
XMM Survey Science Centre SSC-LUX-TN-0006University of Leicester version 1.0Leicester, LE1 7RH, UK 1996 September 16Clive G. Page (cgp@star.le.ac.uk)Fortran 90 for Fun and Pro�tGOD is real (unless declared integer)| old Fortran joke (origin unknown)The last good thing written in C was Franz Schubert's Symphony No. 9| Michael Hodous (Centro Svizzero di Calcolo Scienti�co)Fortran 90 is now the only international standard for Fortran: the release of ISO/IEC1539:1991 made Fortran 77 obsolete. A radical revision of the language was long overdue, butwas probably worth the wait: Fortran 90 is a state-of-the-art procedural language. Programmerswill �nd it not only much more powerful but also easier to use, because so many restrictions arerelaxed and so many awkward and antique features can be put into retirement. Fortran 90 alsosupports more comprehensive compile-time checking, so that a greater variety of programmingerrors can be caught at an early stage. Despite these substantial changes, Fortran 77 remains atrue subset of Fortran 90, so compatibility with existing code is maintained.Scienti�c programmers have, on the whole, been rather slow to adopt Fortran 90, althoughthere are some notable exceptions. An early scarcity of compilers may have been partly re-sponsible. I suspect also that those keenest to jump on the latest programming bandwagonhave already switched to object-oriented languages like C++, while many of the others remainreluctant to use anything that looks signi�cantly di�erent from Fortran 77. Now that reliableand e�cient Fortran 90 compilers are available for all modern computing platforms I think thebene�ts of adopting Fortran 90 far outweigh the risks.Existing Fortran programmers should not �nd it too di�cult to adjust to Fortran 90: severalof its features are well-known as extensions to many Fortran 77 systems, while the more novelfeatures can if necessary be adopted one-at-a-time as the need arises. Taken together, however,they amount to a substantial rejuvenation of Fortran, indeed they almost turn it into a newlanguage. It will therefore take a little time for everyone to become adept in the rather di�erentstyle of programming which Fortran 90 makes possible and indeed desirable.This document highlights some of the most important new features as far as the scienti�cprogrammer is concerned. It does not attempt to describe them all in detail, which would takea whole book. Indeed I already know of 18 books on the subject in English and a dozen in otherlanguages. The best book that I have found so far (for anyone with a reasonable backgroundknowledge of Fortran 77) is Upgrading to Fortran 90 by Cooper Redwine1 .1published 1995 by Springer Verlag, ISBN 0-387-97995-6 ($25 in the UK)

SSC-LUX-TN-0006 version 1.0 21 Why Use Fortran 90?The principal aims of those designing the new standard were to increase the expressive powerof the language, to make programming simpler, and to increase the reliability, portability, ande�ciency of Fortran programs.1.1 Expressive PowerFortran now has all the features that one expects in a modern programming language:� Arrays are �rst-class objects and can be used in expressions, as arguments to intrinsicfunctions, and in assignment statements; there is also a concise array-section notation.� Dynamic storage is fully supported, with both automatic and allocatable arrays; pointerscan be used to handle more complex objects such as linked-lists and trees.� Derived data types (data structures) are fully supported.� The MODULE is a new program unit which fully supports encapsulation of data and proce-dures, and greatly facilitates code re-use.� Procedures can be recursive, or generic, they can have optional or keyword arguments,arrays can be passed complete with size/shape information, and functions can returnarrays or data structures.� New operators can be de�ned, or existing operators can be overloaded for use on objectsof derived type.� Modules and data structures may declare their contents PRIVATE to enhance encapsulationand avoid name-space pollution.1.2 SimplicityMany changes make it easier to write and to read programs. Many annoying restrictions of theold standard are also removed or relaxed, such as the 6-character limit on symbolic names.� New control structures make it feasible to program almost without statement labels.� A free-format source code layout is introduced, as well as end-of-line comments, multi-statement lines, free use of lower-case, and more obvious relational operators such as \>="instead of \.GE.", etc.� A new form of type statement allows all attributes of a set of variables to be given inone place (with initial values if needed). This avoids the previous jumble of speci�cationstatements such as DIMENSION, PARAMETER, SAVE, and DATA.1.3 ReliabilityThe increased legibility of Fortran should makes it easier to �nd mistakes; in addition severalnew features allow the compiler to provide much more assistance in the production of error-freecode:

