
Counting Loop: DO-END DO

Syntax

Form 1

DO var = initial-value, final-value, step-size

statements

END DO

Form 2

If step-size is 1, use

DO var = initial-value, final-value

statements

END DO

� var is a variable of type INTEGER.

� initial-value, final-value and step-size are

INTEGER expressions.

� For each value of the var, the body of the DO loop

(i.e., the statements) is executed once.

� The values for the var are initial-value,

initial-value + step-size,

initial-value + 2*step-size

and so on until it is larger than the final-value.

Syntax Examples

1.

INTEGER :: Counter, Init, Final, Step

READ(*,*) Init, Final, Step

DO Counter = Init, Final, Step

.....

END DO

2.

INTEGER :: i, Lower, Upper

Lower =

Upper =

DO i = Upper - Lower, Upper + Lower

.....

END DO

Semantics

� Before the DO-loop starts, the values of initial-value,

final-value and step-size are computed

exactly ONCE.

� The value of step-size cannot be zero.

� If the value of step-size is positive (counting up):

1. var receives the value of initial-value;

2. If var � final-value, execute the statements in

the body. Then, add the value of step-size to

var. Go back to compare var and final-value.

3. If var > final-value, the DO loop completes.

� If the value of step-size is negative (counting down):

1. var receives the value of initial-value;

2. If var � final-value, execute the statements in

the body. Then, add the value of step-size to

var. Go back to compare var and final-value.

3. If var < final-value, the DO loop completes.

� DO NOT change the value of var and any variable

involved in the expressions initial-value, final-value

and step. Or, you might be in BIG trouble!!!

Good Examples

1. The following WRITE produces -3, 9, -27 on the �rst row, -1, 1,

-1 on the second, 1, 1, 1 on the third and 3, 9, 7 on the fourth.

INTEGER :: Count

DO Count = -3, 4, 2

WRITE(*,*) Count, Count*Count, Count*Count*Count

END DO

2. The following WRITE displays 3, 4, and 5 from variable Iteration.

INTEGER, PARAMETER :: Init = 3, Final = 5

INTEGER :: Iteration

DO Iteration = Init, Final

WRITE(*,*) 'Iteration ', Iteration

END DO

3. If a, b and c receive 2, 7 and 5, then MAX(a,b,c) and MIN(a,b,c)

are 7 and 2, respectively. Thus, variable List starts with 7 and

counts down with values 7, 5 and 3.

INTEGER :: a, b, c

INTEGER :: List

READ(*,*) a, b, c

DO List = MAX(a, b, c), MIN(a, b, c), -2

WRITE(*,*) List

END DO

More Examples

1. Suppose the value of Number is 10. The following code reads 10

integer values and add them together to Sum.

INTEGER :: Count, Number, Sum, Input

Sum = 0

DO Count = 1, Number

READ(*,*) Input

Sum = Sum + Input

END DO

2. If you know adding numbers, you should know how to compute

their average:

INTEGER :: Count, Number, Sum, Input

REAL :: Average

Sum = 0

DO Count = 1, Number

READ(*,*) Input

Sum = Sum + Input

END DO

Average = REAL(Sum) / Number

3. And, computing the product of numbers is very similar. The

following computes the factorial of n, n!:

INTEGER :: Factorial, N, I

Factorial = 1

DO I = 1, N

Factorial = Factorial * I

END DO

Something You Should Be Very Careful

1. step-size cannot be zero

INTEGER :: count

DO count = -3, 4, 0

...

END DO

2. Do not change the value of var

INTEGER :: a, b, c

DO a = b, c, 3

READ(*,*) a ! the value of a is changed

a = b-c ! the value of a is changed

END DO

3. Do not change the value of any variable involved in the

initial-value, final-value and step-size:

INTEGER :: a, b, c, d, e

DO a = b+c, c*d, (b+c)/e

READ(*,*) b ! initial-value is changed

d = 5 ! final-value is changed

e = -3 ! step-size is changed

END DO

4. When you have a count-down loop, make sure the step-size

is negative. The loop body of the following loop will NOT be

executed. Why?

