Fortran

for Scienfists and Engineers

Stephen J. Chapman

Mc
Graw
Hill

Education

Fortran for Scientists
and Engineers

Fourth Edition

Fortran for Scientists
and Engineers

Fourth Edition

Stephen J. Chapman

BAE Systems Australia

Mc
Graw
Hill
Education

Education

FORTRAN FOR SCIENTISTS AND ENGINEERS, FOURTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2018 by McGraw-
Hill Education. All rights reserved. Printed in the United States of America. Previous edition © 2008 and
2004. No part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but
not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside

the United States.
This book is printed on acid-free paper.
123456789 LCR 21 20 19 18 17

ISBN 978-0-07-338589-1
MHID 0-07-338589-1

Chief Product Officer, SVP Products &
Markets: G. Scott Virkler

Vice President, General Manager, Products &
Markets: Marty Lange

Vice President, Content Design & Delivery:
Betsy Whalen

Managing Director: Thomas Timp

Brand Manager: Raghothaman Srinivasan/
Thomas M. Scaife, Ph.D

Director, Product Development: Rose Koos

Product Developer: Tina Bower

Marketing Manager: Shannon O’Donnell

Director, Content Design & Delivery:
Linda Avenarius

Program Manager: Lora Neyens

Content Project Managers: Jane Mohr and
Sandra Schnee

Buyer: Jennifer Pickel

Design: Studio Montage, St. Louis, MO

Content Licensing Specialist: DeAnna Dausener

Cover Image: hh5800/Getty Images

Compositor: Aptara®, Inc.

Printer: LSC Communications

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Chapman, Stephen J., author.

Fortran for scientists and engineers / Stephen J. Chapman, BAE Systems

Australia.

Fourth edition. | New York, NY : McGraw-Hill, a business unit of
The McGraw-Hill Companies, Inc., [2017] | Includes index.
LCCN 2016052439 | ISBN 9780073385891 (alk. paper) | ISBN

0073385891 (alk. paper)

LCSH: FORTRAN (Computer program language) | Science—Data

processing. | Engineering—Data processing.

LCC QA76.73.F25 C425 2017 | DDC 005.13/3—dc23 LC record available at

https://lccn.loc.gov/2016052439

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a
website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill
Education does not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered

This book is dedicated to my son Avi, who is the
only one of our eight children actually
making a living writing software!

A B OUT T H E A UTH OR

STEPHEN J. CHAPMAN received a B.S. in Electrical Engineering from Louisiana
State University (1975), an M.S.E. in Electrical Engineering from the University of
Central Florida (1979), and pursued further graduate studies at Rice University.

From 1975 to 1980, he served as an officer in the U.S. Navy, assigned to teach
Electrical Engineering at the U.S. Naval Nuclear Power School in Orlando, Florida.
From 1980 to 1982, he was affiliated with the University of Houston, where he ran the
power systems program in the College of Technology.

From 1982 to 1988 and from 1991 to 1995, he served as a Member of the Technical
Staff of the Massachusetts Institute of Technology’s Lincoln Laboratory, both at the
main facility in Lexington, Massachusetts, and at the field site on Kwajalein Atoll in
the Republic of the Marshall Islands. While there, he did research in radar signal
processing systems. He ultimately became the leader of four large operational range
instrumentation radars at the Kwajalein field site (TRADEX, ALTAIR, ALCOR, and
MMW).

From 1988 to 1991, Mr. Chapman was a research engineer in Shell Development
Company in Houston, Texas, where he did seismic signal processing research. He was
also affiliated with the University of Houston, where he continued to teach on a part-
time basis.

Mr. Chapman is currently Manager of Systems Modeling and Operational
Analysis for BAE Systems Australia, in Melbourne, Australia. He is the leader of a
team that has developed a model of how naval ships defend themselves against antiship
missile attacks. This model contains more than 400,000 lines of MATLAB code
written over more than a decade, so he has extensive practical experience applying
MATLARB to real-world problems.

Mr. Chapman is a Senior Member of the Institute of Electrical and Electronic
Engineers (and several of its component societies). He is also a member of the Associ-
ation for Computing Machinery and the Institution of Engineers (Australia).

T A B L E O F C ONTENTS

Preface Xix
1 Introduction to Computers and The Fortran Language 1
1.1 The Computer 2
1.1.1. The CPU / 1.1.2. Memory / 1.1.3. Input and
Output Devices
1.2 Data Representation in a Computer 4

1.2.1. The Binary Number System / 1.2.2. Octal and
Hexadecimal Representations of Binary Numbers /
1.2.3. Types of Data Stored in Memory

1.3 Computer Languages 12
1.4 The History of the Fortran Language 13
1.5 The Evolution of Fortran 16
1.6 Summary 19
1.6.1. Exercises
2 Basic Elements of Fortran 22
2.1 Introduction 22
2.2 The Fortran Character Set 23
2.3 The Structure of a Fortran Statement 23
2.4 The Structure of a Fortran Program 24

2.4.1. The Declaration Section / 2.4.2. The Execution Section /
2.4.3. The Termination Section / 2.4.4. Program Style /
2.4.5. Compiling, Linking, and Executing the Fortran Program

2.5 Constants and Variables 28
2.5.1. Integer Constants and Variables / 2.5.2. Real Constants
and Variables / 2.5.3. Character Constants and Variables /
2.5.4. Default and Explicit Variable Typing / 2.5.5. Keeping
Constants Consistent in a Program

2.6 Assignment Statements and Arithmetic Calculations 36
2.6.1. Integer Arithmetic / 2.6.2. Real Arithmetic /
2.6.3. Hierarchy of Operations / 2.6.4. Mixed-Mode
Arithmetic / 2.6.5. Mixed-Mode Arithmetic and Exponentiation

2.7
2.8
2.9
2.10
2.11
2.12
2.13

TABLE OF CONTENTS

Intrinsic Functions 47
List-Directed Input and Output Statements 49
Initialization of Variables 55
The IMPLICIT NONE Statement 57
Program Examples 58
Debugging Fortran Programs 66

Summary 68
2.13.1. Summary of Good Programming Practice /
2.13.2. Summary of Fortran Statements / 2.13.3. Exercises

3 Program Design and Branching Structures 81

31
3.2
3.3

34

3.5
3.6

Introduction to Top-Down Design Techniques 82
Use of Pseudocode and Flowcharts 86

Logical Constants, Variables, and Operators 89
3.3.1. Logical Constants and Variables / 3.3.2. Assignment

Statements and Logical Calculations / 3.3.3. Relational

Operators / 3.3.4. Combinational Logic Operators /

3.3.5. Logical Values in Input and Output Statements /

3.3.6. The Significance of Logical Variables and Expressions

Control Constructs: Branches 94
3.4.1. The Block IF Construct / 3.4.2. The ELSE and ELSE IF

Clauses / 3.4.3. Examples Using Block IF Constructs /

3.4.4. Named Block IF Constructs / 3.4.5. Notes Concerning

the Use of Block IF Constructs / 3.4.6. The Logical IF

Statement / 3.4.7. The SELECT CASE Construct

More on Debugging Fortran Programs 118

Summary 119
3.6.1. Summary of Good Programming Practice /

3.6.2. Summary of Fortran Statements and Constructs /

3.6.3. Exercises

4 Loops and Character Manipulation 126

4.1

4.2

4.3

Control Constructs: Loops 126
4.1.1 The While Loop / 4.1.2 The DO WHILE Loop /

4.1.3 The Iterative or Counting Loop / 4.1.4 The CYCLE and

EXIT Statements / 4.1.5 Named Loops / 4.1.6 Nesting Loops

and Block IF Constructs

Character Assignments and Character Manipulations 154
4.2.1 Character Assignments / 4.2.2 Substring Specifications /

4.2.3 The Concatenation (/ /) Operator / 4.2.4 Relational

Operators with Character Data / 4.2.5 Character

Intrinsic Functions

Debugging Fortran Loops 168

TABLE OF CONTENTS

44

Summary

4.4.1 Summary of Good Programming Practice /

4.4.2 Summary of Fortran Statements and Constructs /
4.4.3 Exercises

S Basic I/0 Concepts

51
5.2

53

54

5.5

5.6

Formats and Formatted WRITE Statements

Output Devices
5.2.1 Control Characters in Printer Output

Format Descriptors

5.3.1 Integer Output—The I Descriptor / 5.3.2 Real Output—
The F Descriptor / 5.3.3 Real Output—The E Descriptor /
5.3.4 True Scientific Notation—The ES Descriptor /

5.3.5 Logical Output—The L Descriptor / 5.3.6 Character
Output—The A Descriptor / 5.3.7 Horizontal Positioning—
The X and T Descriptor / 5.3.8 Repeating Groups of Format
Descriptors / 5.3.9 Changing Output Lines—The Slash (/)
Descriptor / 5.3.10 How Formats are Used During WRITEs

Formatted READ Statements

5.4.1 Integer Input—The I Descriptor / 5.4.2 Real Input—The F
Descriptor / 5.4.3 Logical Input—The L Descriptor /

5.4.4 Character Input—The A Descriptor / 5.4.5 Horizontal
Positioning—The X and T Descriptors / 5.4.6 Vertical
Positioning—The Slash (/) Descriptor / 5.4.7 How Formats

are Used During READs

An Introduction to Files and File Processing

5.5.1 The OPEN Statement / 5.5.2 The CLOSE Statement /
5.5.3 READs and WRITEs to Disk Files / 5.5.4 The I0STAT=and
I0MSG= Clauses in the READ Statement / 5.5.5 File Positioning

Summary
5.6.1 Summary of Good Programming Practice / 5.6.2 Summary
of Fortran Statements and Structures / 5.6.3 Exercises

6 Introduction to Arrays

6.1
6.2

6.3

Declaring Arrays

Using Array Elements in Fortran Statements

6.2.1 Array Elements are Just Ordinary Variables /

6.2.2 Initialization of Array Elements / 6.2.3 Changing the
Subscript Range of an Array / 6.2.4 Out-of-Bounds Array
Subscripts / 6.2.5 The Use of Named Constants with
Array Declarations

Using Whole Arrays and Array Subsets in Fortran Statements
6.3.1 Whole Array Operations / 6.3.2 Array Subsets

X1

169

180
180
182

184

205

211

232

245
246
247

261

xii

TABLE OF CONTENTS

6.4 Input and Output

6.4.1 Input and Output of Array Elements / 6.4.2 The Implied DO Loop /

6.4.3 Input and Output of Whole Arrays and Array Sections
6.5 Example Problems
6.6 When Should You Use an Array?

6.7 Summary
6.7.1 Summary of Good Programming Practice /

6.7.2 Summary of Fortran Statements and Constructs / 6.7.3 Exercises

7 Introduction to Procedures

7.1 Subroutines
7.1.1 Example Problem—Sorting / 7.1.2 The INTENT
Attribute / 7.1.3 Variable Passing in Fortran: The Pass-By-
Reference Scheme / 7.1.4 Passing Arrays to Subroutines /
7.1.5 Passing Character Variables to Subroutines /
7.1.6 Error Handling in Subroutines / 7.1.7 Examples

7.2 Sharing Data Using Modules

7.3 Module Procedures
7.3.1 Using Modules to Create Explicit Interfaces

7.4 Fortran Functions
7.4.1 Unintended Side Effects in Functions / 7.4.2 Using
Functions with Deliberate Side Effects

7.5 Passing Procedures as Arguments to Other Procedures
7.5.1 Passing User-Defined Functions as Arguments /
7.5.2 Passing Subroutines as Arguments

7.6 Summary
7.6.1 Summary of Good Programming Practice /
7.6.2 Summary of Fortran Statements and Structures / 7.6.3 Exercises

8 Additional Features of Arrays

8.1 2D or Rank 2 Arrays
8.1.1 Declaring Rank 2 Arrays / 8.1.2 Rank 2 Array
Storage / 8.1.3 Initializing Rank 2 Arrays / 8.1.4 Example
Problem / 8.1.5 Whole Array Operations and Array Subsets

8.2 Multidimensional or Rank n Arrays
8.3 Using Fortran Intrinsic Functions with Arrays

8.3.1 Elemental Intrinsic Functions / 8.3.2 Inquiry Intrinsic
Functions / 8.3.3 Transformational Intrinsic Functions

8.4 Masked Array Assignment: The WHERE Construct
8.4.1 The WHERE Construct / 8.4.2 The WHERE Statement

8.5 The FORALL Construct
8.5.1 The Form of the FORALL Construct / 8.5.2 The Significance
of the FORALL Construct / 8.5.3 The FORALL Statement

265

271
287
289

297
299

320
328

331

339

344

360
360

372
375

378

381

TABLE OF CONTENTS

8.6

8.7

Allocatable Arrays
8.6.1 Fortran Allocatable Arrays / 8.6.2 Using Fortran
Allocatable Arrays in Assignment Statements

Summary

8.7.1 Summary of Good Programming Practice /

8.7.2 Summary of Fortran Statements and Constructs /
8.7.3 Exercises

9 Additional Features of Procedures

9.1

9.2
9.3
94

9.5

9.6

9.7
9.8
9.9

Passing Multidimensional Arrays to Subroutines and Functions
9.1.1 Explicit Shape Dummy Arrays / 9.1.2 Assumed-Shape
Dummy Arrays / 9.1.3 Assumed-Size Dummy Arrays

The SAVE Attribute and Statement

Allocatable Arrays in Procedures

Automatic Arrays in Procedures

9.4.1 Comparing Automatic Arrays and Allocatable
Arrays / 9.4.2 Example Program

Allocatable Arrays as Dummy Arguments in Procedures
9.5.1 Allocatable Dummy Arguments / 9.5.2 Allocatable
Functions

Pure and Elemental Procedures
9.6.1 Pure Procedures / 9.6.2 Elemental Procedures /
9.6.3 Impure Elemental Procedures

Internal Procedures
Submodules

Summary
9.9.1 Summary of Good Programming Practice /

9.9.2 Summary of Fortran Statements and Structures / 9.9.3 Exercises

10 More about Character Variables

10.1

10.2
10.3
10.4
10.5
10.6
10.7

Character Comparison Operations
10.1.1 The Relational Operators with Character Data /
10.1.2 The Lexical Functions LLT, LLE, LGT, and LGE

Intrinsic Character Functions

Passing Character Variables to Subroutines and Functions
Variable-Length Character Functions

Internal Files

Example Problems

Summary

10.7.1 Summary of Good Programming Practice /
10.7.2 Summary of Fortran Statements and Structures /
10.7.3 Exercises

Xxiii

383

393

404
404

417
421
422

430

434

436
438
446

457
458

463
465
471
473
474
479

Xiv

TABLE OF CONTENTS

11 Additional Intrinsic Data Types

11.1

11.2
11.3
11.4

11.5

Alternate Kinds of the REAL Data Type

11.1.1 Kinds of REAL Constants and Variables / 11.1.2 Determining
the KIND of a Variable / 11.1.3 Selecting Precision in a Processor-
Independent Manner / 11.1.4 Determining the KINDs of Data Types
on a Particular Processor / 11.1.5 Mixed-Mode Arithmetic /
11.1.6 Higher Precision Intrinsic Functions / 11.1.7 When to Use
High-Precision Real Values / 11.1.8 Solving Large Systems of
Simultaneous Linear Equations

Alternate Lengths of the INTEGER Data Type
Alternate Kinds of the CHARACTER Data Type

The COMPLEX Data Type

11.4.1 Complex Constants and Variables / 11.4.2 Initializing
Complex Variables / 11.4.3 Mixed-Mode Arithmetic /
11.4.4 Using Complex Numbers with Relational

Operators / 11.4.5 COMPLEX Intrinsic Functions

Summary

11.5.1 Summary of Good Programming Practice /
11.5.2 Summary of Fortran Statements and Structures /
11.5.3 Exercises

12 Derived Data Types

12.1
12.2
12.3
124
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Introduction to Derived Data Types
Working with Derived Data Types

Input and Output of Derived Data Types
Declaring Derived Data Types in Modules
Returning Derived Types from Functions
Dynamic Allocation of Derived Data Types
Parameterized Derived Data Types

Type Extension

Type-Bound Procedures

The ASSOCIATE Construct

Summary

12.11.1 Summary of Good Programming Practice /
12.11.2 Summary of Fortran Statements and Structures /
12.11.3 Exercises

13 Advanced Features of Procedures and Modules

13.1
13.2
13.3
134

Scope and Scoping Units
Blocks
Recursive Procedures

Keyword Arguments and Optional Arguments

485
485

509
511
512

522

527
527
529
529
531
540
544
545
546
548
552
553

561
562
567
568
571

TABLE OF CONTENTS

13.5 Procedure Interfaces and Interface Blocks
13.5.1 Creating Interface Blocks / 13.5.2 Notes on the
Use of Interface Blocks

13.6 Generic Procedures

13.6.1 User-Defined Generic Procedures / 13.6.2 Generic Interfaces

Jor Procedures in Modules / 13.6.3 Generic Bound Procedures
13.7 Extending Fortran with User-Defined Operators and Assignments
13.8 Bound Assignments and Operators
13.9 Restricting Access to the Contents of a Module
13.10 Advanced Options of the USE Statement
13.11 Intrinsic Modules