SSC-LUX-TN-0006 version 1.0 3� The IMPLICIT NONE speci�cation requires explicit type statements for all typed objects,so typographical errors in names usually produce error messages.� Procedures can be given explicit interfaces, so that all arguments are checked by thecompiler for agreement of data type, array rank, etc. This is a very valuable addition sinceerrors in procedure calls are easy to make and hard to diagnose.� The INTENT of procedure dummy arguments can be speci�ed (in, out, or inout), socompilers can detect errors in argument usage when the interface is explicit.1.4 PortabilityFortran programs have always been highly portable, but Fortran 90 eliminates almost all theremaining machine-dependent features of the language. It is also worth noting that, since theStandard now provides comprehensive facilities, most compilers provide few extensions and theypresent little temptation.� The system of kind parameter provides a portable method of selecting data types (e.g.real or double precision) according to the actual precision or exponent range needed.� File-handling and I/O statements have several new options to ensure machine-independence.1.5 E�ciencyCompilers for Fortran compare well with those of other languages in the production of highly-optimised code. Some features of Fortran 90 should allow them to do even better, especially onmachines with signi�cant parallelism, or multiple processors.� By using whole-array operations the loops are handled by the compiler and are likely to befaster than those which merely translate DO-loops. Array-valued intrinsics functions willalso be evaluated using the best machine-code loops.� Dynamic arrays rely on the memory-management of the operating system but are likelyto use physical memory more e�ciently than static arrays declared large enough for theworst-case.� Loops involving pointers cannot be optimised safely (a well-known limitation on the per-formance of C programs). In Fortran, however, pointers can only point to objects explicitlydeclared to be targets, so accesses to all non-target variables can be fully optimised.2 Simple ImprovementsA number of quite simple changes improve the clarity of Fortran programs, with obvious ben-e�ts for ease of use, and for code re-use and maintainability. The example below, thoughtrivial, illustrates many of the new features. Note: this, like the other examples which follow,uses UPPER-CASE for Fortran keywords and intrinsic functions, but programmer-chosen symbolicnames are shown in lower-case. This distinction is made purely to illustrate the syntax, andis not a recommended style. Fortran is, of course, case-blind (except within quoted characterconstants).

SSC-LUX-TN-0006 version 1.0 4PROGRAM compute_modified_julian_date ! notes 1,2IMPLICIT NONE ! note 3INTEGER, PARAMETER :: offset = 18313 ! note 4INTEGER :: year, month, day, status, mjdDO ! note 5WRITE(*, "(A)", ADVANCE="NO") " Enter day, month, year: " ! notes 6,7READ(*, *, IOSTAT=status) day, month, yearIF(status /= 0) EXIT ! notes 8,9IF(day < 1 .OR. day > 31 .OR. &month < 1 .OR. month > 12 .OR. &year < 1901 .OR. year > 2099) THEN ! note 10WRITE(*,*)"Invalid date, try again" ; CYCLE ! notes 11,12END IFmjd = 367*(year-1900) + 275*month/9 + day + offset &- 7*(year+((month+9)/12))/4WRITE(*, "(I3, A, I2.2, A, I4, A, I6)") & ! note 13day, "/", month, "/", year, " is MJD", mjdEND DO ! note 14END PROGRAM compute_modified_julian_date ! note 15Notes:1. Note the use of free-format layout, so statements can start in column 1, but all commentsmust start with \!".2. Symbolic names can be up to 31 characters long, and may include underscores.3. IMPLICIT NONE is fully standardised, and strongly recommended.4. The new declaration syntax (with two colons) allows all the attributes of a set of variablesto be given in one place, including initial values or (as here) values of constants.5. An inde�nite DO-loop is permitted (but it needs an EXIT statement somewhere).6. Non-advancing I/O allows partial records to be read or written: here it provides a terminalprompt without a new-line, so any reply appears on the same line.7. Character constants can be enclosed in a pair of double or single quotes.8. Relational operators may appear as e.g. \>" instead of \.GT." and \/=" for \.NE.".9. Here, the EXIT statement is executed if any I/O exception occurs (including end-of-�le)and transfers control to the �rst statement outside the loop.10. In free-format code, an incomplete line ends with an \&" to show the statement continueson the next line.11. Multiple-statement lines are permitted, with semi-colon as separators.12. The CYCLE statement continues execution from the top of the loop.13. The format speci�cation is here embedded in the WRITE statement; this avoids the needfor a statement label, but allows easy matching of I/O items and format descriptors.