INTEGER :: i

DO i = 10, -10

.....

END DO

5. While you can use REAL type for control-var, initial-value,

final-value and step-size, it would be better not to use this

feature at all, since it may be dropped in future FORTRAN stan-

dard. In the following, x successively receives -1.0, -0.75, -0.5,

-0.25, 0.0, 0.25, 0.5, 0.75 and 1.0.

REAL :: x

DO x = -1.0, 1.0, 0.25

.....

END DO

Programming Example 1

Read in a set of integers and count the number of positive, negative

and zero input items.

PROGRAM Counting

IMPLICIT NONE

INTEGER :: Positive, Negative, PosSum, NegSum

INTEGER :: TotalNumber, Count, Data

Positive = 0

Negative = 0

PosSum = 0

NegSum = 0

READ(*,*) TotalNumber

DO Count = 1, TotalNumber

READ(*,*) Data

WRITE(*,*) 'Input data ', Count, ': ', Data

IF (Data > 0) THEN

Positive = Positive + 1

PosSum = PosSum + Data

ELSE IF (Data < 0) THEN

Negative = Negative + 1

NegSum = NegSum + Data

END IF

END DO

WRITE(*,*) 'Counting Report:'

WRITE(*,*) ' Positive items = ', Positive, ' Sum = ', PosSum

WRITE(*,*) ' Negative items = ', Negative, ' Sum = ', NegSum

WRITE(*,*) ' Zero items = ', TotalNumber-Positive-Negative

WRITE(*,*)

WRITE(*,*) 'The total of all input is ', Positive + Negative

END PROGRAM Counting

Programming Example 2

Compute the arithmetic, geometric and harmonic means and ignore all non-

positive input items.

PROGRAM ComputingMeans

IMPLICIT NONE

REAL :: X, Sum, Product, InverseSum

REAL :: Arithmetic, Geometric, Harmonic

INTEGER :: Count, TotalNumber, TotalValid

Sum = 0.0

Product = 1.0

InverseSum = 0.0

TotalValid = 0

READ(*,*) TotalNumber

DO Count = 1, TotalNumber

READ(*,*) X

IF (X <= 0.0) THEN

WRITE(*,*) 'Input <= 0. Ignored'

ELSE

TotalValid = TotalValid + 1

Sum = Sum + X

Product = Product * X

InverseSum = InverseSum + 1.0/X

END IF

END DO

IF (TotalValid > 0) THEN

Arithmetic = Sum / TotalValid

Geometric = Product**(1.0/TotalValid)

Harmonic = TotalValid / InverseSum

WRITE(*,*) 'No. of valid items --> ', TotalValid

WRITE(*,*) Arithmetic, Geometric, Harmonic

ELSE

WRITE(*,*) 'ERROR: none of the input is positive'

END IF

END PROGRAM ComputingMeans

Programming Example 3

Compute the factorial of n � 0, n!, with a \bullet-proof" program

so that your program could reject all negative input.

PROGRAM Factorial

IMPLICIT NONE

INTEGER :: N, i, Answer

WRITE(*,*) 'This program computes the factorial of'

WRITE(*,*) 'a non-negative integer'

WRITE(*,*)

WRITE(*,*) 'What is N in N! --> '

READ(*,*) N

WRITE(*,*)

IF (N < 0) THEN

WRITE(*,*) 'ERROR: N must be non-negative'

WRITE(*,*) 'Your input N = ', N

ELSE IF (N == 0) THEN

WRITE(*,*) '0! = 1'

ELSE

Answer = 1

DO i = 1, N

Answer = Answer * i

END DO

WRITE(*,*) N, '! = ', Answer

END IF

END PROGRAM Factorial

General DO-Loop with EXIT

The most general form of the DO statement is the follow-

ing:

DO

statements

END DO

This will cause the statements to be executed over and

over without any chance to stop. To bail out from a DO

loop, use the EXIT statement:

DO

statements-1

IF (logical-expression) EXIT

statements-2

END DO

DO

statements-1

IF (logical-expression) THEN

statements

EXIT

END IF

statements-2

END DO

The EXIT statement brings the control of execution to the

statement following the END DO statement, thus bailing

out of the DO loop.