13.12 Access to Command Line Arguments and Environment Variables
13.12.1 Access to Command Line Arguments /
13.12.2 Retrieving Environment Variables

13.13 The VOLATILE Attribute and Statement

13.14 Summary
13.14.1 Summary of Good Programming Practice /
13.14.2 Summary of Fortran Statements and Structures /
13.14.3 Exercises

14 Advanced I/0 Concepts

14.1 Additional Format Descriptors
14.1.1 Additional Forms of the E and ES Format Descriptors /
14.1.2 Engineering Notation—The EN Descriptor / 14.1.3 Double-
Precision Data—The D Descriptor / 14.1.4 The Generalized (G)
Format Descriptor / 14.1.5 The GO Format Descriptor /

14.1.6 The Binary, Octal, and Hexadecimal (B, 0, and Z) Descriptors /

14.1.7 The TAB Descriptors / 14.1.8 The Colon (:) Descriptor /
14.1.9 Scale Factors—The P Descriptor / 14.1.10 The SIGN
Descriptors / 14.1.11 Blank Interpretation: The BN and BZ

Descriptors / 14.1.12 Rounding Control: The RU, RD, RZ, RN, RC, and RP

Descriptors / 14.1.13 Decimal Specifier: The DC and DP Descriptors

14.2 Defaulting Values in List-Directed Input

14.3 Detailed Description of Fortran I/O Statements
14.3.1 The OPEN Statement / 14.3.2 The CLOSE Statement /
14.3.3 The INQUIRE Statement / 14.3.4 The READ Statement /
14.3.5 Alternate Form of the READ Statement / 14.3.6 The WRITE
Statement / 14.3.7 The PRINT Statement / 14.3.8 File Positioning
Statements / 14.3.9 The ENDFILE Statement / 14.3.10 The WAIT
Statement / 14.3.11 The FLUSH Statement

14.4 Namelist I[/O

14.5 Unformatted Files

14.6 Direct Access Files

XV

5717

581

594
607
607
611
615
615

618
619

633
633

642
644

668
671
673

Xvi

14.7
14.8
14.9

14.10
14.11

TABLE OF CONTENTS

Stream Access Mode
Nondefault I/O for Derived Types

Asynchronous I/O
14.9.1. Performing Asynchronous 1/0 / 14.9.2. Problems with
Asynchronous 1I/0

Access to Processor-Specific I/O System Information

Summary

14.11.1 Summary of Good Programming Practice /
14.11.2 Summary of Fortran Statements and Structures /
14.11.3 Exercises

15 Pointers and Dynamic Data Structures

151

15.2
15.3
15.4
15.5
15.6
15.7

15.8
15.9

15.10

Pointers and Targets
15.1.1 Pointer Assignment Statements / 15.1.2 Pointer
Association Status

Using Pointers in Assignment Statements

Using Pointers with Arrays

Dynamic Memory Allocation with Pointers

Using Pointers as Components of Derived Data Types
Arrays of Pointers

Using Pointers in Procedures
15.7.1 Using the INTENT Attribute with Pointers /
15.7.2 Pointer-valued Functions

Procedure Pointers

Binary Tree Structures
15.9.1 The Significance of Binary Tree Structures /
15.9.2 Building a Binary Tree Structure

Summary

15.10.1 Summary of Good Programming Practice /
15.10.2 Summary of Fortran Statements and Structures /
15.10.3 Exercises

16 Object-Oriented Programming in Fortran

16.1

16.2
16.3
16.4

An Introduction to Object-Oriented Programming

16.1.1 Objects / 16.1.2 Messages / 16.1.3 Classes /

16.1.4 Class Hierarchy and Inheritance / 16.1.5 Object-
Oriented Programming

The Structure of a Fortran Class

The CLASS Keyword

Implementing Classes and Objects in Fortran

16.4.1 Declaring Fields (Instance Variables) / 16.4.2 Creating
Methods / 16.4.3 Creating (Instantiating) Objects from a Class

678
678
687

689
690

698
699

705
707
709
712
725
727

733
736

756

763
764

769
770
772

TABLE OF CONTENTS

16.5

16.6
16.7
16.8
16.9

16.10
16.11
16.12

First Example: A timer Class

16.5.1 Implementing the timer Class / 16.5.2 Using

the timer Class / 16.5.3 Comments on the timer Class
Categories of Methods

Controlling Access to Class Members

Finalizers

Inheritance and Polymorphism

16.9.1 Superclasses and Subclasses / 16.9.2 Defining and Using
Subclasses / 16.9.3 The Relationship between Superclass
Objects and Subclass Objects / 16.9.4 Polymorphism /
16.9.5 The SELECT TYPE Construct

Preventing Methods from Being Overridden in Subclasses
Abstract Classes

Summary

16.12.1 Summary of Good Programming Practice /

16.12.2 Summary of Fortran Statements and Structures /
16.12.3 Exercises

17 Coarrays and Parallel Processing

171
17.2
17.3
174
17.5
17.6
17.7
17.8
17.9
17.10

Parallel Processing in Coarray Fortran
Creating a Simple Parallel Program

Coarrays

Synchronization between Images

Example: Sorting a Large Data Set
Allocatable Coarrays and Derived Data Types
Passing Coarrays to Procedures

Critical Sections

The Perils of parallel Programming

Summary

17.10.1 Summary of Good Programming Practice /
17.10.2 Summary of Fortran Statements and Structures /
17.10.3 Exercises

18 Redundant, Obsolescent, and Deleted Fortran Features

18.1
18.2
18.3
18.4

Pre-Fortran 90 Character Restrictions
Obsolescent Source Form
Redundant Data Type

Older, Obsolescent, and/or Undesirable Specification Statements
18.4.1 Pre-Fortran 90 Specification Statements / 18.4.2 The IMPLICIT
Statement / 18.4.3 The DIMENSION Statement / 18.4.4 The DATA
Statement / 18.4.5 The PARAMETER Statement

Xvii

775

780
789
790
794

809
809
831

837
838
839
841
843
850
856
857
858
859
863

869
870
870
871
872

Xviii

TABLE OF CONTENTS

18.5 Sharing Memory Locations: COMMON and EQUIVALENCE

18.5.1 COMMON Blocks / 18.5.2 Initializing Data in
COMMON Blocks: The BLOCK DATA Subprogram /
18.5.3 The Unlabeled COMMON Statement /

18.5.4 The EQUIVALENCE Statement

18.6 Undesirable Subprogram Features

18.6.1 Alternate Subroutine Returns / 18.6.2 Alternate Entry
Points / 18.6.3 The Statement Function / 18.6.4 Passing
Intrinsic Functions as Arguments

18.7 Miscellaneous Execution Control Features

18.7.1 The PAUSE Statement / 18.7.2 Arguments Associated
with the STOP Statement / 18.7.3 The END Statement

18.8 Obsolete Branching and Looping Structures

18.8.1 The Arithmetic IF Statement / 18.8.2 The Unconditional
GO TO Statement / 18.8.3 The Computed GO TO Statement /
18.8.4 The Assigned GO T0 Statement / 18.8.5 Older Forms

of DO Loops

18.9 Redundant Features of I/O Statements

18.10 Summary

18.10.1 Summary of Good Programming Practice /
18.10.2 Summary of Fortran Statements and Structures

Appendixes
A. The ASCII Character Set

B.

Fortran/C Interoperability

B.1. Declaring Interoperable Data Types /

B.2. Declaring Interoperable Procedures / B.3. Sample Programs—
Fortran Calling C / B.4. Sample Programs—C Calling Fortran

. Fortran Intrinsic Procedures

C.1. Classes of Intrinsic Procedures / C.2. Alphabetical List of Intrinsic
Procedures / C.3. Mathematical and Type Conversion Intrinsic
Procedures / C.4. Kind and Numeric Processor Intrinsic

Functions / C.5. System Environment Procedures / C.6. Bit Intrinsic
Procedures / C.7. Character Intrinsic Functions / C.8. Array and
Pointer Intrinsic Functions / C.9. Miscellaneous Inquiry Functions /
C.10. Miscellaneous Procedures / C.11. Coarray Functions

D. Order of Statements in a Fortran Program

E. Glossary

F. Answers to Quizzes

Index
Summary of Selected Fortran Statements and Structures

875

882

889

892

896
897

903
904

914

961
963
984

1002
1022

P REVFACE

The first edition of this book was conceived as a result of my experience in writing
and maintaining large Fortran programs in both the defense and geophysical fields.
During my time in industry, it became obvious that the strategies and techniques
required to write large, maintainable Fortran programs were quite different from what
new engineers were learning in their Fortran programming classes at school. The
incredible cost of maintaining and modifying large programs once they are placed into
service absolutely demands that they be written to be easily understood and modified
by people other than their original programmers. My goal for this book is to teach
simultaneously both the fundamentals of the Fortran language and a programming
style that results in good, maintainable programs. In addition, it is intended to serve as
a reference for graduates working in industry.

It is quite difficult to teach undergraduates the importance of taking extra effort
during the early stages of the program design process in order to make their programs
more maintainable. Class programming assignments must by their very nature be sim-
ple enough for one person to complete in a short period of time, and they do not have
to be maintained for years. Because the projects are simple, a student can often “wing
it” and still produce working code. A student can take a course, perform all of the pro-
gramming assignments, pass all of the tests, and still not learn the habits that are really
needed when working on large projects in industry.

From the very beginning, this book teaches Fortran in a style suitable for use on
large projects. It emphasizes the importance of going through a detailed design pro-
cess before any code is written, using a top-down design technique to break the pro-
gram up into logical portions that can be implemented separately. It stresses the use of
procedures to implement those individual portions, and the importance of unit testing
before the procedures are combined into a finished product. Finally, it emphasizes the
importance of exhaustively testing the finished program with many different input data
sets before it is released for use.

In addition, this book teaches Fortran as it is actually encountered by engineers and
scientists working in industry and in laboratories. One fact of life is common in all pro-
gramming environments: Large amounts of old legacy code that have to be maintained.
The legacy code at a particular site may have been originally written in Fortran IV (or
an even earlier version!), and it may use programming constructs that are no longer
common today. For example, such code may use arithmetic IF statements, or computed
or assigned GO TO statements. Chapter 18 is devoted to those older features of the lan-
guage that are no longer commonly used, but that are encountered in legacy code.

XX

PREFACE

The chapter emphasizes that these features should never be used in a new program, but
also prepares the student to handle them when he or she encounters them.

CHANGES IN THIS EDITION

This edition builds directly on the success of Fortran 95/2003 for Scientists and Engi-
neers, 3/e. It preserves the structure of the previous edition, while weaving the new Fortran
2008 material (and limited material from the proposed Fortran 2015 standard) throughout
the text. It is amazing, but Fortran started life around 1954, and it is still evolving.

Most of the additions in Fortran 2008 are logical extensions of existing capabili-
ties of Fortran 2003, and they are integrated into the text in the proper chapters. How-
ever, the use of parallel processing and Coarray Fortran is completely new, and Chapter
17 has been added to cover that material.

The vast majority of Fortran courses are limited to one-quarter or one semester,
and the student is expected to pick up both the basics of the Fortran language and the
concept of how to program. Such a course would cover Chapters 1 through 7 of this
text, plus selected topics in Chapters 8 and 9 if there is time. This provides a good
foundation for students to build on in their own time as they use the language in
practical projects.

Advanced students and practicing scientists and engineers will need the material on
COMPLEX numbers, derived data types, and pointers found in Chapters 11 through 15.
Practicing scientists and engineers will almost certainly need the material on obsolete,
redundant, and deleted Fortran features found in Chapter 18. These materials are rarely
taught in the classroom, but they are included here to make the book a useful reference
text when the language is actually used to solve real-world problems.

FEATURES OF THIS BOOK

Many features of this book are designed to emphasize the proper way to write reliable
Fortran programs. These features should serve a student well as he or she is first learn-
ing Fortran, and should also be useful to the practitioner on the job. They include:

1. Emphasis on Modern Fortran.

The book consistently teaches the best current practice in all of its examples.
Many modern Fortran 2008 features duplicate and supersede older features of
the Fortran language. In those cases, the proper usage of the modern language
is presented. Examples of older usage are largely relegated to Chapter 18,
where their old/undesirable nature is emphasized. Examples of modern Fortran
features that supersede older features are the use of modules to share data
instead of COMMON blocks, the use of DO ... END DO loops instead of DO . . .
CONTINUE loops, the use of internal procedures instead of statement functions,
and the use of CASE constructs instead of computed GOTOs.

PREFACE

xxi

2. Emphasis on Strong Typing.

The IMPLICIT NONE statement is used consistently throughout the book to
force the explicit typing of every variable used in every program, and to catch
common typographical errors at compilation time. In conjunction with the ex-
plicit declaration of every variable in a program, the book emphasizes the im-
portance of creating a data dictionary that describes the purpose of each
variable in a program unit.

. Emphasis on Top-Down Design Methodology.

The book introduces a top-down design methodology in Chapter 3, and then
uses it consistently throughout the rest of the book. This methodology encour-
ages a student to think about the proper design of a program before beginning
to code. It emphasizes the importance of clearly defining the problem to be
solved and the required inputs and outputs before any other work is begun.
Once the problem is properly defined, it teaches the student to employ stepwise
refinement to break the task down into successively smaller subtasks, and to
implement the subtasks as separate subroutines or functions. Finally, it teaches
the importance of testing at all stages of the process, both unit testing of the
component routines and exhaustive testing of the final product. Several exam-
ples are given of programs that work properly for some data sets, and then fail
for others.

The formal design process taught by the book may be summarized as
follows:

o Clearly state the problem that you are trying to solve.

o Define the inputs required by the program and the outputs to be produced by
the program.

e Describe the algorithm that you intend to implement in the program. This
step involves top-down design and stepwise decomposition, using pseudo-
code or flow charts.

o Turn the algorithm into Fortran statements.

o Test the Fortran program. This step includes unit testing of specific subpro-
grams, and also exhaustive testing of the final program with many different
data sets.

. Emphasis on Procedures.

The book emphasizes the use of subroutines and functions to logically decom-
pose tasks into smaller subtasks. It teaches the advantages of procedures for data
hiding. It also emphasizes the importance of unit testing procedures before they
are combined into the final program. In addition, the book teaches about the
common mistakes made with procedures, and how to avoid them (argument type
mismatches, array length mismatches, etc.). It emphasizes the advantages asso-
ciated with explicit interfaces to procedures, which allow the Fortran compiler
to catch most common programming errors at compilation time.

. Emphasis on Portability and Standard Fortran.

The book stresses the importance of writing portable Fortran code, so that a
program can easily be moved from one type of computer to another one.

xxii

PREFACE

It teaches students to use only standard Fortran statements in their programs, so
that they will be as portable as possible. In addition, it teaches the use of
features such as the SELECTED_REAL_KIND function to avoid precision and kind
differences when moving from computer to computer.

The book also teaches students to isolate machine-dependent code (such as
code that calls machine-dependent system libraries) into a few specific proce-
dures, so that only those procedures will have to be rewritten when a program
is ported between computers.

. Good Programming Practice Boxes.

These boxes highlight good programming practices when they are introduced
for the convenience of the student. In addition, the good programming practices
introduced in a chapter are summarized at the end of the chapter. An example
Good Programming Practice Box is shown below:

Good Programming Practice
Always indent the body of an IF structure by two or more spaces to improve the
readability of the code.

7. Programming Pitfalls Boxes

These boxes highlight common errors so that they can be avoided. An exam-

ple Programming Pitfalls Box is shown below:

Programming Pitfalls
Beware of integer arithmetic. Integer division often gives unexpected results.

8. Emphasis on Pointers and Dynamic Data Structures.

Chapter 15 contains a detailed discussion of Fortran pointers, including pos-
sible problems resulting from the incorrect use of pointers such as memory
leaks and pointers to deallocated memory. Examples of dynamic data struc-
tures in the chapter include linked lists and binary trees.

Chapter 16 contains a discussion of Fortran objects and object-oriented pro-
gramming, including the use of dynamic pointers to achieve polymorphic behavior.

. Use of Sidebars.

A number of sidebars are scattered throughout the book. These sidebars pro-
vide additional information of potential interest to the student. Some sidebars
are historical in nature. For example, one sidebar in Chapter 1 describes the
IBM Model 704, the first computer to ever run Fortran. Other sidebars

PREFACE

xxiii

reinforce lessons from the main text. For example, Chapter 9 contains a side-
bar reviewing and summarizing the many different types of arrays found in
modern Fortran.

10. Completeness.

Finally, the book endeavors to be a complete reference to the modern Fortran
language, so that a practitioner can locate any required information quickly.
Special attention has been paid to the index to make features easy to find. A
special effort has also been made to cover such obscure and little understood
features as passing procedure names by reference, and defaulting values in
list-directed input statements.

PEDAGOGICAL FEATURES

The book includes several features designed to aid student comprehension. Each
chapter begins with a list of the objectives that should be achieved in that chapter.
A total of 27 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix F. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 360 end-of-chapter exercises.
Answers to selected exercises are available at the book’s Web site, and of course an-
swers to all exercises are included in the Instructor’s Manual. Good programming
practices are highlighted in all chapters with special Good Programming Practice
boxes, and common errors are highlighted in Programming Pitfalls boxes. End-of-
chapter materials include Summaries of Good Programming Practice and Summaries
of Fortran Statements and Structures. Finally, a detailed description of every Fortran
intrinsic procedure is included in Appendix C, and an extensive Glossary is included
in Appendix E.