SSC-LUX-TN-0006 version 1.0 514. The END DO statement is (at last) part of the o�cial standard.15. END statements can generally state what it is that they are ending; this is optional butmay help the reader, and may also be checked by the compiler.3 Label-free ProgrammingStatement labels look untidy whether or not a margin is left for them. More seriously, eachlabelled statement marks the potential destination for a jump: in order to understand theprogram properly the origin of each jump must be located. This involves searching not onlyfor GOTO and arithmetic-IF statements, but also checking all I/O statements (in case they useEND=label etc.) and even CALL statements in case they make use of alternate return. Thepresence of labels, therefore, makes it is harder to check programs for mistakes and they representa continuing obstacle to maintenance.Fortunately, new data structures make it feasible to avoid labels nearly all the time. DO-loopsterminated with an END DO can be label-free, especially if good use is made of EXIT and CYCLEstatements. The old computed GOTO is superseded by the SELECT CASE structure, which needsno labels at all.This is shown in the program fragment below which selects a suitable ordinal su�x for a daynumber in the range 1 to 31, e.g. to turn \3" into \3rd", and so on.SELECT CASE(day_number)CASE(1, 21, 31)suffix = 'st'CASE(2, 22)suffix = 'nd'CASE(3, 23)suffix = 'rd'CASE(4:20, 24:30)suffix = 'th'CASE DEFAULTsuffix = '??'END CASEWRITE(*, "(I4,A)") day_number, suffixThe selection expression in SELECT CASE may be of integer or character-string type; the rangesin the case statements must not overlap; a default clause is optional.4 Arrays and Dynamic StorageArrays are likely to remain the principal data structure in scienti�c computing. In Fortran 90arrays are �rst-class objects, which means they can be used almost everywhere just like scalars.One can have an array of constants, and there is an array constructor notation, e.g.INTEGER, PARAMETER :: limits(5) = (/ 12, 31, 24, 60, 60 /)Dynamic storage is fully supported through the use of automatic arrays, allocatable arrays,and pointers. These facilities free the programmer from the need to guess the maximum arraysize ever likely to be needed, and take advantage of the e�cient memory management facilitiesprovided in modern operating systems.

SSC-LUX-TN-0006 version 1.0 64.1 Whole-array OperationsAn important new feature is that whole-array expressions and assignments are permitted: thecompiler arranges the necessary looping over all elements. In addition practically all intrinsicfunctions work element-wise when given an array as an argument. This eliminates the need formany simple DO-loops, for example:PROGRAM background_subtractionREAL, DIMENSION(512,512) :: raw, background, exposure, result, weight! (code here defines raw, background, exposure...)result = (raw - background) / exposureweight = SQRT(0.001 * exposure)In array expressions and assignments the arrays must be conformable, i.e. have the same rank(number of axes) and the same extent along each axis. A scalar is deemed conformable withany array: conceptually its value is duplicated the required number of times. Thus if you add aconstant to an array, every element has that constant added.In cases where some elements need to be excluded from an array assignment, the WHERE blockcan be convenient. Here it removes the risk of division by zero:WHERE(exposure > 0.01)result = (raw - background) / exposureELSEWHEREresult = 0.0END WHERE4.2 Array SectionsArray sections can be speci�ed by giving the (first:last) element of each dimension, or(first:last:step) if the step-size is not unity. If the step-size is negative, the elements areaccessed in decreasing order. For example, a 2-d array image(512,512) can be ipped alongthe second axis using an assignment statement like this:image = image(:, 512:1:-1)Note that a colon as a subscript represents the use of all elements along that dimension. Sourceand destination arrays may have overlapping ranges: the compiler will allocate temporary storagespace if necessary.Another new feature is that subscripts can be vectors, e.g. image((/15, 7, 31/), 123) isa section with three elements. If such a section is used on the left-hand side of an assignmentthe elements of the vector must all be di�erent.4.3 Automatic ArraysThe automatic array is a local array in a procedure which has a size which depends on thearguments of the procedure when it is called. The array vanishes each time control returns tothe calling routine.SUBROUTINE my_process(npoints, array)INTEGER, INTENT(IN) :: npointsREAL, INTENT(INOUT) :: array(npoints) ! argument arrayDOUBLE PRECISION :: workspace(2*npoints) ! automatic array twice as big