Examples

1. The following example reads a number of integers and

computes their sum until a negative number occurs.

INTEGER :: x, Sum

Sum = 0

DO

READ(*,*) x

IF (x < 0) EXIT

Sum = Sum + x

END DO

2. The following example shows how to write a counting

loop with REAL numbers. Variable x receives values

-1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75 and 1.0

REAL, PARAMETER :: Lower = -1.0

REAL, PARAMETER :: Upper = 1.0

REAL, PARAMETER :: Step = 0.25

REAL :: x

x = Lower

DO

IF (x > Upper) EXIT

WRITE(*,*) x

x = x + Step

END DO

3. The following example asks the user to type in a num-

ber in the range of 0 and 10 inclusive. If the input is

not in this range, the user will be asked again.

INTEGER :: Input

DO

WRITE(*,*) 'An integer >= 0 and <= 10: '

READ(*,*) Input

IF (0 <= Input .AND. Input <= 10) EXIT

WRITE(*,*) 'Out of range. Try again'

END DO

Two Common Mistakes

1. The EXIT condition is .FALSE. forever. This could be

a result of forgetting to update an involved variable.

Here are two examples:

INTEGER :: i

i = 5

DO

IF (i < -2) EXIT ! i < -2 is ALWAYS .FALSE.

WRITE(*,*) i

END DO

INTEGER :: i = 1, j = 5

DO

IF (j < 0) EXIT ! j < 0 is ALWAYS .FALSE.

WRITE(*,*) i

i = i + 1

END DO

2. Did you initialize the control variable?

INTEGER :: i

DO

IF (i <= 3) EXIT ! who knows what the

WRITE(*,*) i ! result of i <= 3 is

i = i - 1

END DO

Programming Example 1

Read in a set of integers until a negative one is encountered and �nd

the maximum and minimum.

PROGRAM MinMax

IMPLICIT NONE

INTEGER :: Minimum, Maximum

INTEGER :: Count

INTEGER :: Input e

Count = 0

DO

READ(*,*) Input

IF (Input < 0) EXIT

Count = Count + 1

WRITE(*,*) 'Data item #', Count, ' = ', Input

IF (Count == 1) THEN

Maximum = Input

Minimum = Input

ELSE

IF (Input > Maximum) Maximum = Input

IF (Input < Minimum) Minimum = Input

END IF

END DO

WRITE(*,*)

IF (Count > 0) THEN

WRITE(*,*) 'Found ', Count, ' data items'

WRITE(*,*) ' Maximum = ', Maximum

WRITE(*,*) ' Minimum = ', Minimum

ELSE

WRITE(*,*) 'No data item found.'

END IF

END PROGRAM MinMax

Programming Example 2

Given a positive number b, its square root can be computed itera-

tively with the following formula:

New x =

1

2

0

@

x +

b

x

1

A

where x starts with b. For the next iteration, the New x becomes x.

This process continues until the absolute di�erence between x and

New x is smaller than a given tolerance value.

PROGRAM SquareRoot

IMPLICIT NONE

REAL :: Input, X, NewX, Tolerance

INTEGER :: Count

READ(*,*) Input, Tolerance

Count = 0

X = Input

DO

Count = Count + 1

NewX = 0.5*(X + Input/X)

IF (ABS(X - NewX) < Tolerance) EXIT

X = NewX

END DO

WRITE(*,*) 'After ', Count, ' iterations:'

WRITE(*,*) ' The estimated square root is ', NewX

WRITE(*,*) ' The square root from SQRT() is ', SQRT(Input)

WRITE(*,*) ' Absolute error = ', ABS(SQRT(Input) - NewX)

END PROGRAM SquareRoot

Programming Example 3

The exponential function exp(x) is usually de�ned to be the sum of

the following in�nite series:

exp(x) = 1 + x+

x

2

2!