The book is accompanied by an Instructor’s Manual, containing the solutions to
all end-of-chapter exercises. Instructors can also download the solutions in the
Instructor’s Manual from the book’s Web site. The source code for all examples in
the book, plus other supplemental materials, can be downloaded by anyone from the
book’s Web site.

A NOTE ABOUT FORTRAN COMPILERS

Two Fortran compilers were used during the preparation of this book: the Intel Visual
Fortran Compiler Version 16.0 and the GNU G95 Fortran compiler. Both compilers
provide essentially complete implementations of Fortran 2008, with only a very few
minor items not yet implemented. They are also both looking to the future, implement-
ing features from the proposed Fortran 2015 standard.

I highly recommend both compilers to potential users. The great advantage of
Intel Fortran is the very nice integrated debugging environment, and the great disad-
vantage is cost. The G95 compiler is free, but it is somewhat harder to debug.

XXiv

PREFACE
A FINAL NOTE TO THE USER

No matter how hard I try to proofread a document like this book, it is inevitable that
some typographical errors will slip through and appear in print. If you should spot any
such errors, please drop me a note via the publisher, and I will do my best to get them
eliminated from subsequent printings and editions. Thank you very much for your help
in this matter.

I will maintain a complete list of errata and corrections at the book’s World Wide Web
site, which is www.mhhe.com/chapman4e. Please check that site for any updates and/or
corrections.

ACKNOWLEDGMENTS

I would like to thank Raghu Srinivasan and the team at McGraw-Hill Education for
making this revision possible. In addition, I would like to thank my wife Rosa and
daughter Devorah for their support during the revision process. (In previous editions, |
had thanked our other seven children as well, but they have all now flown the coop!)

Stephen J. Chapman
Melbourne, Victoria, Australia
August 7, 2016

Introduction to Computers
and the Fortran Language

OBJECTIVES

e Know the basic components of a computer.
e Understand binary, octal, and hexadecimal numbers.
e Learn about the history of the Fortran language.

The computer was probably the most important invention of the twentieth century.
It affects our lives profoundly in very many ways. When we go to the grocery store,
the scanners that check out our groceries are run by computers. Our bank balances
are maintained by computers, and the automatic teller machines and credit and debit
cards that allow us to make banking transactions at any time of the day or night are
run by more computers. Computers control our telephone and electric power sys-
tems, run our microwave ovens and other appliances, and control the engines in our
cars. Almost any business in the developed world would collapse overnight if it were
suddenly deprived of its computers. Considering their importance in our lives, it is
almost impossible to believe that the first electronic computers were invented just
about 75 years ago.

Just what is this device that has had such an impact on all of our lives? A computer
is a special type of machine that stores information, and can perform mathematical
calculations on that information at speeds much faster than human beings can think. A
program, which is stored in the computer’s memory, tells the computer what sequence
of calculations is required, and which information to perform the calculations on. Most
computers are very flexible. For example, the computer on which I write these words
can also balance my checkbook, if I just execute a different program on it.

Computers can store huge amounts of information, and with proper programming,
they can make that information instantly available when it is needed. For example, a
bank’s computer can hold the complete list of all the deposits and debits made by
every one of its customers. On a larger scale, credit companies use their computers to
hold the credit histories of every person in the United States—literally billions of

1

CHAPTER 1: Introduction to Computers and the Fortran Language

pieces of information. When requested, they can search through those billions of
pieces of information to recover the credit records of any single person, and present
those records to the user in a matter of seconds.

It is important to realize that computers do not think as humans understand
thinking. They merely follow the steps contained in their programs. When a computer
appears to be doing something clever, it is because a clever person has written the pro-
gram that it is executing. That is where we humans come into the act. It is our collec-
tive creativity that allows the computer to perform its seeming miracles. This book
will help teach you how to write programs of your own, so that the computer will do
what you want it to do.

1.1
THE COMPUTER

A block diagram of a typical computer is shown in Figure 1-1. The major components
of the computer are the central processing unit (CPU), main memory, secondary
memory, and input and output devices. These components are described in the para-
graphs below.

Main Secondary
memory memory

Internal

memory |«
(registers)

Control Memory Output
unit cache devices

Arithmetic
logic unit

Central processing unit

FIGURE 1-1
A block diagram of a typical computer.

Introduction to Computers and the Fortran Language 3

1.1.1 The CPU

The central processing unit is the heart of any computer. It is divided into a control unit,
an arithmetic logic unit (ALU), and internal memory. The control unit within the CPU
controls all of the other parts of the computer, while the ALU performs the actual math-
ematical calculations. The internal memory within a CPU consists of a series of mem-
ory registers used for the temporary storage of intermediate results during calculations,
plus a memory cache to temporarily store data that will be needed in the near future.

The control unit of the CPU interprets the instructions of the computer program. It
also fetches data values from main memory (or the memory cache) and stores them in
the memory registers, and sends data values from memory registers to output devices
or main memory. For example, if a program says to multiply two numbers together and
save the result, the control unit will fetch the two numbers from main memory and
store them in registers. Then, it will present the numbers in the registers to the ALU
along with directions to multiply them and store the results in another register. Finally,
after the ALU multiplies the numbers, the control unit will take the result from the
destination register and store it back into the memory cache. (Other parts of the CPU
copy the data from the memory cache to main memory in slower time.)

Modern CPUs have become dramatically faster by incorporating multiple ALUs
running in parallel, allowing more operations to be performed in a given amount of
time. They also incorporate larger memory caches on the CPU chip, allowing data to
be fetched and saved very rapidly.

1.1.2 Memory

The memory of a computer is divided into three major types of memory: cache mem-
ory, main or primary memory, and secondary memory. Cache memory is memory
stored on the CPU chip itself. This memory can be accessed very rapidly, allowing
calculations to proceed at very high speed. The control unit looks ahead in the program
to see what data will be needed, and pre-fetches it from main memory into the memory
cache so that it can be used with minimal delay. The control unit also copies the results
of calculations from the cache back to main memory when they are no longer needed.

Main memory usually consists of separate semiconductor chips connected to the
CPU by conductors called a memory bus. It is very fast, and relatively inexpensive com-
pared to the memory on the CPU itself. Data that is stored in main memory can be fetched
for use in a few nanoseconds or less (sometimes much less) on a modern computer. Be-
cause it is so fast and cheap, main memory is used to temporarily store the program
currently being executed by the computer, as well as the data that the program requires.

Main memory is not used for the permanent storage of programs or data. Most
main memory is volatile, meaning that it is erased whenever the computer’s power is
turned off. Besides, main memory is relatively expensive, so we only buy enough to
hold all of the programs actually being executed at any given time.

Secondary memory consists of devices that are slower and cheaper than main mem-
ory. They can store much more information for much less money than main memory can.
In addition, most secondary memory devices are nonvolatile, meaning that they retain

CHAPTER 1: Introduction to Computers and the Fortran Language

the programs and data stored in them whenever the computer’s power is turned off. Typ-
ical secondary memory devices are hard disks, solid-state drives (SSD), USB memory
sticks, and DVDs. Secondary storage devices are normally used to store programs and
data that are not needed at the moment, but that may be needed some time in the future.

1.1.3 Input and Output Devices

Data is entered into a computer through an input device, and is output through an out-
put device. The most common input devices on a modern computer are the keyboard
and the mouse. We can type programs or data into a computer with a keyboard. Other
types of input devices found on some computers include touchscreens, scanners,
microphones, and cameras.

Output devices permit us to use the data stored in a computer. The most common
output devices on today’s computers are displays and printers. Other types of output
devices include plotters and speakers.

1.2
DATA REPRESENTATION IN A COMPUTER

Computer memories are composed of billions of individual switches, each of which can
be ON or OFF, but not at a state in between. Each switch represents one binary digit (also
called a bit); the ON state is interpreted as a binary 1, and the OFF state is interpreted as
a binary 0. Taken by itself, a single switch can only represent the numbers 0 and 1. Since
we obviously need to work with numbers other than 0 and 1, a number of bits are grouped
together to represent each number used in a computer. When several bits are grouped
together, they can be used to represent numbers in the binary (base 2) number system.

The smallest common grouping of bits is called a byte. A byte is a group of 8 bits
that are used together to represent a binary number. The byte is the fundamental unit
used to measure the capacity of a computer’s memory. For example, the personal com-
puter on which I am writing these words has a main memory of 24 gigabytes
(24,000,000,000 bytes) and a secondary memory (disk drive) with a storage of
2 terabytes (2,000,000,000,000 bytes).

The next larger grouping of bits in a computer is called a word. A word consists
of 2, 4, or more consecutive bytes that are used to represent a single number in mem-
ory. The size of a word varies from computer to computer, so words are not a particu-
larly good way to judge the size of computer memories. Modern CPUs tend to use
words with lengths of either 32 or 64 bits.

1.2.1 The Binary Number System

In the familiar base 10 number system, the smallest (rightmost) digit of a number is the
ones place (10°). The next digit is in the tens place (10'), and the next one is in the
hundreds place (10%), etc. Thus, the number 122 is really (1 X 10%) + (2 x 10") +
(2 x 10%). Each digit is worth a power of 10 more than the digit to the right of it in the
base 10 system (see Figure 1-2a).

Introduction to Computers and the Fortran Language 5

I’s place FIGURE 1-2

10’s place (a) The base 10 number 122 is really (1 x 10%) + (2 x 10") +

100’s place j (2 x 10°. (b) Similarly, the base 2 number 101, is really
MDA (1 %2+ 0Ox2H+ (1 x29.

(a)

1’s place
2’s place
4’s place j

101,=5,
(b)

Similarly, in the binary number system, the smallest (rightmost) digit is the ones
place (2°). The next digit is in the twos place (2'), and the next one is in the fours place
(2%), etc. Each digit is worth a power of 2 more than the digit to the right of it in the
base 2 system. For example, the binary number 101, is really (1 X 2%) + (0 x 2!) +
(1 x 2% = 5, and the binary number 111, =7 (see Figure 1-2b).

Note that three binary digits can be used to represent eight possible values: 0 (= 000,)
to 7 (= 111,). In general, if n bits are grouped together to form a binary number, then they
can represent 2" possible values. Thus, a group of 8 bits (1 byte) can represent 256 possi-
ble values, a group of 16 bits (2 bytes) can be used to represent 65,536 possible values,
and a group of 32 bits (4 bytes) can be used to represent 4,294,967,296 possible values.

In a typical implementation, half of all possible values are reserved for represent-
ing negative numbers, and half of the values are reserved for representing zero plus the
positive numbers. Thus, a group of 8 bits (1 byte) is usually used to represent numbers
between —128 and +127, including O, and a group of 16 bits (2 bytes) is usually used
to represent numbers between —32,768 and +32,767, including 0.

TWO’S COMPLEMENT ARITHMETIC

The most common way to represent negative numbers in the binary number system is
the two’s complement representation. What is two’s complement, and what is so spe-
cial about it? Let’s find out.

The Two’s Complement Representation of Negative Numbers

In the two’s complement representation, the leftmost bit of a number is the sign bit.
If that bit is 0, then the number is positive; if it is 1, then the number is negative. To
change a positive number into the corresponding negative number in the two’s comple-
ment system, we perform two steps:

1. Complement the number (change all 1s to 0 and all Os to 1).
2. Add 1 to the complemented number.

! The most common scheme for representing negative numbers in a computer’s memory is the so-called
two’s complement representation, which is described in the sidebar.

CHAPTER 1: Introduction to Computers and the Fortran Language

Let’s illustrate the process using simple 8-bit integers. As we already know, the
8-bit binary representation of the number 3 would be 00000011. The two’s comple-
ment representation of the number —3 would be found as follows:

1. Complement the positive number: 11111100
2. Add 1 to the complemented number: 11111100+ 1 =11111101

Exactly the same process is used to convert negative numbers back to positive num-
bers. To convert the number —3 (11111101) back to a positive 3, we would:

1. Complement the negative number: 00000010
2. Add 1 to the complemented number: 00000010 + 1 = 00000011

Two’s Complement Arithmetic

Now we know how to represent numbers in two’s complement representation, and to
convert between positive and two’s complement negative numbers. The special
advantage of two’s complement arithmetic is that positive and negative numbers may
be added together according to the rules of ordinary addition without regard to the
sign, and the resulting answer will be correct, including the proper sign. Because of
this fact, a computer may add any two integers together without checking to see what
the signs of the two integers are. This simplifies the design of computer circuits.

Let’s do a few examples to illustrate this point.

1. Add 3 + 4 in two’s complement arithmetic.

3 00000011
+4 00000100
7 00000111
2. Add (-3) + (—4) in two’s complement arithmetic.
3 11111101

+—4 11111100
-7 111111001

In a case like this, we ignore the extra ninth bit resulting from the sum, and the
answer is 11111001. The two’s complement of 11111001 is 00000111 or 7, so the
result of the addition was —7!

3. Add 3 + (—4) in two’s complement arithmetic.

-3 00000011
+—4 11111100
-1 11111111

The answeris 11111111. The two’s complement of 11111111 is 00000001 or 1, so the
result of the addition was —1.

With two’s complement numbers, binary addition comes up with the correct answer
regardless of whether the numbers being added are both positive, both negative, or mixed.

Introduction to Computers and the Fortran Language 7

1.2.2 Octal and Hexadecimal Representations of Binary Numbers

Computers work in the binary number system, but people think in the decimal number
system. Fortunately, we can program the computer to accept inputs and give its outputs
in the decimal system, converting them internally to binary form for processing. Most
of the time, the fact that computers work with binary numbers is irrelevant to the
programmer.

However, there are some cases in which a scientist or engineer has to work directly
with the binary representations coded into the computer. For example, individual bits
or groups of bits within a word might contain status information about the operation of
some machine. If so, the programmer will have to consider the individual bits of the
word, and work in the binary number system.

A scientist or engineer who has to work in the binary number system immediately
faces the problem that binary numbers are unwieldy. For example, a number like
1100, in the decimal system is 010001001100, in the binary system. It is easy to get
lost working with such a number! To avoid this problem, we customarily break binary
numbers down into groups of 3 or 4 bits, and represent those bits by a single base
8 (octal) or base 16 (hexadecimal) number.

To understand this idea, note that a group of 3 bits can represent any number
between 0 (= 000,) and 7 (= 111,). These are the numbers found in an octal or base 8
arithmetic system. An octal number system has seven digits: 0 through 7. We can
break a binary number up into groups of 3 bits, and substitute the appropriate octal
digit for each group. Let’s use the number 010001001100, as an example. Breaking
the number into groups of three digits yields 010]001{001|100,. If each group of 3 bits
is replaced by the appropriate octal number, the value can be written as 2114,. The
octal number represents exactly the same pattern of bits as the binary number, but it is
more compact.

Similarly, a group of 4 bits can represent any number between 0 (= 0000,) and
15 (= 1111,). These are the numbers found in a hexadecimal or base 16 arithmetic
system. A hexadecimal number system has 16 digits: O through 9 and A through F.
Since the hexadecimal system needs 16 digits, we use digits 0 through 9 for the first
10 of them, and then letters A through F for the remaining 6. Thus, 9, =9 . A =
10,,, B, = 11,,, and so forth. We can break a binary number up into groups of 4
bits, and substitute the appropriate hexadecimal digit for each group. Let’s use the
number 010001001100, again as an example. Breaking the number into groups of
four digits yields 0100[0100|1100,. If each group of 4 bits is replaced by the appro-
priate hexadecimal number, the value can be written as 44C .. The hexadecimal
number represents exactly the same pattern of bits as the binary number, but more
compactly.

Some computer vendors prefer to use octal numbers to represent bit patterns,
while other computer vendors prefer to use hexadecimal numbers to represent bit pat-
terns. Both representations are equivalent, in that they represent the pattern of bits in a
compact form. A Fortran language program can input or output numbers in any of the
four formats (decimal, binary, octal, or hexadecimal). Table 1-1 lists the decimal,
binary, octal, and hexadecimal forms of the numbers O to 15.

CHAPTER 1: Introduction to Computers and the Fortran Language

TABLE 1-1
Table of decimal, binary, octal, and
hexadecimal numbers

Decimal Binary Octal Hexadecimal
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

1.2.3 Types of Data Stored in Memory

Three common types of data are stored in a computer’s memory: character data,
integer data, and real data (numbers with a decimal point). Each type of data has
different characteristics, and takes up a different amount of memory in the
computer.

Character Data

The character data type consists of characters and symbols. A typical system for
representing character data in a non-Oriental language must include the following symbols:

The 26 uppercase letters A through Z

The 26 lowercase letters a through z

The 10 digits O through 9

Miscellaneous common symbols, such as ", (), {3, [1, !, ~, @, #, $,
%, ~, &, and *.

5. Any special letters or symbols required by the language, such as a, ¢, €, and £.

D=

Since the total number of characters and symbols required to write Western
languages is less than 256, it is customary to use 1 byte of memory to store each
character. Therefore, 10,000 characters would occupy 10,000 bytes of the comput-
er’s memory.