SSC-LUX-TN-0006 version 1.0 74.4 Allocatable arraysThese provide a more general mechanism: only the rank (number of dimensions) has to bedeclared in advance, the actual dimension bounds are speci�ed later in an ALLOCATE statement.INTEGER :: nx, nyDOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: image!... compute suitable values for nx,nyALLOCATE(image(nx,ny)) !allocate space for rank 2 arrayThe allocatable array can be used just like any other array, but when no longer needed the spaceshould be released using:DEALLOCATE(image)Once an array has been allocated, its bounds can only be changed by deallocating and re-allocating it, which loses any previous contents. An allocatable array in a procedure may alsobe given the SAVE attribute so that its contents are preserved from one invocation to another.It is important to have properly matched ALLOCATE and DEALLOCATE statements, of course, andsimplest if they appear in the same procedure. ALLOCATE statements have an optional STATUSargument which returns an error-code if there is not enough dynamic memory left for successfulallocation.4.5 PointersThe pointer provides a more general way of using dynamic storage with even greater exibility,e.g. to handle a collection of objects all of di�erent sizes. In C and C++ pointers are usedextensively, but they account for a large proportion of programming errors, since it is very easyto access invalid memory areas inadvertently. Fortran has not entirely eliminated this risk,but has controlled it by requiring that each pointer can only point to items of a speci�ed datatype which have also been explicitly declared to be a target. Despite these restrictions, Fortranpointers can be used to implement all forms of dynamic data structure such as linked-lists,B-trees, queues, etc.5 Derived data typesFortran's support for derived data types (sometimes known as user-de�ned data types or datastructures) is now superior to that found in most other high-level languages. First one de�nes thestructure of a derived type in a block enclosed in TYPE and END TYPE statements, for example:TYPE celestial_positionREAL :: raREAL :: decCHARACTER(LEN=5) :: equinoxEND TYPE celestial_positionThen one can declare variables (including arrays) using further TYPE statements of this form:TYPE(celestial_position) :: target, obs_list(10)Fortran uses a percent sign \%" between components of compound names where most otherlanguages use a dot to avoid a syntax ambiguity (operators like .AND. are to blame). This nota-tion looks ugly, but one gets used to it. Thus target%ra is a real variable, and obs list(5)%decis an element of a real array; both can be used just like simple variables.call convert(vector, target%ra, target%dec)

SSC-LUX-TN-0006 version 1.0 8obs_list(1)%equinox = "J2000"Fortran extends the syntax further than most other languages, so that, for example, obs list%rais an array of 10 real elements. These elements are (probably) not located in contiguous memorylocations, but this is the compiler's problem not yours. Note that simple symbolic names suchas ra and dec can be used concurrently without ambiguity, since names of structure componentsalways contain at least one percent sign.The �rst line below shows how to use a structure constructor to set values for all componentsin one operation. It is followed by another assignment statement, which simply copies all thecomponents to the new location. Variables of derived type can also be used in I/O statements,but in formatted transfers one has to provide a list of format descriptors corresponding to thelist of components.obs_list(1) = celestial_position(12.34, -45.67, "B1950")obs_list(42) = obs_list(1)write(*, "(2F8.2,A)") obs_list(1)It is easy to de�ne one derived type in terms of another; references to these components usean obvious extension to the notation:TYPE star_typeCHARACTER(LEN=20) :: nameTYPE(celestial_position) :: positionREAL :: magnitudeEND TYPE observedTYPE (star_type) :: mystar, catalogue(10000)mystar%name = "HD12345"mystar%position%ra = 65.4321mystar%position%dec = 12.345mystar%magnitude = 9.5Variables of derived type can be used in expressions only if all the operators involved havetheir actions de�ned in advance for the data types involved: this is described in section 8 below.If existing operators are re-de�ned this is called operator overloading.The main point of using derived types is to group related data together in a single namedobject, this can simpli�es procedure calls which would otherwise involve passing a list of separatearguments, one for each component. In order to pass a derived type object to a procedure thesame structure de�nition must be available in both the calling and called program. The bestway to do this is to put the derived type de�nition in a MODULE, and USE it in both places.6 ModulesThe module is an entirely new type of program unit which, though not executed directly, allowsother program units to share items such as constants, arrays, data structure de�nitions, andprocedures. It is likely to have a more revolutionary e�ect on the way that Fortran programsare constructed than anything since the invention of the subroutine around 1960. The modulemakes the COMMON block, the INCLUDE statement, and the BLOCK DATA program unit almostredundant.The very simplest use for a module is to de�ne some constants so that exactly the same valuesare available in a number of other program units. Such a module can be constructed just likethis:

SSC-LUX-TN-0006 version 1.0 9MODULE basic_constantsDOUBLE PRECISION, PARAMETER :: pi = 3.141592653589d0, &dtor = pi/180.0d0, rtod = 180.0d0/piEND MODULE basic_constantsThen in each program unit which makes use of these constants, all one needs is a USE statementat the top, like this:USE basic_constantsThis could, of course, have been handled with an INCLUDE statement, but the advantage of usinga module is that its text is parsed and pre-compiled when �rst encountered, so there is somegain in compilation speed for larger modules.The USE statement can also contain an ONLY clause which controls which names are to beaccessed, and there is also a rename facility if name-clashes are otherwise unavoidable.More important uses for modules are for them to contain:� Derived-type de�nitions; needed to pass a derived type object to a procedure.� Global data: a module can contain a list of variables and arrays which then becomeaccessible in all the program units which use the module. This provides a replacementfor the COMMON block, and reduces the risk of having of inconsistent de�nition in di�erentplaces.� Both a data area and a set of procedures: these have full access to the data. This allowsthe construction of a modular package or library. For example, a set of graphics routineswould probably require a global data area to hold the attributes of the current graphicsdevice, scaling factors, etc.Fortran supports encapsulation and data hiding by allowing the programmer to choose whethereach item in a module is to be PUBLIC, i.e. accessible in the program unit which uses it, or to bePRIVATE, i.e. accessible within the module code alone. A more general structure for a modulede�ning a package is then something like this:MODULE module_nameIMPLICIT NONEPRIVATE ! set default status for all namesPUBLIC sub1, sub5, ... ! allow public use of these items<data structure definitions><global data storage area>CONTAINSSUBROUTINE sub1<code which may access the global data area>END SUBROUTINE sub1<any number of further module procedures>END MODULE module_name7 ProceduresPerhaps the greatest defect of Fortran 77 was the lack of checking of procedure calls. Even inprofessional code it has been estimated that around 20% of procedure calls are defective in someway. This is now remedied by what Fortran calls the explicit interface.

SSC-LUX-TN-0006 version 1.0 107.1 Explicit InterfacesThe term is not very informative: an interface is said to be explicit if the compiler has accessat the same time to both the dummy arguments of a procedure and the actual arguments ofthe call. In such cases it can perform many valuable consistency checks, for example that thenumber of arguments is the same, that each has the same data type, and that arrays have thesame shape and size. If the dummy arguments also have their INTENT speci�ed, this can also bechecked (so that output arguments which correspond to a constant or expression will raise anerror). In this way a great many programming mistakes can be identi�ed at compile-time. Theseadvantages are so great that many Fortran experts now think that all programmers should useexplicit interfaces as a matter of course.There are three di�erent ways of making procedure interfaces explicit:1. The simplest is to put the procedures in a module: as described above this automaticallymakes their interfaces explicit to each other and to any unit which uses the module.2. Interfaces are also automatically explicit for all internal procedures. The internal procedureis a useful generalisation of the statement function: any number of them of any lengthmay follow a CONTAINS statement at the end of any other type of procedure.3. For external procedures, it is possible provide the an interface in a separate interface block.These are rather like function prototypes in the C language, and require similar care toensure that what is declared in the interface block matches the actual procedure interfaces.When a procedure has an explicit interface several other useful facilities become available:� Assumed-shape arrays: these have their shape and size transmitted to the procedureautomatically, thus simplifying its interface.