+

x

3

3!

+ � � �+

x

i

i!

+ � � �

Use this series to compute exp(x) until the absolute value of a term

is less than a tolerance value, say 0.00001

PROGRAM Exponential

IMPLICIT NONE

INTEGER :: Count

REAL :: Term

REAL :: Sum

REAL :: X

REAL, PARAMETER :: Tolerance = 0.00001

READ(*,*) X

Count = 1

Sum = 1.0

Term = X

DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

WRITE(*,*) 'After ', Count, ' iterations:'

WRITE(*,*) ' Exp(', X, ') = ', Sum

WRITE(*,*) ' From EXP() = ', EXP(X)

WRITE(*,*) ' Abs(Error) = ', ABS(Sum - EXP(X))

END PROGRAM Exponential

Programming Example 4

The Greatest Common Divisor, GCD for short, of two positive

integers can be computed with Euclid's division algorithm. Let the

given numbers be a and b, a � b. Euclid's division algorithm has

the following steps:

1. Compute the remainder c of dividing a by b.

2. If the remainder c is zero, b is the greatest common divisor.

3. If c is not zero, replace a with b and b with the remainder c. Go

back to step (1).

PROGRAM GreatestCommonDivisor

IMPLICIT NONE

INTEGER :: a, b, c

WRITE(*,*) 'Two positive integers please --> '

READ(*,*) a, b

IF (a < b) THEN ! since a >= b must be true, they

c = a ! are swapped if a < b

a = b

b = c

END IF

DO ! now we have a <= b

c = MOD(a, b) ! compute c, the reminder

IF (c == 0) EXIT ! if c is zero, we are done. GCD = b

a = b ! otherwise, b becomes a

b = c ! and c becomes b

END DO ! go back

WRITE(*,*) 'The GCD is ', b

END PROGRAM GreatestCommonDivisor

Programming Example 5

An positive integer greater than or equal to 2 is a prime number if

it is 2 or the only divisors of this integer are 1 and itself. Write a

program that reads in an arbitrary integer and determines if it is a

prime number.

PROGRAM Prime

IMPLICIT NONE

INTEGER :: Number

INTEGER :: Divisor

READ(*,*) Number

IF (Number < 2) THEN

WRITE(*,*) 'Illegal input'

ELSE IF (Number == 2) THEN

WRITE(*,*) Number, ' is a prime'

ELSE IF (MOD(Number,2) == 0) THEN

WRITE(*,*) Number, ' is NOT a prime'

ELSE

Divisor = 3

DO

IF (Divisor*Divisor>Number .OR. MOD(Number,Divisor)==0) &

EXIT

Divisor = Divisor + 2

END DO

IF (Divisor*Divisor > Number) THEN

WRITE(*,*) Number, ' is a prime'

ELSE

WRITE(*,*) Number, ' is NOT a prime'

END IF

END IF

END PROGRAM Prime

Nested DO-END DO

Syntax

DO

statements-1

DO

statements-2

END DO

statement-3

END DO

For each iteration, statements-1 is executed, followed

by the inner DO-loop, followed by statements-3.

Examples

1. The following example displays the value of 1*1, 1*2,

1*3, : : :, 1*9, 2*1, 2*2, 2*3, : : :, 2*9, 3*1, 3*2, : : :,

3*9, : : :, 9*1, 9*2, : : :, 9*9.

INTEGER :: i, j

DO i = 1, 9

DO j = 1, 9

WRITE(*,*) i*j

END DO

END DO

2. The following example displays 4, 3, 5; 4, 8, 10; 12, 5,

13; 8, 15, 17; : : :, and 40, 9, 41.