The particular bit values corresponding to each letter or symbol may vary from
computer to computer, depending upon the coding system used for the characters. The
most important coding system is ASCII, which stands for the American Standard Code

Introduction to Computers and the Fortran Language 9

for Information Interchange (ANSI X3.4 1986, or ISO/IEC 646:1991). The ASCII
coding system defines the values to associate with the first 128 of the 256 possible
values that can be stored in a 1-byte character. The 8-bit codes corresponding to each
letter and number in the ASCII coding system are given in Appendix A.

The second 128 characters that can be stored in a 1-byte character are not defined
by the ASCII character set, and they used to be defined differently depending on the
language used in a particular country or region. These definitions are a part of the ISO
8859 standard series, and they are sometimes referred to as “code pages.” For exam-
ple, the ISO 8859-1 (Latin 1) character set is the version used in Western European
countries. There are similar code pages available for Eastern European languages,
Arabic, Greek, Hebrew, and so forth. Unfortunately, the use of different code pages
made the output of programs and the contents of files appear different in different
countries. As a result, these code pages are falling out of favor, and being replaced by
the Unicode system described below.

Some Oriental languages such as Chinese and Japanese contain more than 256
characters (in fact, about 4000 characters are needed to represent each of these
languages). To accommodate these languages and all of the other languages in the
world, a coding system called Unicode? has been developed. In the Unicode cod-
ing system, each character is stored in 2 bytes of memory, so the Unicode system
supports 65,536 possible different characters. The first 128 Unicode characters are
identical to the ASCII character set, and other blocks of characters are devoted to
various languages such as Chinese, Japanese, Hebrew, Arabic, and Hindi. When
the Unicode coding system is used, character data can be represented in any
language.

Integer Data

The integer data type consists of the positive integers, the negative integers, and
zero. The amount of memory devoted to storing an integer will vary from computer to
computer, but will usually be 1, 2, 4, or 8 bytes. Four-byte integers are the most com-
mon type in modern computers.

Since a finite number of bits are used to store each value, only integers that fall
within a certain range can be represented on a computer. Usually, the smallest number
that can be stored in an n-bit integer is

Smallest integer value = —2"~" (1-1)
and the largest number that can be stored in an n-bit integer is
Largest integer value = 2"~' — 1 (1-2)

For a 4-byte integer, the smallest and largest possible values are —2,147,483,648 and
2,147,483,647, respectively. Attempts to use an integer larger than the largest possible

2 Also referred to by the corresponding standard number, ISO/IEC 10646:2014.

CHAPTER 1: Introduction to Computers and the Fortran Language

value or smaller than the smallest (most negative) possible value result in an error
called an overflow condition.?

Real Data
The integer data type has two fundamental limitations:

1. It is not possible to represent numbers with fractional parts (0.25, 1.5, 3.14159,
etc.) as integer data.

2. It is not possible to represent very large positive integers or very small negative
integers, because there are not enough bits available to represent the value. The
largest and smallest possible integers that can be stored in a given memory loca-
tion will be given by Equations (1-1) and (1-2).

To get around these limitations, computers include a real or floating-point data
type.

The real data type stores numbers in a type of scientific notation. We all know
that very large or very small numbers can be most conveniently written in scientific
notation. For example, the speed of light in a vacuum is about 299,800,000 m/s. This
number is easier to work with in scientific notation: 2.998 x 108 m/s. The two parts
of a number expressed in scientific notation are called the mantissa and the
exponent. The mantissa of the number above is 2.998, and the exponent (in the base
10 system) is 8.

The real numbers in a computer are similar to the scientific notation above, except
that a computer works in the base 2 system instead of the base 10 system. Real num-
bers usually occupy 32 bits (4 bytes) of computer memory, divided into two compo-
nents: a 24-bit mantissa and an 8-bit exponent (Figure 1-3).* The mantissa contains a
number between —1.0 and 1.0, and the exponent contains the power of 2 required to
scale the number to its actual value.

Real numbers are characterized by two quantities: precision and range.
Precision is the number of significant digits that can be preserved in a number, and
range is the difference between the largest and smallest numbers that can be
represented. The precision of a real number depends on the number of bits in its
mantissa, while the range of the number depends on the number of bits in its expo-
nent. A 24-bit mantissa can represent approximately +223 numbers, or about seven
significant decimal digits, so the precision of real numbers is about seven significant
digits. An 8-bit exponent can represent multipliers between 272% and 2?7, so the
range of real numbers is from about 10738 to 1038, Note that the real data type can
represent numbers much larger or much smaller than integers can, but only with
seven significant digits of precision.

3 When an overflow condition occurs, some processors will abort the program causing the overflow condi-
tion. Other processors will “wrap around” from the most positive integer to the most negative integer with-
out giving the user a warning that anything has happened. This behavior varies for different types of
computers.

4 This discussion is based on the IEEE Standard 754 for floating-point numbers, which is representative of
most modern computers.

Introduction to Computers and the Fortran Language 11

Value = mantissa X 2¢xpenent FIGURE 1-3
10 20 30 This floating-point number includes a 24-bit
| | | mantissa and an 8-bit exponent.

I I I
mmmmmmmmmmmmmmmmmmmmmmmmeeeeeeee

€ J\ J
v v

Mantissa Exponent

When a value with more than seven digits of precision is stored in a real vari-
able, only the most significant 7 bits of the number will be preserved. The remaining
information will be lost forever. For example, if the value 12,345,678.9 is stored in
a real variable on a PC, it will be rounded off to 12,345,680.0. This difference
between the original value and the number stored in the computer is known as
round-off error.

You will use the real data type in many places throughout this book and in your
programs after you finish this course. It is quite useful, but you must always remember
the limitations associated with round-off error, or your programs might give you an
unpleasant surprise. For example, if your program must be able to distinguish between
the numbers 1,000,000.0 and 1,000,000.1, then you cannot use the standard real data
type.’ It simply does not have enough precision to tell the difference between these two
numbers!

Programming Pitfalls

Always remember the precision and range of the data types that you are working
with. Failure to do so can result in subtle programming errors that are very hard
to find.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 1.2. If you have trouble with the quiz, reread the section, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book.

1. Express the following decimal numbers as their binary equivalents:
(a) 27,
(b) 11,
(c) 35,
(d) 127,

(continued)

3 We will learn how to use high-precision floating-point numbers in Chapter 11.

12

CHAPTER 1: Introduction to Computers and the Fortran Language

(concluded)
2. Express the following binary numbers as their decimal equivalents:
(a) 1110,
(b) 01010101,
(c) 1001,

3. Express the following binary numbers as octal and hexadecimal numbers:
(a) 1110010110101101,
(b) 1110111101,
(c) 1001011100111111,

4. Is the fourth bit of the number 131,,a 1 or a 0?

5. Assume that the following numbers are the contents of a character variable.
Find the character corresponding to each number according to the ASCII
encoding scheme (The character codes in the ASCII encoding scheme are
defined in Appendix A):

(@) 71,
(b) 01111011,
(c) 249,

6. Find the maximum and minimum values that can be stored in a 2-byte

integer variable.

7. Can a 4-byte variable of the real data type be used to store larger numbers
than a 4-byte variable of the integer data type? Why or why not? If it can,
what is given up by the real variable to make this possible?

1.3
COMPUTER LANGUAGES

When a computer executes a program, it executes a string of very simple operations
such as load, store, add, subtract, multiply, and so on. Each such operation has a unique
binary pattern called an operation code (op code) to specify it. The program that a com-
puter executes is just a string of op codes (and the data associated with the op codes®) in
the order necessary to achieve a purpose. Op codes are collectively called machine
language, since they are the actual language that a computer recognizes and executes.

Unfortunately, we humans find machine language very hard to work with. We
prefer to work with English-like statements and algebraic equations that are expressed
in forms familiar to us, instead of arbitrary patterns of zeros and ones. We like to pro-
gram computers with high-level languages. We write out our instructions in a high-
level language, and then use special programs called compilers and linkers to convert
the instructions into the machine language that the computer understands.

¢ The data associated with op codes is called operands.

Introduction to Computers and the Fortran Language 13

There are many different high-level languages, with different characteristics.
Some of them are designed to work well for business problems, while others are
designed for general scientific use. Still others are especially suited for applications
like operating systems programming. It is important to pick a proper language to match
the problem that you are trying to solve.

Some common high-level computer languages today include Ada, C, C++, Fortran,
and Java. Historically, Fortran has been the pre-eminent language for general scientific
computations. It has been around in one form or another for more than 60 years, and has
been used to implement everything from computer models of nuclear power plants to
aircraft design programs to seismic signal processing systems, including some projects
requiring literally millions of lines of code. The language is especially useful for numer-
ical analysis and technical calculations. In addition, Fortran is the dominant language in
the world of supercomputers and massively parallel computers.

14
THE HISTORY OF THE FORTRAN LANGUAGE

Fortran is the grandfather of all scientific computer languages. The name Fortran is
derived from FORmula TRANSIation, indicating that the language was intended from
the start for translating scientific equations into computer code. The first version of the
FORTRAN language was developed during the years 1954-1957 by IBM for use with
its Type 704 computer (see Figure 1-4). Before that time, essentially all computer pro-
grams were generated by hand in machine language, which was a slow, tedious, and
error-prone process. FORTRAN was a truly revolutionary product. For the first time,
a programmer could write a desired algorithm as a series of standard algebraic equa-
tions, and the FORTRAN compiler would convert the statements into the machine
language that the computer could recognize and execute.

‘ THE IBM TYPE 704 COMPUTER

‘ The IBM Type 704 computer was the first computer ever to use the FORTRAN lan-
guage. It was released in 1954, and was widely used from then until about 1960, when
it was replaced by the Model 709. As you can see from Figure 1-4, the computer occu-
pied a whole room.

What could a computer like that do in 1954? Not much, by today’s standards. Any
PC sitting on a desktop can run rings around it. The 704 could perform about
4000 integer multiplications and divisions per second, and an average of about 8000
floating-point operations per second. It could read data from magnetic drums

7 Versions of the language before Fortran 90 were known as FORTRAN (written with all capital letters),
while Fortran 90 and later versions are known as Fortran (with only the first letter capitalized).

14

FIGURE 1-4
The IBM Type 704 computer. (© Bettmann/Getty Images)

CHAPTER 1: Introduction to Computers and the Fortran Language

(the equivalent of a disk drive) into memory at a rate of about 50,000 bytes per second.
The amount of data storage available on a magnetic drum was also very small, so most
programs that were not currently in use were stored as decks of punched cards.

By comparison, a typical modern personal computer (circa 2006) performed more than
20,000,000,000 integer multiplications and divisions per second, and hundreds of millions
of floating-point operations per second. Some of today’s workstations are small enough to
sit on a desktop, and yet can perform more than 5,000,000,000 floating-point operations per
second! Reads from disk into memory occur at rates greater than 25,000,000 bytes per
second, and a typical PC disk drive can store more than 200,000,000,000 bytes of data.

The limited resources available in the 704 and other machines of that generation
placed a great premium on efficient programming. The structured programming tech-
niques that we use today were simply not possible, because there was not enough
speed or memory to support them. The earliest versions of FORTRAN were designed
with those limitations in mind, which is why we find many archaic features preserved
as living fossils in modern versions of Fortran.

Introduction to Computers and the Fortran Language 15

able, because it made programming so much easier than machine language did. The
language was officially released in April 1957, and by the fall of 1958, more than half
of all IBM 704 computer programs were being written in Fortran.

The original FORTRAN language was very small compared to our modern ver-
sions of Fortran. It contained only a limited number of statement types, and supported
only the integer and real data types. There were also no subroutines in the first
FORTRAN. It was a first effort at writing a high-level computer language, and natu-
rally many deficiencies were found as people started using the language regularly.
IBM addressed those problems, releasing FORTRAN II in the spring of 1958.

Further developments continued through 1962, when FORTRAN IV was released.
FORTRAN IV was a great improvement, and it became the standard version of Fortran
for the next 15 years. In 1966, FORTRAN IV was adopted as an ANSI standard, and it
came to be known as FORTRAN 66.

The Fortran language received another major update in 1977. FORTRAN 77
included many new features designed to make structured programs easier to write and
maintain, and it quickly became “the” Fortran. FORTRAN 77 introduced such struc-
tures as the block IF, and was the first version of Fortran in which character variables
were truly easy to manipulate.

The next major update of Fortran was Fortran 90.% Fortran 90 included all of
FORTRAN 77 as a subset, and extended the language in many important new direc-
tions. Among the major improvements introduced to the language in Fortran 90 were
a new free source format, array sections, whole-array operations, parameterized data
types, derived data types, and explicit interfaces. Fortran 90 was a dramatic improve-
ment over earlier versions of the language.

Fortran 90 was followed in 1996 by a minor update called Fortran 95. Fortran 95
added a number of new features to the language such as the FORALL construct, pure
functions, and some new intrinsic procedures. In addition, it clarified numerous ambi-
guities in the Fortran 90 standard.

Fortran 2003 was the next update.® This is a more major change from Fortran 95,
including new features such as enhanced derived types, object-oriented programming
support, Unicode character set support, data manipulation enhancements, procedure
pointers, and interoperability with the C language. It was followed by a more minor
update called Fortran 2008.

The subject of this book is the Fortran 2008 language. The designers of Fortran
2008 were careful to make the language backward compatible with FORTRAN 77 and
earlier versions. Because of this backward compatibility, most of the millions of pro-
grams written in FORTRAN 77 also work with Fortran 2008. Unfortunately, being
backward compatible with earlier versions of Fortran required that Fortran 2008 retain
some archaic features that should never be used in any modern program. In this book,

FORTRAN was a wonderful idea! People began using it as soon as it was avail-

8 American National Standard Programming Language Fortran, ANSI X3.198-1992; and International
Standards Organization ISO/IEC 1539: 1991, Information Technology—Programming Languages—
Fortran.

9 International Standards Organization ISO/IEC 1539: 2004, Information Technology—Programming
Languages—Fortran.

16

CHAPTER 1: Introduction to Computers and the Fortran Language

we will learn to program in Fortran using only its modern features. The older features
that are retained for backward compatibility are relegated to Chapter 18 of this book.
They are described there in case you run into any of them in older programs, but they
should never be used in any new program.

1.5
THE EVOLUTION OF FORTRAN

The Fortran language is a dynamic language that is constantly evolving to keep up
with advances in programming practice and computing technology. A major new ver-
sion appears about once per decade.

The responsibility for developing new versions of the Fortran language lies with
the International Organization for Standardization’s (ISO) Fortran Working Group,
WGS5. That organization has delegated authority to the J3 Committee of the
InterNational Committee for Information Technology Standards (INCITS) to actually
prepare new versions of the language. The preparation of each new version is an
extended process involving first asking for suggestions for inclusion in the language,
deciding which suggestions are feasible to implement, writing and circulating drafts
to all interested parties throughout the world, and correcting the drafts and trying
again until general agreement is reached. Eventually, a worldwide vote is held and the
standard is adopted.

The designers of new versions of the Fortran language must strike a delicate
balance between backward compatibility with the existing base of Fortran programs
and the introduction of desirable new features. Although modern structured pro-
gramming features and approaches have been introduced into the language, many
undesirable features from earlier versions of Fortran have been retained for backward
compatibility.

The designers have developed a mechanism for identifying undesirable and
obsolete features of the Fortran language that should no longer be used, and for even-
tually eliminating them from the language. Those parts of the language that have
been superseded by new and better methods are declared to be obsolescent features.
Features that have been declared obsolescent should never be used in any new pro-
grams. As the use of these features declines in the existing Fortran code base, they
will then be considered for deletion from the language. No feature will ever be
deleted from a version of the language unless it was on the obsolescent list in at least
one previous version, and unless the usage of the feature has dropped off to negligi-
ble levels. In this fashion, the language can evolve without threatening the existing
Fortran code base.

The redundant, obsolescent, and deleted features of Fortran 2008 are described in
Chapter 18 in case a programmer runs into them in existing programs, but they should
never be used in any new programs.

We can get a feeling for just how much the Fortran language has evolved over the
years by examining Figures 1-5 through 1-7. These three figures show programs for
calculating the solutions to the quadratic equation ax® + bx + ¢ = 0 in the styles of
the original FORTRAN I, of FORTRAN 77, and of Fortran 2008. It is obvious that the

Introduction to Computers and the Fortran Language 17

Fortran 2008 compilers will still compile the FORTRAN I program with just a few

language has become more readable and structured over the years. Amazingly, though, -

minor changes!'?

FIGURE 1-5
A FORTRAN I program to solve for the roots of the quadratic equation ax* 4+ bx + ¢ = 0.

C SOLVE QUADRATIC EQUATION IN FORTRAN I
READ 100,A,B,C

100 FORMAT(3F12.4)
DISCR = B**2-4*A*C
IF (DISCR) 10,20,30

10 X1=(-B)/(2.*A)
X2=SQRTF(ABSF(DISCR))/(2.*A)
PRINT 110,X1,X2

110 FORMAT(5H X = ,F12.3,4H +i ,F12.3)
PRINT 120,X1,X2

120 FORMAT(5H X = ,F12.3,4H -i ,F12.3)
GOTO 40

20 X1=(-B)/(2.*A)
PRINT 130,X1

130 FORMAT(1IH X1 = X2 = ,F12.3)
GOTO 40

30 X1=((-B)+SQRTF(ABSF(DISCR)))/(2.*A)
X2=((-B)-SQRTF(ABSF(DISCR)))/(2.*A)
PRINT 140,X1

140 FORMAT(6H X1 = ,F12.3)
PRINT 150,X2

150 FORMAT(6H X2 = ,F12.3)

40 CONTINUE
STOP 25252

FIGURE 1-6

A FORTRAN 77 program to solve for the roots of the quadratic equation ax® + bx 4+ ¢ = 0.

