + 9

--> 180.0 / 4 + 9

--> 180.0 / {4} + 9

--> 180.0 / 4.0 + 9

--> [180.0 / 4.0] + 9

--> 45.0 + 9

--> 45.0 + {9}

--> 45.0 + 9.0

--> 54.0

� In the following, 25.0 ** 1 is not converted, and 1 / 3 is zero.

25.0 ** 1 / 2 * 3.5 ** (1 / 3)

--> [25.0 ** 1] / 2 * 3.5 ** (1 / 3)

--> 25.0 / 2 * 3.5 ** (1 / 3)

--> 25.0 / {2} * 3.5 ** (1 / 3)

--> 25.0 / 2.0 * 3.5 ** (1 / 3)

--> 12.5 * 3.5 ** (1 / 3)

--> 12.5 * 3.5 ** ([1 / 3])

--> 12.5 * 3.5 ** 0

--> 12.5 * [3.5 ** 0]

--> 12.5 * 1.0

--> 12.5

Assignment Statement

Syntax

variable = expression

The result will be converted to the variable's type

1. The following computes Unit * Amount and saves

the answer to variable Total (= 5 * 100 = 500)

INTEGER :: Total, Amount, Unit

Unit = 5

Amount = 100.99

Total = Unit * Amount

2. In the following, PI is a PARAMETER and is an alias

of 3.1415926. The �rst assignment statement puts 5

into integer variable Radius. The second assignment

computes (Radius ** 2) * PI and saves the result

to real variable Area.

REAL, PARAMETER :: PI = 3.1415926

REAL :: Area

INTEGER :: Radius

Radius = 5

Area = (Radius ** 2) * PI

3. The initial value of integer variable Count is zero. The

�rst assignment adds 1 to it, yielding a new result

1 =0+1. The second assignment adds 3 to Count,

yielding a result of 4 = 1 + 3.

INTEGER :: Counter = 0

Counter = Counter + 1

Counter = Counter + 3

4. The following three assignments swap the values of A

and B. That is, after these assignments are done, A

and B have values 5 and 3.

INTEGER :: A = 3, B = 5, C

C = A

A = B

B = C

Common Functions

Function Description Arg. Type Return Type

ABS(x) absolute value of x INTEGER INTEGER

REAL REAL

SQRT(x) square root of x REAL REAL

SIN(x) Sine of x radians REAL REAL

COS(x) Cosine of x radians REAL REAL

TAN(x) tangent of x radians REAL REAL

EXP(x) exp(x) REAL REAL

LOG(x) ln(x) REAL REAL

Conversion Functions

Function Description Arg. Type Return Type

INT(x) integer part of x REAL INTEGER

NINT(x) nearest integer to x REAL INTEGER

FLOOR(x) greatest integer � x REAL INTEGER

FRACTION(x) fractional part of x REAL REAL

REAL(x) convert x to REAL INTEGER REAL

MAX(x1, .., xn) max of x1, : : :, xn INTEGER INTEGER

REAL REAL

MIN(x1, .., xn) min of x1, : : :, xn INTEGER INTEGER

REAL REAL

MOD(x,y) x - INT(x/y)*y INTEGER INTEGER

REAL REAL

Free Format Output

The WRITE Statement

Syntax

WRITE(*,*)

WRITE(*,*) expr-1, expr-2, , expr-n

1. WRITE(*,*)

Just output a blank line

2. WRITE(*,*) exp-1, exp-2, ... , exp-n

(a) Each expression will be evaluated and display on screen.

(b) After all expressions have been displayed, advance to next

line.

(c) Thus, a WRITE produces at least one line.

3. The mean of *

(a) The �rst * means the output is sent to screen. Technically

the screen is referred to as stdout, standard out, in UNIX.

(b) The second * means the WRITE is a free format.

4. The actual appearance of the output depends on your compiler.

Example 1

PROGRAM FORTRAN_Traps

IMPLICIT NONE

INTEGER, PARAMETER :: A = 2, B = 2, H = 3

INTEGER, PARAMETER :: O = 4, P = 6

CHARACTER(LEN=5), PARAMETER :: M = 'Smith', N = 'TEXAS'

CHARACTER(LEN=4), PARAMETER :: X = 'Smith'

CHARACTER(LEN=6), PARAMETER :: Y = 'TEXAS'

! The exponential trap

WRITE(*,*) "First, the exponential trap:"