INTEGER :: u, v

INTEGER :: a, b, c

DO u = 2, 5

DO v = 1, u-1

a = 2*u*v

b = u*u - v*v

c = u*u + v*v

WRITE(*,*) a, b, c

END DO

END DO

3. The following example computes 1, 1+2, 1+2+3, 1+2+3+4,

...., 1+2+3+...+9.

INTEGER :: i, j, Sum

DO i = 1, 10

Sum = 0

DO j = 1, i

Sum = Sum + j

END DO

WRITE(*,*) Sum

END DO

4. The following example computes the square roots of

0.1, 0.2, 0.3, ..., 0.9 with Newton's method.

REAL :: Start = 0.1, End = 1.0, Step = 0.1

REAL :: X, NewX, Value

Value = Start

DO

IF (Value > End) EXIT

X = Value

DO

NewX = 0.5*(X + Value/X)

IF (ABS(X - NewX) < 0.00001) EXIT

X = NewX

END DO

WRITE(*,*) 'The square root of ', Value, ' is ', NewX

Value = Value + Step

END DO

Programming Example 1

There are four sessions of CS110 and CS201, each of which has a

di�erent number of students. Suppose all students take three ex-

ams. Someone has prepared a �le that records the exam scores of all

students. This �le has a form as follows:

4

3

97.0 87.0 90.0

100.0 78.0 89.0

65.0 70.0 76.0

2

100.0 100.0 98.0

97.0 85.0 80.0

4

78.0 75.0 90.0

89.0 85.0 90.0

100.0 97.0 98.0

56.0 76.0 65.0

3

60.0 65.0 50.0

100.0 99.0 96.0

87.0 74.0 81.0

Write a program that reads in a �le of this form and computes the

following information: (1) the average of each student; (2) the class

average of each exam; and (3) the grant average of the class.

PROGRAM ClassAverage

IMPLICIT NONE

INTEGER :: NoClass

INTEGER :: NoStudent

INTEGER :: Class, Student

REAL :: Score1, Score2, Score3, Average

REAL :: Average1, Average2, Average3, GrantAverage

READ(*,*) NoClass

DO Class = 1, NoClass

READ(*,*) NoStudent

WRITE(*,*)

WRITE(*,*) 'Class ', Class, ' has ', NoStudent, ' students'

WRITE(*,*)

Average1 = 0.0

Average2 = 0.0

Average3 = 0.0

DO Student = 1, NoStudent

READ(*,*) Score1, Score2, Score3

Average1 = Average1 + Score1

Average2 = Average2 + Score2

Average3 = Average3 + Score3

Average = (Score1 + Score2 + Score3) / 3.0

WRITE(*,*) Student, Score1, Score2, Score3, Average

END DO

WRITE(*,*) '----------------------'

Average1 = Average1 / NoStudent

Average2 = Average2 / NoStudent

Average3 = Average3 / NoStudent

GrantAverage = (Average1 + Average2 + Average3) / 3.0

WRITE(*,*) 'Class Average: ', Average1, Average2, Average3

WRITE(*,*) 'Grant Average: ', GrantAverage

END DO

END PROGRAM ClassAverage

Programming Example 2

The exponential function exp(x) is usually de�ned to be the sum of

the following in�nite series:

exp(x) = 1 + x+

x

2

2!

+

x

3

3!

+ � � �+

x

i

i!

+ � � �

Write a program to read in an initial value, a �nal value and a step

size, and computes exp(x).

PROGRAM Exponential

IMPLICIT NONE

INTEGER :: Count

REAL :: Term, Sum, X, ExpX, Begin, End, Step

REAL, PARAMETER :: Tolerance = 0.00001

WRITE(*,*) 'Initial, Final and Step please --> '

READ(*,*) Begin, End, Step

X = Begin

DO

IF (X > End) EXIT

Count = 1

Sum = 1.0

Term = X

ExpX = EXP(X)

DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

WRITE(*,*) X, Sum, ExpX, ABS(Sum-ExpX), ABS((Sum-ExpX)/ExpX)

X = X + Step

END DO

END PROGRAM Exponential

Programming Example 3

An Armstrong number of three digits is an integer such

that the sum of the cubes of its digits is equal to the

number itself. For example, 371 is an Armstrong number

since 3**3 + 7**3 + 1**3 = 371. Write a program to

�nd all Armstrong number in the range of 0 and 999.