OOOOOOOO

OO0

PROGRAM QUAD4
This program reads the coefficients of a quadratic equation of
the form

A*x X**2 +B*X+C=0,
and solves for the roots of the equation (FORTRAN 77 style).
Get the coefficients of the quadratic equation.

WRITE (*,*) 'Enter the coefficients A, B and C: '
READ (*,*) A, B, C

Echo the coefficients to make sure they are entered correctly.

(continued)

10 Change SQRTF to SQRT, ABSF to ABS, and add an END statement.

18 CHAPTER 1: Introduction to Computers and the Fortran Language

(concluded)

WRITE (*,100) 'The coefficients are : ', A, B, C
100 FORMAT (1X,A,3F10.4)

C
C Check the discriminant and calculate its roots.
C
DISCR = B**2 - 4, *A*C
IF (DISCR .LT. 0) THEN
WRITE (*,*) ' This equation has complex roots:'
WRITE (*,*) " X =", -B/(2.%A), ' +i ', SQRT(ABS(DISCR))/(2.*A)
WRITE (*,*) " X ="', -B/(2.*A), ' -i ', SQRT(ABS(DISCR))/(2.*A)
ELSE IF ((B**2 - 4.*A*C) .EQ. 0) THEN
WRITE (*,*) ' This equation has a single repeated real root:'
WRITE (*,*) " X =", -B/(2.*A)
ELSE
WRITE (*,*) ' This equation has two distinct real roots:'
WRITE (*,*) " X =", (-B + SQRT(ABS(DISCR)))/(2.*A)
WRITE (*,*) " X ="', (-B - SQRT(ABS(DISCR)))/(2.*A)
END IF
C
END
FIGURE 1-7

A Fortran 2008 program to solve for the roots of the quadratic equation ax® + bx + ¢ = 0.
PROGRAM roots

! Purpose:

! This program solves for the roots of a quadratic equation of the form
! A* X**2 +B * X+ C=0. It calculates the answers regardliess of the
! type of roots that the equation possesses (Fortran 95/2003 style).
|

I

MPLICIT NONE

I Declare the variables used in this program

REAL :: a Coefficient of X**2 term of equation
REAL :: b Coefficient of X term of equation
REAL :: c Constant term of equation

|

|

!
REAL :: discriminant I Discriminant of the equation
REAL :: imag_part ! Imaginary part of equation (for complex roots)
REAL :: real_part ! Real part of equation (for complex roots)
REAL :: x1 I First solution of equation (for real roots)
REAL :: x2 I Second solution of equation (for real roots)
! Prompt the user for the coefficients of the equation
WRITE (*,*) 'This program solves for the roots of a quadratic '
WRITE (*,*) 'equation of the form A * X**2 + B * X + C = 0. '
WRITE (*,*) '"Enter the coefficients A, B, and C:'
READ (*,*) a, b, ¢

I Echo back coefficients
WRITE (*,*) 'The coefficients A, B, and C are: ', a, b, ¢

(continued)

Introduction to Computers and the Fortran Language 19

(concluded)
I Calculate discriminant 1

discriminant = b**2 - 4. * a * ¢
! Solve for the roots, depending upon the value of the discriminant

IF (discriminant > 0.) THEN ! there are two real roots, so...

X1 = (-b + sqrt(discriminant)) / (2. * a)
X2 = (-b - sqrt(discriminant)) / (2. * a)
WRITE (*,*) 'This equation has two real roots:'
WRITE (*,*) 'X1 ="', x1

WRITE (*,*) 'X2 ="', x2

ELSE IF (discriminant == 0.) THEN ! there is one repeated root, so...
xI=(C-b)/ (2. *a)
WRITE (*,*) 'This equation has two identical real roots:'
WRITE (*,*) 'X1 = X2 ="', x1

ELSE ! there are complex roots, so ...

real_part = (-b) / (2. * a)
imag_part = sqrt (abs (discriminant)) / (2. * a)
WRITE (*,*) 'This equation has complex roots:'
WRITE (*,*) 'X1 ="', real_part, ' +i ', imag_part
WRITE (*,*) 'X2 = ', real_part, ' -i ', imag_part

END IF

END PROGRAM roots

1.6
SUMMARY

A computer is a special type of machine that stores information, and can perform
mathematical calculations on that information at speeds much faster than human
beings can think. A program, which is stored in the computer’s memory, tells the com-
puter what sequence of calculations is required, and which information to perform the
calculations on.

The major components of a computer are the central processing unit (CPU), cache
memory, main memory, secondary memory, and input and output devices. The CPU
performs all of the control and calculation functions of the computer. Cache memory
is very fact memory integrated directly on the CPU chip. Main memory is somewhat
slower memory that is used to store the program being executed and its associated
data. Main memory is volatile, meaning that its contents are lost whenever power is
turned off. Secondary memory is slower and cheaper than main memory. It is nonvol-
atile. Hard disks are common secondary memory devices. Input and output devices are
used to read data into the computer and to output data from the computer. The most

20

CHAPTER 1: Introduction to Computers and the Fortran Language

common input device is a keyboard, and the most common output devices are displays
or printers.

Computer memories are composed of millions of individual switches, each of which
can be ON or OFF, but not at a state in between. These individual switches are binary
devices called bits. Eight bits are grouped together to form a byte of memory, and 2 or
more bytes (depending on the computer) are grouped together to form a word of memory.

Computer memories can be used to store character, integer, or real data. Each character
in most character data sets occupies 1 byte of memory. The 256 possible values in the byte
allow for 256 possible character codes. (Characters in the Unicode character set occupy 2
bytes, allowing for 65,536 possible character codes.) Integer values occupy 1, 2, 4, or 8 bytes
of memory, and store integer quantities. Real values store numbers in a kind of scientific
notation. They usually occupy 4 bytes of memory. The bits are divided into a separate man-
tissa and exponent. The precision of the number depends upon the number of bits in the
mantissa, and the range of the number depends upon the number of bits in the exponent.

The earliest computers were programmed in machine language. This process was
slow, cumbersome, and error-prone. High-level languages began to appear in about
1954, and they quickly replaced machine language coding for most uses. FORTRAN
was one of the first high-level languages ever created.

The FORTRAN I computer language and compiler were originally developed in
1954-1957. The language has since gone through many revisions, and a standard
mechanism has been created to evolve the language. This book teaches good program-
ming practices using the modern Fortran language.

1.6.1. Exercises

1-1. Express the following decimal numbers as their binary equivalents:
(a) 10,
(b) 32,
(© 77,
(d) 63,
1-2. Express the following binary numbers as their decimal equivalents:
(@) 01001000,
(b) 10001001,
(o) 11111111,
(d) 0101,
1-3. Express the following numbers in both octal and hexadecimal forms:
(a) 1010111011110001,
(b) 330,,
(o) 111,
(d) 11111101101,

Introduction to Computers and the Fortran Language 21

1-4.

1-5.

1-6.

1-8.

1-9.

1-10.

Express the following numbers in binary and decimal forms:
(@) 3774

(b) 1A8,,

(o) 1114

(d) 1FF,

Some computers (such as IBM mainframes) used to implement real data using a 23-bit
mantissa and a 9-bit exponent. What precision and range can we expect from real data on
these machines?

Some Cray supercomputers used to support 46-bit and 64-bit integer data types. What
are the maximum and minimum values that we could express in a 46-bit integer? in a
64-bit integer?

. Find the 16-bit two’s complement representation of the following decimal numbers:

(a) 55,

(b) _510
(c) 1024,
(d) —1024,,

Add the two’s complement numbers 0010010010010010, and 1111110011111100,
using binary arithmetic. Convert the two numbers to decimal form, and add them as
decimals. Do the two answers agree?

The largest possible 8-bit two’s complement number is 01111111, and the smallest pos-
sible 8-bit two’s complement number is 10000000,. Convert these numbers to decimal
form. How do they compare to the results of Equations (1-1) and (1-2)?

The Fortran language includes a second type of floating-point data known as double
precision. A double-precision number usually occupies 8 bytes (64 bits), instead of the
4 bytes occupied by a real number. In the most common implementation, 53 bits are
used for the mantissa and 11 bits are used for the exponent. How many significant digits
does a double-precision value have? What is the range of double-precision numbers?

22

2

Basic Elements of Fortran

OBJECTIVES

¢ Know which characters are legal in a Fortran statement.

* Know the basic structure of a Fortran statement and a Fortran program.

* Know the difference between executable and nonexecutable statements.

* Know the difference between constants and variables.

e Understand the differences among the INTEGER, REAL, and CHARACTER data
types.

e Learn the difference between default and explicit typing, and understand why
explicit typing should always be used.

* Know the structure of a Fortran assignment statement.

e Learn the differences between integer arithmetic and real arithmetic, and when
each one should be used.

¢ Know the Fortran hierarchy of operations.

e Learn how Fortran handles mixed-mode arithmetic expressions.

e L earn what intrinsic functions are, and how to use them.

* Know how to use list-directed input and output statements.

* Know why it is important to always use the IMPLICIT NONE statement.

2.1
INTRODUCTION

As engineers and scientists, we design and execute computer programs to accomplish
a goal. The goal typically involves technical calculations that would be too difficult or
take too long to be performed by hand. Fortran is one of the computer languages com-
monly used for these technical calculations.

This chapter introduces the basic elements of the Fortran language. By the end of
the chapter, we will be able to write simple but functional Fortran programs.

Basic Elements of Fortran 23

2.2
THE FORTRAN CHARACTER SET

Every language, whether it is a natural language such as English or a computer lan-
guage such as Fortran, Java, or C++, has its own special alphabet. Only the characters
in this alphabet may be used with the language.

The special alphabet used with the Fortran language is known as the Fortran
character set. The Fortran character set consists of 97 characters, as shown in Table 2-1.

TABLE 2-1
The Fortran character set
Number of symbols Type Values
26 Uppercase letters A-7
26 Lowercase letters a-z
10 Digits 0-9
1 Underscore character _
5 Arithmetic symbols R
28 Miscellaneous symbols () .=,"¢:1"%& ;<
>?2~\NT[1 A~{3] #@and
blank

Note that the uppercase letters of the alphabet are equivalent to the lowercase ones
in the Fortran character set. (For example, the uppercase letter A is equivalent to the
lowercase letter a.) In other words, Fortran is case insensitive. This behavior is in con-
trast with such case sensitive languages as C++ and Java, in which A and a are two
totally different things.

2.3
THE STRUCTURE OF A FORTRAN STATEMENT

A Fortran program consists of a series of statements designed to accomplish the goal
of the programmer. There are two basic types of statements: executable statements
and nonexecutable statements. Executable statements describe the actions taken by
the program when it is executed (additions, subtractions, multiplications, divisions,
etc.), while nonexecutable statements provide information necessary for the proper
operation of the program. We will see many examples of each type of statement as we
learn more about the Fortran language.

Fortran statements may be entered anywhere on a line, and each line may be up to
132 characters long. If a statement is too long to fit onto a single line, then it may be
continued on the next line by ending the current line (and optionally starting the next
line) with an ampersand (&) character. For example, the following three Fortran
statements are identical:

output = inputl + input2 ! Sum the inputs
output = inputl &
+ input?2 I Sum the inputs

24

CHAPTER 2: Basic Elements of Fortran

999 output = inputl & I Sum the inputs
& + input2

Each of the statements specifies that the computer should add the two quantities stored
in inputl and input?2 and save the result in output. A Fortran statement can be
continued over up to 256 lines, if required.

The last statement shown above starts with a number, known as a statement
label. A statement label can be any number between 1 and 99,999. It is the “name”
of a Fortran statement, and may be used to refer to the statement in other parts of
the program. Note that a statement label has no significance other than as a “name”
for the statement. It is not a line number, and it tells nothing about the order in
which statements are executed. Statement labels are rare in modern Fortran, and
most statements will not have one. If a statement label is used, it must be unique
within a given program unit. For example, if 100 is used as a statement label on one
line, it cannot be used again as a statement label on any other line in the same pro-
gram unit.

Any characters following an exclamation point are comments, and are ignored by
the Fortran compiler. All text from the exclamation point to the end of the line will be
ignored, so comments may appear on the same line as an executable statement.
Comments are very important, because they help us document the proper operation of
a program. In the third example above, the comment is ignored, so the ampersand is
treated by the compiler as the last character on the line.

24
THE STRUCTURE OF A FORTRAN PROGRAM

Each Fortran program consists of a mixture of executable and nonexecutable state-
ments, which must occur in a specific order. An example Fortran program is shown in
Figure 2-1. This program reads in two numbers, multiplies them together, and prints
out the result. Let’s examine the significant features of this program.

FIGURE 2-1
A simple Fortran program.

PROGRAM my_first_program
! Purpose:

! To illustrate some of the basic features of a Fortran program.
|

I Declare the variables used in this program.
INTEGER :: i, j, k I A11 variables are integers

I Get two values to store in variables i and j
WRITE (*,*) "Enter the numbers to multiply: '
READ (*,*) i, j

(continued)

Basic Elements of Fortran 25
(concluded)

! Multiply the numbers together
k=1%*]

I Write out the result.
WRITE (*,*) 'Result ="', k

I Finish up.

STOP

END PROGRAM my_first_program

This Fortran program, like all Fortran program units,! is divided into three
sections:

1. The declaration section. This section consists of a group of nonexecutable state-
ments at the beginning of the program that define the name of the program and the
number and types of variables referenced in the program.

2. The execution section. This section consists of one or more statements describing
the actions to be performed by the program.

3. The termination section. This section consists of a statement or statements stop-
ping the execution of the program and telling the compiler that the program is
complete.

Note that comments may be inserted freely anywhere within, before, or after the
program.

2.4.1 The Declaration Section

The declaration section consists of the nonexecutable statements at the beginning of
the program that define the name of the program and the number and types of vari-
ables referenced in the program.

The first statement in this section is the PROGRAM statement. It is a nonexecutable
statement that specifies the name of the program to the Fortran compiler. Fortran
program names may be up to 63 characters long and contain any combination of alpha-
betic characters, digits, and the underscore (_) character. However, the first character
in a program name must always be alphabetic. If present, the PROGRAM statement must
be the first line of the program. In this example, the program has been named
my_first_program.

The next several lines in the program are comments that describe the purpose of
the program. Next comes the INTEGER type declaration statement. This nonexecutable
statement will be described later in this chapter. Here, it declares that three integer
variables called 1, j, and k will be used in this program.

U A program unit is a separately-compiled piece of Fortran code. We will meet several other types of pro-
gram units beginning in Chapter 7.

26

CHAPTER 2: Basic Elements of Fortran

2.4.2 The Execution Section

The execution section consists of one or more executable statements describing the
actions to be performed by the program.

The first executable statement in this program is the WRITE statement, which
writes out a message prompting the user to enter the two numbers to be multiplied
together. The next executable statement is a READ statement, which reads in the two
integers supplied by the user. The third executable statement instructs the computer to
multiply the two numbers i and j together, and to store the result in variable k. The
final WRITE statement prints out the result for the user to see. Comments may be
embedded anywhere throughout the execution section.

All of these statements will be explained in detail later in this chapter.

2.4.3 The Termination Section

The termination section consists of the STOP and END PROGRAM statements. The STOP
statement is a statement that tells the computer to stop running the program. The END
PROGRAM statement is a statement that tells the compiler that there are no more state-
ments to be compiled in the program.

The STOP statement takes one of the following forms:

STOP
STOP 3
STOP "Error stop'

If the STOP statement is used by itself, execution will stop. If the STOP statement is
used with a number, that number will be printed out when the program stops, and will
normally be returned to the operating system as an error code. If the STOP statement is
used with a character string, that string will be printed out when the program stops.

When the STOP statement immediately precedes the END PROGRAM statement as in this
example, it is optional. The compiler will automatically generate a STOP command when the
END PROGRAM statement is reached. The STOP statement is therefore rarely used.?

There is an alternate version of the STOP statement called ERROR STOP. This ver-
sion stops the program, but it also notifies the operating system that the program failed
to execute properly. An example might be:

ERROR STOP 'Cannot access database'

This version of the STOP statement was added in Fortran 2008, and it might be useful
if you need to inform an operating system script that a program failed abnormally.

2 There is a philosophical disagreement among Fortran programmers about the use of the STOP statement.
Some programming instructors believe that it should always be used, even though it is redundant when
located before an END PROGRAM statement. They argue that the STOP statement makes the end of execu-
tion explicit. The author of this book is of the school that believes that a good program should only have
one starting point and one ending point, with no additional stopping points anywhere along the way. In that
case, a STOP is totally redundant and will never be used. Depending on the philosophy of your instructor,
you may or may not be encouraged to use this statement.