WRITE(*,*) A, ' ** ', B, ' ** ', H, ' = ', A**B**H

WRITE(*,*) '(', A, ' ** ', B, ') **', H, ' = ', (A**B)**H

WRITE(*,*) A, ' ** (', B, ' ** ', H, ') = ', A**(B**H)

WRITE(*,*)

! The integer division trap. Intrinsic function REAL() converts

! an integer to a real number

WRITE(*,*) "Second, the integer division trap:"

WRITE(*,*)

WRITE(*,*) O, ' / ', P, ' = ', O/P

WRITE(*,*) 'REAL(', O, ') / ', P, ' = ', REAL(O)/P

WRITE(*,*) O, ' / REAL(', P, ') = ', O/REAL(P)

WRITE(*,*)

! The string truncation trap

WRITE(*,*) "Third, the string truncation trap:"

WRITE(*,*) 'IS ', M, ' STILL IN ', N, '?'

WRITE(*,*) 'IS ', X, ' STILL IN ', Y, '?'

END PROGRAM FORTRAN_Traps

Example 2

Compute the arithmetic, geometric, and harmonic means of three

real numbers:

arithmetic mean =

1

3

(a + b+ c)

geometric mean = (a � b � c)

1=3

harmonic mean =

3

1

a

+

1

b

+

1

c

! ---

! Computes arithmetic, geometric and harmonic means

! ---

PROGRAM ComputeMeans

IMPLICIT NONE

REAL :: X = 1.0, Y = 2.0, Z = 3.0

REAL :: ArithMean, GeoMean, HarmMean

WRITE(*,*) 'Data items: ', X, Y, Z

WRITE(*,*)

ArithMean = (X + Y + Z)/3.0

GeoMean = (X * Y * Z)**(1.0/3.0)

HarmMean = 3.0/(1.0/X + 1.0/Y + 1.0/Z)

WRITE(*,*) 'Arithmetic mean = ', ArithMean

WRITE(*,*) 'Geometric mean = ', GeoMean

WRITE(*,*) 'Harmonic Mean = ', HarmMean

END PROGRAM ComputeMeans

Free Format Input

The READ Statement

Syntax

READ(*,*) var-1, var-2, , var-n

1. A new line of data item is processed each time a READ statement

is executed.

2. In the input, consecutive data items must be separated with

comma or by one or more spaces.

3. Relationship between the number of variables, n, in READ and

the number of data items, d, in input:

4. Cannot supply REAL data items to an INTEGER variable.

5. Character string data can only be read into a CHARACTER vari-

able.

(a) n = d: The variables receive the corresponding values in the

input. This is the perfect case.

(b) n < d: The variables in READ will receive values from the

input and the remaining data will be ignored.

(c) n > d: After consuming all data items in the input, succes-

sive input lines will be processed until all variables in a READ

receive their value.

Example 1

The roots of a quadratic equation ax

2

+ bx+ c = 0 can be expressed

as follows:

x =

�b�

p

b

2

� 4ac

2a

In order to use the square root, b

2

� 4ac must be positive.

PROGRAM QuadraticEquation

REAL :: a, b, c

REAL :: d

REAL :: root1, root2

! read in the coefficients a, b and c

WRITE(*,*) 'A, B, C Please : '

READ(*,*) a, b, c

! compute the square root of discriminant d

d = SQRT(b*b - 4.0*a*c)

! solve the equation

root1 = (-b + d)/(2.0*a) ! first root

root2 = (-b - d)/(2.0*a) ! second root

! display the results

WRITE(*,*)

WRITE(*,*) 'Roots are ', root1, ' and ', root2

END PROGRAM QuadraticEquation

Example 2

Given a parabola whose base length is 2b and height is h, the length

of the parabola can be computed as

p

4h

2

+ b

2

+

b

2

2h

ln

0

B

@

2h +

p

4h

2

+ b

2

b

1

C

A

:

PROGRAM ParabolaLength

IMPLICIT NONE

REAL :: Height, Base, Length

REAL :: temp, t

WRITE(*,*) 'Height of a parabola : '

READ(*,*) Height

WRITE(*,*) 'Base of a parabola : '

READ(*,*) Base

! ... temp and t are two temporary variables

t = 2.0 * Height

temp = SQRT(t**2 + Base**2)

Length = temp + Base**2/t*LOG((t + temp)/Base)

WRITE(*,*)

WRITE(*,*) 'Height = ', Height

WRITE(*,*) 'Base = ', Base

WRITE(*,*) 'Length = ', Length

END PROGRAM ParabolaLength