PROGRAM ArmstrongNumber

IMPLICIT NONE

INTEGER :: a, b, c

INTEGER :: abc, a3b3c3

INTEGER :: Count

Count = 0

DO a = 0, 9

DO b = 0, 9

DO c = 0, 9

abc = a*100 + b*10 + c

a3b3c3 = a**3 + b**3 + c**3

IF (abc == a3b3c3) THEN

Count = Count + 1

WRITE(*,*) 'Armstrong number ', Count, &

': ', abc

END IF

END DO

END DO

END DO

END PROGRAM ArmstrongNumber

Programming Example 4

Write a program to read a value for n, make sure that n is

greater than or equal to 2, and display all prime numbers

in the range of 2 and n. In case n is less than 2, your

program should keep asking the user to try again until a

value that is greater than or equal to 2 is read.

Programming ideas:

1. 2 is a prime number

2. All even numbers are not primes

3. Only odd numbers are tested

4. For each odd number M , use 3, 5, 7, 9, 11,,

p

M

to test if they evenly divide M .

(a) If none of these numbers can divide M , M is a

prime

(b) Otherwise, M is not a prime. Proceed to testM+

2.

PROGRAM Primes

IMPLICIT NONE

INTEGER :: Range, Number, Divisor, Count

WRITE(*,*) 'What is the range ? '

DO

READ(*,*) Range

IF (Range >= 2) EXIT

WRITE(*,*) 'The range value must be >= 2.'

WRITE(*,*) 'Please try again:'

END DO

Count = 1

WRITE(*,*)

WRITE(*,*) 'Prime number #', Count, ': ', 2

DO Number = 3, Range, 2

Divisor = 3

DO

IF (Divisor*Divisor>Number .OR. MOD(Number,Divisor)==0) &

EXIT

Divisor = Divisor + 2

END DO

IF (Divisor*Divisor > Number) THEN

Count = Count + 1

WRITE(*,*) 'Prime number #', Count, ': ', Number

END IF

END DO

WRITE(*,*)

WRITE(*,*) 'There are ', Count, &

' primes in the range of 2 and ', Range

END PROGRAM Primes

Programming Example 5

Write a program to �nd all prime factors of a positive

integer. For example, since we have

586390350 = 2� 3� 5

2

� 7

2

� 13� 17� 19

2

your program should report the following factors:

2; 3; 5; 5; 7; 7; 13; 17; 19; 19

Programming ideas:

1. Remove all factors of 2 �rst.

2. Use 3, 5, 7, 9, 11, 13, 15, ... to try if they are factors.

3. If k is a factor, remove it.

4. How to remove a factor k = 3 from n = 135?

(a) Use k to divide n repeatedly and use the quotient

to replace n.

(b) Dividing 135 by 3 yields a quotient 45. The new n

is 45.

(c) Dividing 45 by 3 yields a quotient of 15. The new

n is 15.

(d) Dividing 15 by 3 yields a quotient 5. The new n is

15.

(e) Since 5 cannot be divided by 3, we are done and

three factors of 3 have been removed.

PROGRAM Factorize

IMPLICIT NONE

INTEGER :: Input

INTEGER :: Divisor

INTEGER :: Count

READ(*,*) Input

Count = 0

DO

IF (MOD(Input,2) /= 0 .OR. Input == 1) EXIT

Count = Count + 1

WRITE(*,*) 'Factor # ', Count, ': ', 2

Input = Input / 2

END DO

Divisor = 3

DO

IF (Divisor > Input) EXIT

DO

IF (MOD(Input,Divisor)/=0 .OR. Input==1) EXIT

Count = Count + 1

WRITE(*,*) 'Factor # ', Count, ': ', Divisor

Input = Input / Divisor

END DO

Divisor = Divisor + 2

END DO

END PROGRAM Factorize

The IOSTAT= Option in READ(*,*)

INTEGER :: IOstatus

READ(*,*,IOSTAT=IOstatus) var1, ..., varn

� The variable following IOSTAT=must be of type INTEGER

� After executing READ(*,*,IOSTAT=var), var receives

a value:

{ If this value is zero, everything was �ne.