Basic Elements of Fortran 27

2.4.4 Program Style

This example program follows a commonly used Fortran convention of capitalizing
keywords such as PROGRAM, READ, and WRITE, while using lowercase for the program
variables. Names are written with underscores between the words, as in my_first_
program above. It also uses capital letters for named constants such as PI (x). This is
not a Fortran requirement; the program would have worked just as well if all capital
letters or all lowercase letters were used. Since uppercase and lowercase letters are
equivalent in Fortran, the program functions identically in either case.

Throughout this book, we will follow this convention of capitalizing Fortran
keywords and constants, and using lowercase for variables, procedure names, etc.

Some programmers use other styles to write Fortran programs. For example, Java
programmers who also work with Fortran might adopt a Java-like convention in
which keywords and names are in lowercase, with capital letters at the beginning of
each word (sometimes called “camel case”). Such a programmer might give this pro-
gram the name myFirstProgram. This is an equally valid way to write a Fortran
program.

It is not necessary for you to follow any specific convention to write a Fortran
program, but you should always be consistent in your programming style. Establish a
standard practice, or adopt the standard practice of the organization in which you
work, and then follow it consistently in all of your programs.

Good Programming Practice
Adopt a programming style, and then follow it consistently in all of your programs.

2.4.5 Compiling, Linking, and Executing the Fortran Program

Before the sample program can be run, it must be compiled into object code with a
Fortran compiler, and then linked with a computer’s system libraries to produce an
executable program (Figure 2-2). These two steps are usually done together in
response to a single programmer command. The details of compiling and linking
are different for every compiler and operating system. You should ask your
instructor or consult the appropriate manuals to determine the proper procedure for
your system.

Fortran Executable

rogram Object file rogram
prog Compile Link prog

FIGURE 2-2
Creating an executable Fortran program involves two steps, compiling and linking.

28

CHAPTER 2: Basic Elements of Fortran

Fortran programs can be compiled, linked, and executed in one of two possible
modes: batch and interactive. In batch mode, a program is executed without an input
from or interaction with a user. This is the way most Fortran programs worked in the
early days. A program would be submitted as a deck of punched cards or in a file, and
it would be compiled, linked, and executed without any user interaction. All input data
for the program had to be placed on cards or put in files before the job was started, and
all output went to output files or to a line printer.

By contrast, a program that is run in interactive mode is compiled, linked, and
executed while a user is waiting at an input device such as the computer keyboard or a
terminal. Since the program executes with the human present, it can ask for input data
from the user as it is executing, and it can display intermediate and final results as soon
as they are computed.

Today, most Fortran programs are executed in interactive mode. However, some
very large Fortran programs that execute for days at a time are still run in batch
mode.

2.5
CONSTANTS AND VARIABLES

A constant is a data object that is defined before a program is executed, and that does
not change value during the execution of the program. When a Fortran compiler encoun-
ters a constant, it places the value of the constant in a known location in memory, and
then references that memory location whenever the constant is used in the program. A
variable is a data object that can change value during the execution of a program. (The
value of a Fortran variable may or may not be initialized before a program is executed.)
When a Fortran compiler encounters a variable, it reserves a known location in mem-
ory for the variable, and then references that memory location whenever the variable is
used in the program.

Each Fortran variable in a program unit must have a unique name. The variable
name is a label for a specific location in memory that is easy for humans to remember
and use. Fortran variable names may be up to 63 characters long, and may contain any
combination of alphabetic characters, digits, and the underscore (_) character. How-
ever, the first character in a name must always be alphabetic. The following examples
are valid variable names:

time
distance

2123456789
I_want_to_go_home

The following examples are invalid variable names:

this_is_a_very_very_very_very_very_very_very_very_long_variable_name
(Name is too long.)

3_days (First character is a number.)

A$ ($ is an illegal character.)

Basic Elements of Fortran 29

When writing a program, it is important to pick meaningful names for the
variables. Meaningful names make a program much easier to read and to maintain.
Names such as day, month, and year are quite clear even to a person seeing a program
for the first time. Since spaces cannot be used in Fortran variable names, underscore
characters can be substituted to create meaningful names. For example, exchange rate
might become exchange_rate.

Good Programming Practice
Use meaningful variable names whenever possible.

It is also important to include a data dictionary in the header of any program that
you write. A data dictionary lists the definition of each variable used in a program.
The definition should include both a description of the contents of the item and the
units in which it is measured. A data dictionary may seem unnecessary while the pro-
gram is being written, but it is invaluable when you or another person have to go back
and modify the program at a later time.

Good Programming Practice
Create a data dictionary for each program to make program maintenance easier.

There are five intrinsic or “built-in” types of Fortran constants and variables.
Three of them are numeric (types INTEGER, REAL, and COMPLEX), one is logical (type
LOGICAL), and one consists of strings of characters (type CHARACTER). The simplest
forms of the INTEGER, REAL, and CHARACTER data types will be discussed now. The
LOGICAL data type is included in Chapter 3. More advanced forms of various data
types will be discussed in Chapter 11.

In addition to the intrinsic data types, Fortran permits a programmer to define
derived data types, which are special data types intended to solve particular prob-
lems. Derived data types will also be discussed in Chapter 12.

2.5.1 Integer Constants and Variables

The integer data type consists of integer constants and variables. This data type can
only store integer values—it cannot represent numbers with fractional parts.

An integer constant is any number that does not contain a decimal point. If a con-
stant is positive, it may be written either with or without a + sign. No commas may be
embedded within an integer constant. The following examples are valid integer constants:

0

-999
123456789
+17

30

CHAPTER 2: Basic Elements of Fortran

The following examples are not valid integer constants:

1,000,000 (Embedded commas are illegal.)
-100. (If it has a decimal point, it is not an integer constant!)

An integer variable is a variable containing a value of the integer data type.

Constants and variables of the integer data type are usually stored in a single word
on a computer. Since the length of a word varies from 32 bits to 64 bits on different
computers, the largest integer that can be stored in a computer also varies. The largest
and smallest integers that can be stored in a particular computer can be determined
from the word size by applying Equations (1-1) and (1-2).

Almost all Fortran compilers support integers with more than one length. For
example, most PC compilers support 16-bit, 32-bit, and 64-bit integers. These different
lengths of integers are known as different Kinds of integers. Fortran has an explicit
mechanism for choosing which kind of integer is used for a given value. This mecha-
nism is explained in Chapter 11.

2.5.2 Real Constants and Variables

The real data type consists of numbers stored in real or floating-point format. Unlike
integers, the real data type can represent numbers with fractional components.

A real constant is a constant written with a decimal point. It may be written with
or without an exponent. If the constant is positive, it may be written either with or
without a + sign. No commas may be embedded within a real constant.

Real constants may be written with or without an exponent. If used, the exponent
consists of the letter E followed by a positive or negative integer, which corresponds to
the power of 10 used when the number is written in scientific notation. If the exponent
is positive, the + sign may be omitted. The mantissa of the number (the part of the
number that precedes the exponent) should contain a decimal point. The following
examples are valid real constants:

10.
-999.9
+1.0E-3 (= 1.0x 1073, or 0.001)
123.45E20 (= 123.45 x 10%, or 1.2345 x 10%)
0.12E+1 (=0.12x 104 or 1.2)
The following examples are not valid real constants:
1,000,000. (Embedded commas are illegal.)
111E3 (A decimal point is required in the mantissa.)
-12.0E1.5 (Decimal points are not allowed in exponents.)

A real variable is a variable containing a value of the real data type.

A real value is stored in two parts: the mantissa and the exponent. The number of
bits allocated to the mantissa determines the precision of the constant (that is, the
number of significant digits to which the constant is known), while the number of bits
allocated to the exponent determines the range of the constant (that is, the largest and

Basic Elements of Fortran 31

TABLE 2-2
Precision and range of real numbers
Computer Total number Number of bits Precision in Number of bits Exponent
standard of bits in mantissa decimal digits in exponent range)
IEEE 754 32 24 7 8 1073 t0 10
64 53 15 11 107398 to 1038
128 112 34 16 1074932 o 10%932

the smallest values that can be represented). For a given word size, the more precise a
real number is, the smaller its range is, and vice versa, as described in the previous
chapter.

Over the last 25 years, almost all computers have switched to using floating-point
numbers that conform to IEEE Standard 754. Table 2-2 shows the precision and the
range of typical real constants and variables on IEEE Standard 754 compliant
computers.

All Fortran compilers support real numbers with more than one length. For exam-
ple, PC compilers support both 32-bit real numbers and 64-bit real numbers. These
different lengths of real numbers are known as different kinds. By selecting the proper
kind, it is possible to increase the precision and range of a real constant or variable.
Fortran has an explicit mechanism for choosing which kind of real is used for a given
value. This mechanism is explained in detail in Chapter 11.

2.5.3 Character Constants and Variables

The character data type consists of strings of alphanumeric characters. A character
constant is a string of characters enclosed in single (') or double (") quotes. The min-
imum number of characters in a string is 0, while the maximum number of characters
in a string varies from compiler to compiler.

The characters between the two single or double quotes are said to be in a
character context. Any characters representable on a computer are legal in a character
context, not just the 97 characters forming the Fortran character set.

The following are valid character constants:

'This is a test!’

"B (a single blank)?

"y (These characters are legal in a character
context even though they are not a part of
the Fortran character set.)

"3.141593" (This is a character string, not a number.)

3In places where the difference matters, the symbol f is used to indicate a blank character, so that the stu-
dent can tell the difference between a string containing no characters (") and one containing a single blank
character ("B").

32 CHAPTER 2: Basic Elements of Fortran

The following are not valid character constants:

This is a test! (No single or double quotes)
'This is a test!” (Mismatched quotes)
2 "Try this one.' (Unbalanced single quotes)

If a character string must include an apostrophe, then that apostrophe may be
represented by two consecutive single quotes. For example, the string “Man’s best
friend” would be written in a character constant as

'Man''s best friend'

Alternatively, the character string containing a single quote can be surrounded by dou-
ble quotes. For example, the string “Man’s best friend” could be written as

"Man's best friend"

Similarly, a character string containing double quotes can be surrounded by
single quotes. The character string “Who cares?” could be written in a character
constant as

""Who cares?"'

Character constants are most often used to print descriptive information using the
WRITE statement. For example, the string 'Result = ' in Figure 2-1 is a valid char-
acter constant:

WRITE (*,*) 'Result ="', k

A character variable is a variable containing a value of the character data type.

2.5.4 Default and Explicit Variable Typing

When we look at a constant, it is easy to see whether it is of type integer, real, or
character. If a number does not have a decimal point, it is of type integer; if it has a
decimal point, it is of type real. If the constant is enclosed in single or double
quotes, it is of type character. With variables, the situation is not so clear. How do
we (or the compiler) know if the variable junk contains an integer, real, or charac-
ter value?

There are two possible ways in which the type of a variable can be defined: default
typing and explicit typing. If the type of a variable is not explicitly specified in the
program, then default typing is used. By default:

Any variable names beginning with the letters i, j, k, T, m, or n are assumed to be
of type INTEGER. Any variable names starting with another letter are assumed to
be of type REAL.

Basic Elements of Fortran 33

Therefore, a variable called incr is assumed to be of type integer by default, while
a variable called big is assumed to be of type real by default. This default typing con-
vention goes all the way back to the original Fortran I in 1954. Note that no variable
names are of type character by default, because this data type didn’t exist in Fortran I!

The type of a variable may also be explicitly defined in the declaration section at
the beginning of a program. The following Fortran statements can be used to specify
the type of variables:*

INTEGER :: varl [, var2, var3, ...]
REAL :: varl [, var2, var3, ...]

where the values inside the [] are optional. In this case, the values inside the brackets
show that more than two variables may be declared on a single line if they are sepa-
rated by commas.

These nonexecutable statements are called type declaration statements. They
should be placed after the PROGRAM statement and before the first executable statement
in the program, as shown in the example below.

PROGRAM example
INTEGER :: day, month, year
REAL :: second

&E;(ecutab]e statements follow here...)

There are no default names associated with the character data type, so all character
variables must be explicitly typed using the CHARACTER type declaration statement.
This statement is a bit more complicated than the previous ones, since character vari-
ables may have different lengths. Its form is:

CHARACTER(1en=<1en>) :: varl [, var2, var3, ...]1

where <1en> is the number of characters in the variables. The (1en=<Ten>) portion
of the statement is optional. If only a number appears in the parentheses, then the char-
acter variables declared by the statement are of that length. If the parentheses are en-
tirely absent, then the character variables declared by the statement have length 1. For
example, the type declaration statements

CHARACTER(Ten=10) :: first, last
CHARACTER :: initial
CHARACTER(15) :: id

define two 10-character variables called first and 1ast, a 1-character variable called
initial, and a 15-character variable called id.

4The double colon : : is optional in the above statements for backward compatibility with earlier versions
of Fortran. Thus, the following two statements are equivalent

INTEGER count
INTEGER :: count

The form with the double colon is preferred, because the double colons are not optional in more advanced
forms of the type specification statement that we will see later.

34

X%T@\S

CHAPTER 2: Basic Elements of Fortran

2.5.5 Keeping Constants Consistent in a Program

It is important to always keep your physical constants consistent throughout a pro-
gram. For example, do not use the value 3.14 for z at one point in a program, and
3.141593 at another point in the program. Also, you should always write your con-
stants with at least as much precision as your computer will accept. If the real data type
on your computer has seven significant digits of precision, then z should be written as
3.141593, not as 3.14!

The best way to achieve consistency and precision throughout a program is to
assign a name to a constant, and then to use that name to refer to the constant through-
out the program. If we assign the name P to the constant 3.141593, then we can refer
to PI by name throughout the program, and be certain that we are getting the same
value everywhere. Furthermore, assigning meaningful names to constants improves
the overall readability of our programs, because a programmer can tell at a glance just
what the constant represents.

Named constants are created using the PARAMETER attribute of a type decla-
ration statement. The form of a type declaration statement with a PARAMETER
attribute is

type, PARAMETER :: name = value [, name2 = value2, ...1]

where type is the type of the constant (integer, real, logical, or character), and name is
the name assigned to constant value. More than one parameter may be declared on a
single line if they are separated by commas. For example, the following statement
assigns the name p1i to the constant 3.141593.

REAL, PARAMETER :: PI = 3.141593

If the named constant is of type character, then it is not necessary to declare the
length of the character string. Since the named constant is being defined on the same
line as its type declaration, the Fortran compiler can directly count the number of char-
acters in the string. For example, the following statements declare a named constant
error_message to be the 14-character string ‘Unknown error!’.

CHARACTER, PARAMETER :: ERROR_MESSAGE = 'Unknown error!’

In languages such as C, C++, and Java, named constants are usually written in all
capital letters. Many Fortran programmers are also familiar with these languages, and
they have adopted the convention of writing named constants in capital letters in For-
tran as well. We will follow that practice in this book.

Good Programming Practice

Keep your physical constants consistent and precise throughout a program. To
improve the consistency and understandability of your code, assign a name to any
important constants, and refer to them by name in the program.

Basic Elements of Fortran

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 2.5. If you have trouble with the quiz, reread the section, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book.

Questions 1 to 12 contain a list of valid and invalid constants. State whether or
not each constant is valid. If the constant is valid, specify its type. If it is invalid,
say why it is invalid.

10.0

-100,000

123E-5

"That's ok!’

-32768

3.14159

"Who are you?"

'3.14159"

'Distance =

"That's ok!"

17.877E+6

12. 13.072

[

D I Al o

—_
- O

Questions 13 to 16 contain two real constants each. Tell whether or not the two
constants represent the same value within the computer:

13. 4650.; 4.65E+3

14. -12.71; -1.27E1

15. 0.0001; 1.0E4

16. 3.14159E0; 314.159E-3

Questions 17 and 18 contain a list of valid and invalid Fortran program names. State
whether or not each program name is valid. If it is invalid, say why it is invalid.

17. PROGRAM new_program

18. PROGRAM 3rd

Questions 19 to 23 contain a list of valid and invalid Fortran variable names.

State whether or not each variable name is valid. If the variable name is valid,
specify its type (assume default typing). If it is invalid, say why it is invalid.

(continued)

35

36 CHAPTER 2: Basic Elements of Fortran

(concluded)

19. Tength

20. distance

21. 1lproblem

22. when_does_school_end
23. _ok

Are the following PARAMETER declarations correct or incorrect? If a statement is
incorrect, state why it is invalid.

24. REAL, PARAMETER BEGIN = -30
25. CHARACTER, PARAMETER :: NAME = 'Rosa’

2.6
ASSIGNMENT STATEMENTS AND ARITHMETIC CALCULATIONS

Calculations are specified in Fortran with an assignment statement, whose general
form is

variable_name = expression

The assignment statement calculates the value of the expression to the right of the
equal sign, and assigns that value to the variable named on the left of the equal sign.
Note that the equal sign does not mean equality in the usual sense of the word. Instead,
it means: store the value of expression into location variable_name. For this rea-
son, the equal sign is called the assignment operator. A statement like

i=9+1

is complete nonsense in ordinary algebra, but makes perfect sense in Fortran. In
Fortran, it means: Take the current value stored in variable i, add one to it, and store
the result back into variable i.