� Optional arguments: likely to be useful in a wide range of applications. Each optionalargument needs to be tested using the PRESENT intrinsic function; typically some defaultaction would be taken when no argument is provided.� Keyword arguments: calling arguments by keyword may save e�ort when there is a longlist of them. In addition, if optional arguments are omitted from other than the end of anargument list, the remainder of the arguments must be called by keyword.� Arguments may be pointers.� Functions may be array-valued, or return derived-type objects.7.2 Recursive ProceduresRecursive functions (and subroutines) will be useful not only in de�ning certain mathematicalfunctions (the factorial is the obvious example) but also whenever it is necessary to handleself-similar data structures, for example recursive descent of a �le directory, or of a B-tree datastructure. If two recursive procedures are to call each other they must both be placed in the samemodule. Recursive functions will sometimes need a separate results variable to avoid ambiguity:this automatically has the same data type as the function name, for example:RECURSIVE INTEGER FUNCTION factorial(n) RESULT(n_fact)IMPLICIT NONEINTEGER, INTENT(IN) :: n

SSC-LUX-TN-0006 version 1.0 11IF(N > 0) THENn_fact = n * factorial(n-1)ELSEn_fact = 1END IFEND FUNCTION factorial7.3 Generic ProceduresWith the aid of an interface block (which may be put in the same module as the procedures)it is now possible to de�ne generic names for a group of procedures which carry out similaroperations but on a range of di�erent data types. This is likely to be useful in many low-levelpackages, e.g. when implementing a set of data access routines. Although generic interfaces donot in themselves result in any simpli�cation of the code, they do simplify interface for the userof the package, and the corresponding documentation.7.4 Intrinsic ProceduresFortran 77 already had a better collection of built-in functions than any other common language,but Fortran 90 provides another 75 intrinsic functions and subroutines. There is only space hereto mention a few of them.Mathematical functions now include MODULO (which is like MOD except for negative argu-ments), while CEILING and FLOOR round to integer upwards and downwards respectively.Array-handling functions include those for taking DOT PRODUCT of vectors, and MATMUL andTRANSPOSE for matrices. For arrays of any rank one can now �nd minimum/maximumvalues and their locations using MINVAL, MAXVAL, MINLOC and MAXLOC, or simply COUNT theelements or �nd their SUM or PRODUCT or logical arrays whether ALL or ANY of them aretrue. There are several more complex routines such as those to PACK and UNPACK rank-onearrays, and CSHIFT to do a circular shift of elements.Character-handling is much easier with function such as LEN TRIM to �nd string-length ig-noring trailing spaces, TRIM to trim them o�, and ADJUSTL and ADJUSTR to justify stringswhile preserving length. There is also SCAN and VERIFY to check for presence or absence ofsets of characters, while ACHAR and IACHAR convert single characters to/from integer withconversion guaranteed to use the ASCII collating sequence.Bit-wise operations often have to be performed on integers when dealing with raw data frominstruments. The full set of procedures originally de�ned in MIL-STD-1753 is supportedin Fortran 90, including IAND, IOR, ISHFT and MVBITS.Numerical enquiry functions appear for the �rst time, such as TINY and HUGE to �nd thesmallest and largest numbers of any given type; one can also �nd the BIT SIZE, PRECISION,MAXEXPONENT etc. for the oating-point types.Miscellaneous intrinsics include functions to �nd the SIZE and SHAPE of an argument array,whether an optional argument is PRESENT, or an allocatable array actually ALLOCATED.The RESHAPE function can do clever things with multi-dimensional arrays, while TRANSFERallows data to be moved to another data type just by copying its bit-pattern. New sub-routines include those to get the current DATE AND TIME in several formats, and to read