{ If this value is negative, the end of �le has reached.

That is, no more data in a �le.

{ If this value is positive, something was wrong in

the input.

� To generate the end of �le signal with your keyboard,

use Ctrl-D.

Examples

1. After executing READ(*,*,IOSTAT=Reason), one should test

the value of Reason and �nd out the reason:

INTEGER :: Reason

INTEGER :: a, b, c

DO

READ(*,*,IOSTAT=Reason) a, b, c

IF (Reason > 0) THEN

... something wrong ...

ELSE IF (Reason < 0) THEN

... end of file reached ...

ELSE

... do normal stuff ...

END IF

END DO

2. The following reads in integers and computes their sum in sum.

If something is wrong or end of �le is reached, exit the loop.

INTEGER :: io, x, sum

sum = 0

DO

READ(*,*,IOSTAT=io) x

IF (io > 0) THEN

WRITE(*,*) 'Check input. Something was wrong'

EXIT

ELSE IF (io < 0) THEN

WRITE(*,*) 'The total is ', sum

EXIT

ELSE

sum = sum + x

END IF

END DO

Programming Example

The arithmetic mean (i.e., average), geometric mean and

harmonic mean of a set of n numbers x

1

1; x

2

; :::; x

n

is

de�ned as follows:

Arithmetic Mean =

1

n

(x

1

+ x

2

+ � � � + x

n

)

Geometric Mean =

n

p

x

1

��x

2

� � � � � x

n

= (x

1

� x

2

� � � � � x

n

)

1=n

HarmonicMean =

n

1

x

1

+

1

x

2

+ � � � +

1

x

n

Since computing geometric mean requires taking root, it

is further required that all input data values must be

positive. As a result, this program must be able to ignore

non-positive items. However, this may cause all input

items ignored. Therefore, before computing the means,

this program should have one more check to see if there

are valid items.

This program should be capable of reporting input er-

ror. For example, if the input contains a number 3.o

rather than 3.0.

PROGRAM ComputingMeans

IMPLICIT NONE

REAL :: X, Sum, Product, InverseSum

REAL :: Arithmetic, Geometric, Harmonic

INTEGER :: Count, TotalValid, IO

Sum = 0.0

Product = 1.0

InverseSum = 0.0

TotalValid = 0

Count = 0

DO

READ(*,*,IOSTAT=IO) X

IF (IO < 0) EXIT

Count = Count + 1

IF (IO > 0) THEN

WRITE(*,*) 'ERROR: something wrong in input'

WRITE(*,*) 'Try again please'

ELSE

WRITE(*,*) 'Input item ', Count, ' --> ', X

IF (X <= 0.0) THEN

WRITE(*,*) 'Input <= 0. Ignored'

ELSE

TotalValid = TotalValid + 1

Sum = Sum + X

Product = Product * X

InverseSum = InverseSum + 1.0/X

END IF

END IF

END DO

IF (TotalValid > 0) THEN

Arithmetic = Sum / TotalValid

Geometric = Product**(1.0/TotalValid)

Harmonic = TotalValid / InverseSum

WRITE(*,*) '# of items read --> ', Count

WRITE(*,*) '# of valid items -> ', TotalValid

WRITE(*,*) 'Arithmetic mean --> ', Arithmetic

WRITE(*,*) 'Geometric mean --> ', Geometric

WRITE(*,*) 'Harmonic mean --> ', Harmonic

ELSE

WRITE(*,*) 'ERROR: none of the input is positive'

END IF

END PROGRAM ComputingMeans