The expression to the right of the assignment operator can be any valid combina-
tion of constants, variables, parentheses, and arithmetic or logical operators. The
standard arithmetic operators included in Fortran are:

+ Addition

- Subtraction

* Multiplication
/ Division

** Exponentiation

Note that the symbols for multiplication (*), division (/), and exponentiation (**) are
not the ones used in ordinary mathematical expressions. These special symbols were

Basic Elements of Fortran 37

chosen because they were available in 1950s-era computer character sets, and because
they were different from the characters being used in variable names.

The five arithmetic operators described above are binary operators, which
means that they should occur between and apply to two variables or constants, as
shown:

C o+

R

*

*
U'U'O-U'U'

*
/

v

In addition, the + and — symbols can occur as unary operators, which means that
they apply to one variable or constant, as shown:

+23
-a

The following rules apply when using Fortran arithmetic operators:

1. No two operators may occur side by side. Thus, the expression a * -b is illegal.
In Fortran, it must be written as @ * (-b). Similarly, a ** -2 is illegal, and
should be written as a ** (-2).

2. Implied multiplication is illegal in Fortran. An expression like x(y + z) means that
we should add y and z, and then multiply the result by x. The implied multiplica-
tion must be written explicitly in Fortran as x * (y + z).

3. Parentheses may be used to group terms whenever desired. When parentheses are
used, the expressions inside the parentheses are evaluated before the expressions
outside the parentheses. For example, the expression 2 ** ((8+2)/5) is evalu-
ated as shown below

2 ** ((8+2)/5) 10/5)

=2 (
=2 *x 2
-4

2.6.1 Integer Arithmetic

Integer arithmetic is arithmetic involving only integer data. Integer arithmetic
always produces an integer result. This is especially important to remember when an
expression involves division, since there can be no fractional part in the answer. If the
division of two integers is not itself an integer, the computer automatically truncates
the fractional part of the answer. This behavior can lead to surprising and unexpected
answers. For example, integer arithmetic produces the following strange results:

I
]
I
—_
I

6
— =1
4

BN W
Il

—_
IR ES
Il

S}
B[O |
Il

S}

38

CHAPTER 2: Basic Elements of Fortran

Because of this behavior, integers should never be used to calculate real-world
quantities that vary continuously, such as distance, speed, and time. They should
only be used for things that are intrinsically integer in nature, such as counters and
indices.

Programming Pitfalls
Beware of integer arithmetic. Integer division often gives unexpected results.

2.6.2 Real Arithmetic
Real arithmetic (or floating-point arithmetic) is arithmetic involving real constants

and variables. Real arithmetic always produces a real result that is essentially what we
would expect. For example, real arithmetic produces the following results:

1.50

I
-
I
—_
)
(9

Il
e
G
(V)]
Rt

- =0.3333333

I
—_
9
D

I
N

o |+
I

N

[\)

G

NSNS
NN

e

However, real numbers do have peculiarities of their own. Because of the finite
word length of a computer, some real numbers cannot be represented exactly. For
example, the number 1/3 is equal to 0.33333333333. . ., but since the numbers stored
in the computer have limited precision, the representation of 1/3 in the computer might
be 0.3333333. As a result of this limitation in precision, some quantities that are theo-
retically equal will not be equal when evaluated by the computer. For example, on
some computers

3. (1. /3.) #1.,
but
2. % (1. /2.) =1.

Tests for equality must be performed very cautiously when working with real
numbers.

Programming Pitfalls
Beware of real arithmetic: Due to limited precision, two theoretically identical
expressions often give slightly different results.

Basic Elements of Fortran 39

2.6.3 Hierarchy of Operations

Often, many arithmetic operations are combined into a single expression. For example,
consider the equation for the distance traveled by an object starting from rest and sub-)
jected to a constant acceleration:

distance = 0.5 * accel * time ** 2

There are two multiplications and an exponentiation in this expression. In such an ex-
pression, it is important to know the order in which the operations are evaluated. If
exponentiation is evaluated before multiplication, this expression is equivalent to

distance = 0.5 * accel * (time ** 2)
But if multiplication is evaluated before exponentiation, this expression is equivalent to
distance = (0.5 * accel * time) ** 2

These two equations have different results, and we must be able to unambiguously
distinguish between them.

To make the evaluation of expressions unambiguous, Fortran has established a
series of rules governing the hierarchy or order in which operations are evaluated
within an expression. The Fortran rules generally follow the normal rules of algebra.
The order in which the arithmetic operations are evaluated is:

1. The contents of all parentheses are evaluated first, starting from the innermost
parentheses and working outward.

2. All exponentials are evaluated, working from right to left.

3. All multiplications and divisions are evaluated, working from left to right.

4. All additions and subtractions are evaluated, working from left to right.

Following these rules, we see that the first of our two possible interpretations is
correct—time is squared before the multiplications are performed.

Some people use simple phrases to help them remember the order of operations.
For example, try “Please excuse my dear Aunt Sally”. The first letters of these words
give the order of evaluation: parentheses, exponents, multiplication, division, addition,
subtraction.

EXAMPLE Variables a, b, c, d, e, T, and g have been initialized to the following values:
2-1

Evaluate the following Fortran assignment statements:

(a) output = a*b+c*d+e/f**g
(b) output = a*(b+c)*d+(e/f)**g
(c) output = a*(b+c)*(d+e)/f**g

40

SOLUTION
(a) Expression to evaluate: output =
Fill in numbers: output
First, evaluate 2.**3 . : output =

Now, evaluate multiplications
and divisions from left to right: output

output
output
Now evaluate additions: output
(b) Expression to evaluate: output =
Fill in numbers: output

First, evaluate parentheses: output

Now, evaluate exponents: output =

Evaluate multiplications and

divisions from left to right: output =

output

Evaluate additions: output =

(c¢) Expression to evaluate: output =
Fill in numbers: output

First, evaluate parentheses: output

Now, evaluate exponents: output =

Evaluate multiplications and

divisions from left to right: output =

output

output =

CHAPTER 2: Basic Elements of Fortran

a*b+c*d+e/f**g
3.%2.45.%4 ,+10./2.%*3.
3.%2.+5.*4 .+10./8.

6. +5.*%4.+10./8.
6. +20. +10./8.

=6. +20. + 1.25
= 27.25

a* (b+c)*d+(e/f)**g
3.%(2.+5.)*4 .+(10./2.)**3.
3.%7.%4 +5 ,**3,
3.%7.%4 . +125.

21.%4 .+125.
84. + 125.
209.

a*(b+c)*(d+e)/f**g
3.%(2.45.)*(4.+10.)/2.**3,
3.%7.%14./2.%*3,
3.%7.%14./8.

21.*14./8.
294./8.
36.75

As we saw above, the order in which operations are performed has a major effect

on the final result of an algebraic expression.

EXAMPLE Variables a, b, and ¢ have been initialized to the following values:

2-2
a=3. b=2.

c = 3.

Evaluate the following Fortran assignment statements:

(a) output = a**(b**c)

(b) output = (a**b)**c
(¢) output = a**b**c
SOLUTION
(a) Expression to evaluate: output = a**(b**c)
Fill in numbers: output = 3.%*(2.**3.)

Basic Elements of Fortran 41

X%T@\S

Evaluate expression in parentheses: output = 3.**8.
Evaluate remaining expression: output = 6561.

(b) Expression to evaluate: output = (a**p)**c
Fill in numbers: output = (3.**2,)**3,
Evaluate expression in parentheses: output = 9.**3.
Evaluate remaining expression: output = 729.

(c) Expression to evaluate: output = a**b**c
Fill in numbers: output = 3.**2 **3,

First, evaluate rightmost exponent: output = 3.**8.
Now, evaluate remaining exponent: output = 6561.

The results of (a) and (c) are identical, but the expression in (a) is easier to under-
stand and less ambiguous than the expression in (c).

It is important that every expression in a program be made as clear as possible.
Any program of value must not only be written but also be maintained and modified
when necessary. You should always ask yourself: “Will I easily understand this expres-
sion if I come back to it in six months? Can another programmer look at my code and
easily understand what I am doing?” If there is any doubt in your mind, use extra
parentheses in the expression to make it as clear as possible.

Good Programming Practice
Use parentheses as necessary to make your equations clear and easy to understand.

If parentheses are used within an expression, then the parentheses must be bal-
anced. That is, there must be an equal number of open parentheses and close parenthe-
ses within the expression. It is an error to have more of one type than the other. Errors
of this sort are usually typographical, and the Fortran compiler catches them. For
example, the expression

(2. +4.) /1 2.)

produces an error during compilation because of the mismatched parentheses.

2.6.4 Mixed-Mode Arithmetic

When an arithmetic operation is performed using two real numbers, its immediate
result is of type real. Similarly, when an arithmetic operation is performed using
two integers, the result is of type integer. In general, arithmetic operations are only

42

CHAPTER 2: Basic Elements of Fortran

defined between numbers of the same type. For example, the addition of two real
numbers is a valid operation, and the addition of two integers is a valid operation,
but the addition of a real number and an integer is not a valid operation. This is true
because real numbers and integers are stored in completely different forms in the
computer.

What happens if an operation is between a real number and an integer? Expres-
sions containing both real numbers and integers are called mixed-mode
expressions, and arithmetic involving both real numbers and integers is called
mixed-mode arithmetic. In the case of an operation between a real number and an
integer, the integer is converted by the computer into a real number, and real arith-
metic is used on the numbers. The result is of type real. For example, consider the
following equations:

Integer expression: is evaluated to be 1 (integer result)

Real expression: is evaluated to be 1.5 (real result)

Mixed-mode expression: is evaluated to be 1.5 (real result)

W W

The rules governing mixed-mode arithmetic can be confusing to beginning
programmers, and even experienced programmers may trip up on them from time to
time. This is especially true when the mixed-mode expression involves division.
Consider the following expressions:

Expression Result
1. 1+1/4 1
2. 1. +1/4 1.
3. 1+1./4 1.25

Expression 1 contains only integers, so it is evaluated by integer arithmetic. In integer
arithmetic, 1/4 = 0and1 + 0 = 1, so the final result is 1 (an integer). Expression
2 is a mixed-mode expression containing both real numbers and integers. However, the
first operation to be performed is a division, since division comes before addition in the
hierarchy of operations. The division is between integers, so the resultis 1/4 = 0.
Next comes an addition between areal 1. and an integer 0, so the compiler converts the
integer 0 into a real number, and then performs the addition. The resulting number is
1. (areal number). Expression 3 is also a mixed-mode expression containing both real
numbers and integers. The first operation to be performed is a division between a real
number and an integer, so the compiler converts the integer 4 into a real number, and
then performs the division. The result is a real 0.25. The next operation to be
performed is an addition between an integer 1 and areal 0. 25, so the compiler converts
the integer 1 into a real number, and then performs the addition. The resulting number
is 1. 25 (a real number).

Basic Elements of Fortran 43

TABLE 2-3

To summarize,

1. An operation between an integer and a real number is called a mixed-mode
operation, and an expression containing one or more such operations is called a
mixed-mode expression.

2. When a mixed-mode operation is encountered, Fortran converts the integer into a
real number, and then performs the operation to get a real result.

3. The automatic mode conversion does not occur until a real number and an integer
both appear in the same operation. Therefore, it is possible for a portion of an
expression to be evaluated in integer arithmetic, followed by another portion eval-
uated in real arithmetic.

Automatic type conversion also occurs when the variable to which the expression
is assigned is of a different type than the result of the expression. For example, con-
sider the following assignment statement:

nres = 1.25+9 / 4

where nres is an integer. The expression to the right of the equal sign evaluates to
3.25, which is a real number. Since nres is an integer, the 3.25 is automatically
converted into the integer number 3 before being stored in nres.

Programming Pitfalls
Mixed-mode expressions are dangerous because they are hard to understand and
may produce misleading results. Avoid them whenever possible.

Fortran includes five type conversion functions that allow us to explicitly control
the conversion between integer and real values. These functions are described in
Table 2-3.

The REAL, INT, NINT, CEILING, and FLOOR functions may be used to avoid un-
desirable mixed-mode expressions by explicitly converting data types from one form
to another. The REAL function converts an integer into a real number, and the INT,
NINT, CEILING, and FLOOR functions convert real numbers into integers. The INT
function truncates the real number, while the NINT function rounds it to the nearest
integer value. The CEILING function returns the nearest integer greater than or equal

Type conversion functions

Function name

and arguments Argument type Result type Comments

INT(X) REAL INTEGER Integer part of x (x is truncated)

NINT(X) REAL INTEGER Nearest integer to x (x is rounded)
CEILING(X) REAL INTEGER Nearest integer above or equal to the value of x
FLOOR(X) REAL INTEGER Nearest integer below or equal to the value of x
REAL(I) INTEGER REAL Converts integer value to real

44

CHAPTER 2: Basic Elements of Fortran

to the real number and the FLOOR function returns the nearest integer less than or equal
to the real number.

To understand the distinction between these two operations, let’s consider the real
numbers 2.9995 and —2.9995. The results of each function with these inputs are shown
below:

Function Result Description

INT(2.9995) 2 Truncates 2.9995 to 2
NINT(2.9995) 3 Rounds 2.9995 to 3
CEILING(2.9995) 3 Selects nearest integer above 2.9995
FLOOR(2.9995) 2 Selects nearest integer below 2.9995
INT(-2.9995) -2 Truncates —2.9995 to —2
NINT(-2.9995) -3 Rounds —2.9995 to —3
CEILING(-2.9995) -2 Selects nearest integer above —2.9995
FLOOR(-2.9995) -3 Selects nearest integer below —2.9995

The NINT function is especially useful when converting back from real to integer
form, since the small round-off errors occurring in real calculations will not affect the
resulting integer value.

2.6.5 Mixed-Mode Arithmetic and Exponentiation

As a general rule, mixed-mode arithmetic operations are undesirable because they are
hard to understand and can sometimes lead to unexpected results. However, there is
one exception to this rule: exponentiation. For exponentiation, mixed-mode operation
is actually desirable.

To understand why this is so, consider the assignment statement

result =y **n

where result and y are real, and n is an integer. The expression y ** n is short-
hand for “use y as a factor n times”, and that is exactly what the computer does when
it encounters this expression. Since y is a real number and the computer is multiply-
ing y by itself, the computer is really doing real arithmetic and not mixed-mode
arithmetic!

Now consider the assignment statement

result =y ** x

where result, y, and x are real. The expression y ** x is shorthand for “use y as a
factor x times”, but this time X is not an integer. Instead, x might be a number like 2.5.
It is not physically possible to multiply a number by itself 2.5 times, so we have to rely
on indirect methods to calculate y ** x in this case. The most common approach is
to use the standard algebraic formula that says that

yJC:eXlny (2_1)

Basic Elements of Fortran 45

Using this equation, we can evaluate y ** x by taking the natural logarithm of y,
multiplying by x, and then calculating e to the resulting power. While this technique
certainly works, it takes longer to perform and is less accurate than an ordinary series
of multiplications. Therefore, if given a choice, we should try to raise real numbers to
integer powers instead of real powers.

Good Programming Practice
Use integer exponents instead of real exponents whenever possible.

Also, note that it is not possible to raise a negative number to a negative real
power. Raising a negative number to an integer power is a perfectly legal operation.
For example, (—-2.0)**2 = 4. However, raising a negative number to a real power
will not work, since the natural logarithm of a negative number is undefined. There-
fore, the expression (—2.0)**2.0 will produce a runtime error.

Programming Pitfalls
Never raise a negative number to a real power.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 2.6. If you have trouble with the quiz, reread the section, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book.

1. In what order are the arithmetic and logical operations evaluated if they
appear within an arithmetic expression? How do parentheses modify this
order?

2. Are the following expressions legal or illegal? If they are legal, what is
their result? If they are illegal, what is wrong with them?
(@) 37 /3
(b) 37 +17 / 3
(c) 28 /3 /4
(d (28 /73)/ 4
(e) 28/ (3 /1 4)

(continued)

46 CHAPTER 2: Basic Elements of Fortran

(concluded)

(f) -3. ** 4./ 2.
() 3. ** (-4. / 2.)
(h) 4. ** -3

3. Evaluate the following expressions:
(@ 2+5*2 -5
(b)y (2 +5) *(2-05)
() 2+ (5*2) -5
(d (2+5)*2-5

4. Are the following expressions legal or illegal? If they are legal, what is
their result? If they are illegal, what is wrong with them?
(@) 2. ** 2. ** 3,
by 2. ** (-2.)
() (-2) ** 2
(d (-2.) ** (-2.2)
(e) (-2.) ** NINT(-2.2)
(f) (-2.) ** FLOOR(-2.2)

5. Are the following statements legal or illegal? If they are legal, what is their
result? If they are illegal, what is wrong with them?

INTEGER :: 1, J
INTEGER, PARAMETER :: K = 4

=K *x 2
j=1/K
K=1+j

6. What value is stored in result after the following statements are

executed?
REAL :: a, b, c, result
a = 10.
b=1.5
c=5

result = FLOOR(a / b) + b * ¢ ** 2

7. What values are stored in a, b, and n after the following statements are

executed?
REAL :: a, b
INTEGER :: n, i, J
i = 10.
j=3
n=11/19]
a=1/1]
b = REAL(i) /]

Basic Elements of Fortran 47

2.7
INTRINSIC FUNCTIONS

In mathematics, a function is an expression that accepts one or more input values and
calculates a single result from them. Scientific and technical calculations usually
require functions that are more complex than the simple addition, subtraction,
multiplication, division, and exponentiation operations that we have discussed so far.
Some of these functions are very common, and are used in many different technical
disciplines. Others are rarer and specific to a single problem or a small number of
problems. Examples of very common functions are the trigonometric functions,
logarithms, and square roots. Examples of rarer functions include the hyperbolic
functions, Bessel functions, and so forth.