SSC-LUX-TN-0006 version 1.0 12the SYSTEM CLOCK. And a single call to RANDOM NUMBER can generate an array of pseudo-random numbers.Note that all intrinsic procedures may also be called by keyword, and some of were designedwith this in mind. For example one can now get the current date-and-time in several di�erentformats:CHARACTER(8) :: mydateINTEGER :: iarray(8)CALL DATE_AND_TIME(DATE=mydate) ! returns date as "yyyymmdd"CALL DATE_AND_TIME(VALUES=iarray) ! returns date/time in integer array8 De�ned and Overloaded OperatorsWhen a new data type is de�ned, it will often be desirable for objects of the derived typeto be used in expressions. Note how much easier it is to write: a * b + c * d than e.g.:add(mult(a,b),mult(c,d)). Before using operators on operands of non-intrinsic data type itis necessary to de�ne what operations they perform in each case. The example below de�nes anew data type, fuzzy, which contains a real value and its standard-error. When two imprecisevalues are added together the errors add quadratically (assuming they are uncorrelated). So itis with fuzzy values, given this overloading of the \+" operator:MODULE fuzzy_mathsIMPLICIT NONETYPE fuzzyREAL :: value, errorEND TYPE fuzzyINTERFACE OPERATOR (+)MODULE PROCEDURE fuzzy_plus_fuzzyEND INTERFACECONTAINSFUNCTION fuzzy_plus_fuzzy(first, second) RESULT (sum)TYPE(fuzzy), INTENT(IN) :: first, secondTYPE(fuzzy) :: sumsum%value = first%value + second%valuesum%error = SQRT(first%error**2 + second%error**2)END FUNCTION fuzzy_plus_fuzzyEND MODULE fuzzy_mathsUSE fuzzy_mathsTYPE(fuzzy) a, b, ca = fuzzy(15.0, 4.0) ; b = fuzzy(12.5, 3.0)c = a + bPRINT *, cThe result is, as you would expect: 27.5 5.0This module de�nes only what happens when two fuzzy values are added. Clearly, to be ofpractical value it would be necessary to provide further de�nitions for subtraction, multiplication,etc. One might also want to overload intrinsic functions such as SQRT, or to provide a functionto multiply a fuzzy value by a real. All of these are easy to do, but to show them all here would

SSC-LUX-TN-0006 version 1.0 13take up too much space.Once a suitable set of overloadings has been de�ned for the mathematical operators andperhaps some intrinsic functions, then one can make use of them in a variety of ways. Forexample, a Fourier transform routine could be converted to use fuzzy arrays instead of realarrays by simply replacing all REAL declarations for those of TYPE (fuzzy). The errors wouldthen be propagated through the processing and the transform would contain a standard errorat each frequency.Such encapsulation greatly simpli�es software maintenance. Suppose you decide later on thatthis representation of a fuzzy requires one to take too many square-roots, and that it would bebetter to store instead the square of the error, then it is only necessary to alter one or two linesor two in each procedure. Of course, the module and all the code which uses it needs to berecompiled, but in the higher level software no code are needed at all.It is sensible to overload an existing operator only if the meaning stays essentially unchanged:in other cases it is better to invent a new operator name. For example, if you decide to implementan operator to compare two character string while ignoring case di�erences, none of the existingoperator symbols seems an especially good choice, but it would be sensible to invent name suchas .like. or .similar. for the purpose.9 Input/Output enhancementsNon-advancing I/O is a new facility which allows a formatted READ or WRITE statement totransfer less than a complete record, and is particularly valuable in providing a standard way ofwriting a terminal prompt without a terminating new-line, as shown in section 2.The OPEN statement has several new keywords e.g. POSITION="APPEND" to append output toan existing �le, ACTION="READ" to specify that read-only access is required, and STATUS="REPLACE"which creates a new �le in general, but replaces an old �le of the same name if one already exists.When opening an unformatted direct-access �le the record-length has to be speci�ed, but theunits are system-dependent (often bytes, sometimes longwords). This minor portability problemhas been solved in Fortran 90 by adding to the INQUIRE statement an option to determine thelength of a specimen record in local units.There are also several new format descriptors. Integers can now be read or written in othernumber bases, using Bw.m for binary, Ow.m for octal, and Zw.m for hexadecimal. If oating-pointnumbers are written using ESw.d they appear in scienti�c format, which is like Ew.d but thereis always one non-zero digit before the decimal point. There is also engineering format usingENw.d, in which the exponent is always a multiple of three. In addition G format is extended inscope to cope with input and output of all data types, not just the numerical ones, which maybe useful in generic code.There are several of minor improvements, for example internal �les can be handled withlist-directed formatting.10 Fortran 90 in PracticeFortran 90 compilers are now available for almost all computing platforms from super-computersdownwards, with more than half-a-dozen compilers on the market for Unix systems and a similarnumber for PCs, some of these products come from reputable suppliers of Fortran 77 compilersand are now quite mature and stable. The Macintosh has been somewhat neglected, but twocompilers are due for release in 1996.

SSC-LUX-TN-0006 version 1.0 14There are, however, a few potential snags in using Fortran 90 rather than Fortran 77, especiallywhen using code which already exists and was designed for the older standard.� Fortran 90 introduces some 70 new intrinsic functions (and a handful of intrinsic subrou-tines). If existing programs happen to use one of these names for an external function (orsubroutine) the compiler may get confused. The solution is simple, to specify the name inan EXTERNAL statement in each calling program unit; of course the intrinsic of the samename cannot be used in that unit. This is just about the only area in which there is lessthan 100% compatibility with Fortran 77 code.� Few Fortran 77 programs conformed strictly to the ISO Standard; many extensions inregular use were incorporated into the Fortran 90 Standard but others were not (althoughthe functionality is nearly always there). Examples include the %val construct, VAXdata structures, and type statements of the form INTEGER*2. Many vendors do, in fact,still support such features in their Fortran 90 compilers, but continued use of them isinadvisable.� Fortran 90 compilers are relatively new products and more complex, so some problems areto be expected. Although there were many reports of bugs in new compilers soon aftertheir release, several of them have now been on the market for a few years and they seemto be stable and reliable.� In principle Fortran 90 code, able to take advantage of whole-array operations etc., shouldrun faster, but in practice most compilers produce code which executes barely faster thanbefore, at least on single-processor systems. Vendors are likely to produce better optimi-sation in due course.� Fortran 90 compilers are mostly more expensive than those for Fortran 77, and there areas yet no free ones (but see section 11.1 below). Academic users of Digital Equipmentsystems with a DEC-campus licence can, of course, use their Fortran 90 compiler withoutextra charge. GNU's g77 compiler includes many Fortran 90 features, but by no meansall.� It will be natural to write new software using the free-format coding style, but the choiceis less clear-cut for those making minor changes to existing programs, since the wholeprogram unit has to be in either �xed or free format. Programs to convert from �xedto free-format style are freely available on the Internet, but they make only the essentialchanges.� Some systems will allow existing object libraries, compiled using Fortran 77, to be linkedwith Fortran 90 code, but others require a complete re-compilation of the code.� In Fortran 90 each module needs to be compiled before any other program units which useit. This imposes additional constraints on code management, and slows down compilationat least initially. If a modi�cation is made to a module it usually require the recompilationof that module and all other modules and program units which use it.None of these problems, however, seems su�ciently serious as to constitute a serious obstacleto the widespread use of Fortran 90.

SSC-LUX-TN-0006 version 1.0 1511 Fortran Evolution11.1 Free Fortran 90 subsetsF and ELF90 are two di�erent products from well-known stables, each designed as a subset ofFortran 90 with all the obsolete features removed. These are designed for teaching Fortran, orfor compiling new code, but will not cope with most old-style Fortran 77 code. ELF90 comesfrom Lahey Computer Systems Inc. A slightly di�erent subset called F is marketed by Imagine1of Albuquerque and is based on technology from Salford Software and NAG Ltd. A free versionLahey's ELF90 compiler is available for MS-DOS/Windows, while F is free for use on PCsrunning Linux. Textbooks based on these are already on the market.11.2 Fortran 95Fortran continues to evolve, and Fortran 95 is now de�ned and likely to become an approvedstandard within a few months. It clears up a few minor errors and ambiguities in the de�nition ofFortran 90, but adds only few new features, mainly those to support High Performance Fortran(HPF): a set of extensions to Fortran 90 designed for highly parallel architectures. The mostimportant of these are:� Data structure de�nitions can now include default initial values.� The FORALL statement (and block construct) supports parallel execution of loops.� PURE procedures (with no side-e�ects) can be de�ned to help optimisation.� ELEMENTAL procedures work element-wise on arrays.� Non-global allocatable arrays are automatically deallocated on procedure exit.Fortran 95 also removes from the o�cial Standard a few obsolete features including computedGOTO, DO statements with control variables of type real or double precision; PAUSE, ASSIGN, andassigned GO TO statements; the nH format descriptor; and branching to an END IF statementfrom outside the block (allowed by mistake in earlier standards). In practice Fortran 95 compilersare likely to keep these, perhaps just issuing a warning messages. Because of the modest natureof these improvements Fortran 90 compilers are likely to appear very soon. Meanwhile work onFortran2000 is already well under way!