The Fortran language has mechanisms to support both the very common functions
and the less common functions. Many of the most common ones are built directly into
the Fortran language. They are called intrinsic functions. Less common functions are
not included in the Fortran language, but the user can supply any function needed to
solve a particular problem as either an external function or an internal function.
External functions will be described in Chapter 7, and internal functions will be
described in Chapter 9.

A Fortran function takes one or more input values, and calculates a single output
value from them. The input values to the function are known as arguments; they appear
in parentheses immediately after the function name. The output of a function is a single
number, logical value, or character string, which can be used together with other func-
tions, constants, and variables in Fortran expressions. When a function appears in a For-
tran statement, the arguments of the function are passed to a separate routine that
computes the result of the function, and then the result is used in place of the function in
the original calculation (see Figure 2-3). Intrinsic functions are supplied with the Fortran
compiler. For external and internal functions, the routine must be supplied by the user.

A list of some common intrinsic functions is given in Table 2-4. A more complete
list of Fortran intrinsic functions is given in Appendix B, along with a brief descrip-
tion of each one.

P.u'/[.)ot = side2 / sin(theta)

theta

Function to

sin(theta) calculate sin(theta)

FIGURE 2-3

When a function is included in a Fortran statement, the argument(s) of the function are passed to a separate
routine that computes the result of the function, and then the result is used in place of the function in the original

calculation.

48 CHAPTER 2: Basic Elements of Fortran

TABLE 2-4
Some common intrinsic functions

Function name Function Argument type Result

and arguments value type Comments

SQRT(X) \/;C REAL REAL Square root of x for x > 0

ABS(X) REAL/INTEGER * Absolute value of x

ACHAR(T) INTEGER CHAR(1) Returns the character at position I in the ASCIT
collating sequence

SIN(X) sin(x) REAL REAL Sine of x (x must be in radians)

SIND(X) sin(x) REAL REAL Sine of x (x must be in degrees)

COS(X) cos(x) REAL REAL Cosine of x (x must be in radians)

COSD(X) cos(x) REAL REAL Cosine of x (x must be in degrees)

TAN(X) tan(x) REAL REAL Tangent of x (x must be in radians)

TAND(X) tan(x) REAL REAL Tangent of x (x must be in degrees)

EXP(X) e REAL REAL e raised to the xth Power

LOG(X) log,(x) REAL REAL Natural logarithm of x for x > 0

LOG10(X) log,,(x) REAL REAL Base-10 logarithm of x for x > 0

TACHAR(C) CHAR(1) INTEGER Returns the position of the character C in the
ASCII collating sequence

MOD(A,B) REAL/INTEGER * Remainder or Modulo Function

MAX(A,B) REAL/INTEGER * Picks the larger of a and b

MINCA,B) REAL/INTEGER * Picks the smaller of a and b

ASIN(X) sin~!(x) REAL REAL Inverse sine of x for —1 < x < 1 (results in radians)

ASIND(X) sin~!(x) REAL REAL Inverse sine of x for —1 < x < 1 (results in degrees)

ACOS(X) cos~!(x) REAL REAL Inverse cosine of x for —1 < x < 1 (results in radians)

ACOSD(X) cos~!(x) REAL REAL Inverse cosine of x for —1 < x < 1 (results in degrees)

ATAN(X) tan~!(x) REAL REAL Inverse tangent of x (results in radians in the
range —g <x< g)

ATAND(X) tan~!(x) REAL REAL Inverse tangent of x (results in radians in the
range —90 < x < 90)

ATAN2 (Y/X) tan~'(y/x) REAL REAL Four quadrant inverse tangent of x (results in
radians in the range —z < x <)

ATAN2D (Y, X) tan-'(y’x) REAL REAL Four quadrant inverse tangent of x (results in
radians in the range —180 < x < 180)

Note:

* = Result is of the same type as the input argument(s).

Basic Elements of Fortran 49

Fortran functions are used by naming them in an expression. For example, the
intrinsic function SIN can be used to calculate the sine of a number as follows:

y = SIN(theta)

where theta is the argument of the function SIN. After this statement is executed, the
variable y contains the sine of the value stored in variable theta. Note from Table 2-4
that the trigonometric functions without a “D” in their name expect their arguments to
be in radians. If the variable theta is in degrees, then we must convert degrees to ra-
dians (180° = & radians) before computing the sine. This conversion can be done in the
same statement as the sine calculation:

y = SIN (theta*(3.141593/180.))

Alternately, we could create a named constant containing the conversion factor, and
refer to that constant when the function is executed:

INTEGER, PARAMETER :: DEG_2_RAD = 3.141593 / 180.

y = SIN (theta * DEG_TO_RAD)

The argument of a function can be a constant, a variable, an expression, or even
the result of another function. All of the following statements are legal:

y = SIN(3.141593) (argument is a constant)

y = SIN(x) (argument is a variable)

y = SIN(PI*x) (argument is an expression)

y = SIN(SQRT(x)) (argument is the result of another function)

Functions may be used in expressions anywhere that a constant or variable may be
used. However, functions may never appear on the left side of the assignment operator
(equal sign), since they are not memory locations, and nothing can be stored in them.

The type of argument required by a function and the type of value returned by it
are specified in Table 2-4 for the intrinsic functions listed there. Some of these in-
trinsic functions are generic functions, which means that they can use more than
one type of input data. The absolute value function ABS is a generic function. If X is
a real number, then the type of ABS(X) is real. If X is an integer, then the type of
ABS(X) is integer. Some functions are called specific functions, because they can
use only one specific type of input data, and produce only one specific type of out-
put value. For example, the function IABS requires an integer argument and returns
an integer result. A list of all intrinsic functions (both generic and specific) is
provided in Appendix B.

2.8
LIST-DIRECTED INPUT AND OUTPUT STATEMENTS

An input statement reads one or more values from an input device and stores them into
variables specified by the programmer. The input device could be a keyboard in an
interactive environment, or an input disk file in a batch environment. An output statement

50 CHAPTER 2: Basic Elements of Fortran

INTEGER :: i,
REAL :: a . ,
CHARACTER(1en=12) :: chars 1, 2, 3., 'This one.
READ (*,*) i,j a, chars

Program Input data
i 1
J 2
a 3.
chars 'Thi ‘f‘
one.
Results
FIGURE 2-4
For list-directed input, the type and order of the input data values must match the type and order of the supplied
input data.

writes one or more values to an output device. The output device could be a CRT screen
in an interactive environment, or an output listing file in a batch environment.

We have already seen input and output statements in my_f1irst_program, which
is shown in Figure 2-1. The input statement in the figure is of the form

READ (*,*) input_Tlist

where input_list is the list of variables into which the values being read are placed.
If there is more than one variable in the list, they should be separated by commas. The
parentheses (*,*) in the statement contains control information for the read. The first
field in the parentheses specifies the input/output unit (or i/o unit) from which the data
is to be read (the concept of an input/output unit will be explained in Chapter 5). An
asterisk in this field means that the data is to be read from the standard input device for
the computer—usually the keyboard when running in interactive mode. The second
field in the parentheses specifies the format in which the data is to be read (formats
will also be explained in Chapter 5). An asterisk in this field means that list-directed
input (sometimes called free-format input) is to be used.

The term list-directed input means that the types of the variables in the variable
list determine the required format of the input data (Figure 2-4). For example, consider
the following statements:

Basic Elements of Fortran 51

PROGRAM input_example
INTEGER :: 1, j

REAL :: a
CHARACTER(1en=12) :: chars
READ (*,*) i, j, a, chars
END PROGRAM input_example

The input data supplied to the program must consist of two integers, a real number, and
a character string. Furthermore, they must be in that order. The values may be all on one
line separated by commas or blanks, or they may be on separate lines. The list-directed
READ statement will continue to read input data until values have been found for all of
the variables in the list. If the input data supplied to the program at execution time is

1, 2, 3.,'This one.'

then the variable i will be filled with a 1, j will be filled with a 2, a will be filled with
a3.0, and chars with be filled with ' This one. '. Since the input character string is
only 9 characters long, while the variable chars has room for 12 characters, the string
is left justified in the character variable, and three blanks are automatically added at the
end of it to fill out the remaining space. Also note that for list-directed reads, input char-
acter strings must be enclosed in single or double quotes if they contain spaces.

When using list-directed input, the values to be read must match the variables in
the input list both in order and type. If the input data had been

1, 2, 'This one.', 3.

then a runtime error would have occurred when the program tried to read the
data.

Each READ statement in a program begins reading from a new line of input data. If
any data was left over on the previous input line, that data is discarded. For example,
consider the following program:

PROGRAM input_example_2
INTEGER :: 1, Jj, k, 1

READ (*,*) 1, J

READ (*,*) k, 1

END PROGRAM input_example_2

If the input data to this program is:

1, 2,3, 4

5, 6,7, 8
then after the READ statements, i will contain a 1, j will contain a 2, k will contain a
5, and 1 will contain a 6 (Figure 2-5).

It is a good idea to always echo any value that you read into a program from a
keyboard. Echoing a value means displaying the value with a WRITE statement after it
has been read. If you do not do so, a typing error in the input data might cause a wrong
answer, and the user of the program would never know that anything was wrong. You
may echo the data either immediately after it is read or somewhere further down in the
program output, but every input variable should be echoed somewhere in the pro-
gram’s output.

52

CHAPTER 2: Basic Elements of Fortran

INTEGER :: i,j,k,]1
READ (*,*) 1i,] 1, 2, 3, 4
READ (*,*) k,1 5, 6, 7, 8
Program Input data
i 1
J 2
k 5
1 6
Results
FIGURE 2-5

Each list-directed READ statement begins reading from a new line of input data, and any
unused data left on the previous line is discarded. Here, the values 3 and 4 on the first line of
input data are never used.

Good Programming Practice
Echo any variables that a user enters into a program from a keyboard, so that the
user can be certain that they were typed and processed correctly.

The list-directed output statement is of the form
WRITE (*,*) output_list

where output_list is the list of data items (variables, constants, or expressions) that are to be
written. If there is more than one item in the list, then the items should be separated by com-
mas. The parentheses (*,*) in the statement contains control information for the write,
where the two asterisks have the same meaning as for a list-directed read statement.’

3> There is another form of list-directed output statement:
PRINT *, output_list

This statement is equivalent to the list-directed WRITE statement discussed above, and is used by some pro-
grammers. The PRINT statement is never used in this book, but it is discussed in Chapter 14 Section 14.3.7.

Basic Elements of Fortran 53

The term list-directed output means that the types of the values in the output list
of the write statement determine the format of the output data. For example, consider
the following statements:

PROGRAM output_example
INTEGER :: ix

REAL :: theta

ix =1

test = .TRUE.

theta = 3.141593

WRITE (*,*) ' IX = ",oix

WRITE (*,*) ' THETA = ', theta
WRITE (*,*) ' COS(THETA) = ", COS(theta)

WRITE (*,*) REAL(ix), NINT(theta)
END PROGRAM output_example

The output resulting from these statements is:

IX = 1

THETA = 3.141593

COS(THETA) = -1.000000
1.000000 3

This example illustrates several points about the list-directed write statement:

1. The output list may contain constants (' IX = ' is a constant), variables, func-
tions, and expressions. In each case, the value of the constant, variable, function,
or expression is output to the standard output device.

2. The format of the output data matches the type of the value being output. For exam-
ple, even though theta is of type real, NINT (theta) is of type integer. Therefore,
the sixth write statement produces an output of 3 (the nearest integer to 3.141593).

3. The output of list-directed write statements is not very pretty. The values printed
out do not line up in neat columns, and there is no way to control the number of
significant digits displayed for real numbers. We will learn how to produce neatly
formatted output in Chapter 5.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Sections 2.7 and 2.8. If you have trouble with the quiz, reread the sec-
tions, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

Convert the following algebraic equations into Fortran assignment statements:

1. The equivalent resistance R, of four resistors R;, R,, R3, and R, connected
in series:

Req=R1+R2+R3+R4

(continued)

54 CHAPTER 2: Basic Elements of Fortran

(continued)

2. The equivalent resistance R, of four resistors R;, R,, R3, and R, connected
in parallel:

R. =
T 11
R, R, R; R,

3. The period T of an oscillating pendulum:

L
T= 27:\/7
8

where L is the length of the pendulum, and g is the acceleration due to gravity.

4. The equation for damped sinusoidal oscillation:
v(t) = Ve “coswt

where V) is the maximum value of the oscillation, « is the exponential
damping factor, and is the angular velocity of the oscillation.

Convert the following Fortran assignment statements into algebraic equations:
5. The motion of an object in a constant gravitational field:
distance = 0.5 * accel * t**2 + vel_0 * t + pos_0
6. The oscillating frequency of a damped RLC circuit:
freq = 1. / (2. * PI * SQRT(1 * ¢))

where P1I is the constant (3.141592. . .).
7. Energy storage in an inductor:

energy = 1.0 / 2.0 * inductance * current**2
8. What values will be printed out when the following statements are executed?

PROGRAM quiz_1

INTEGER :: 1

REAL :: a

a=20.05

i = NINT(2. * 3.141493 / a)
a=a*(5/3)

WRITE (*,*) i, a
END PROGRAM quiz_1

9. Ifthe input data is as shown, what will be printed out by the following program?

PROGRAM quiz_2
INTEGER :: 1, Jj, k

(continued)

Basic Elements of Fortran 55

(concluded)

REAL :: a, b, ¢

READ (*,*) 1, j, a

READ (*,*) b, k

¢ = SIN ((3.141593 / 180) * a)
WRITE (*,*) i, j, k, a, b, ¢
END PROGRAM quiz_2

The input data is :

1, 3
2., 45., 17.
30., 180, 6.

2.9
INITIALIZATION OF VARIABLES

Consider the following program:

PROGRAM init
INTEGER :: i
WRITE (*,*) i
END PROGRAM init

What is the value stored in the variable i? What will be printed out by the WRITE
statement? The answer is: We don’t know!

The variable i is an example of an uninitialized variable. It has been defined by
the INTEGER :: 1 statement, but no value has been placed into it yet. The value of an
uninitialized variable is not defined by the Fortran standard. Some compilers automat-
ically set uninitialized variables to zero, and some set them to different arbitrary pat-
terns. Some compilers for older version of Fortran leave whatever values previously
existed at the memory location of the variables. Some compilers even produce a run-
time error if a variable is used without first being initialized.

Uninitialized variables can present a serious problem. Since they are handled
differently on different machines, a program that works fine on one computer may
fail when transported to another one. On some machines, the same program could
work sometimes and fail sometimes, depending on the data left behind by the
previous program occupying the same memory. Such a situation is totally unaccept-
able, and we must avoid it by always initializing all of the variables in our programs.

Good Programming Practice
Always initialize all variables in a program before using them.

56

CHAPTER 2: Basic Elements of Fortran

There are three techniques available to initialize variables in a Fortran program:
assignment statements, READ statements, and initialization in type declaration state-
ments.® An assignment statement assigns the value of the expression to the right of the
equal sign to the variable on the left of the equal sign. In the following code, the variable
i is initialized to 1, and we know that a 1 will be printed out by the WRITE statement.

PROGRAM init_1
INTEGER :: i

i=1

WRITE (*,%) i

END PROGRAM init_1

A READ statement may be used to initialize variables with values input by the user.
Unlike initialization with assignment statements, the user can change the value stored
in the variable each time that the program is run. For example, the following code will
initialize variable i with whatever value the user desires, and that value will be printed
out by the WRITE statement.

PROGRAM init_2
INTEGER :: 1

READ (*,*) i
WRITE (*,*) i

END PROGRAM init_2

The third technique available to initialize variables in a Fortran program is to
specify their initial values in the type declaration statement that defines them. This
declaration specifies that a value should be pre-loaded into a variable during the
compilation and linking process. Note the fundamental difference between initializa-
tion in a type declaration statement and initialization in an assignment statement: A
type declaration statement initializes the variable before the program begins to run,
whereas an assignment statement initializes the variable during execution.

The form of a type declaration statement used to initialize variables is

type :: varl = value, [var2 = value, ...]

Any number of variables may be declared and initialized in a single type declaration
statement provided that they are separated by commas. An example of type declaration
statements used to initialize a series of variables is

REAL :: time = 0.0, distance = 5128.
INTEGER :: Toop = 10

Before program execution, time is initialized to 0.0, distance is initialized to 5128.,
and Toop is initialized to 10.

In the following code, the variable 1i is initialized by the type declaration state-
ment, so we know that when execution starts, the variable i will contain the value 1.
Therefore, the WRITE statement will print out a 1.

®A fourth, older technique uses the DATA statement. This statement is kept for backward compatibility with
earlier versions of Fortran, but it has been superseded by initialization in type declaration statements. DATA
statements should not be used in new programs. The DATA statement is described in Chapter 18.

Basic Elements of Fortran 57

PROGRAM init_3
INTEGER :: i =
WRITE (*,*) i

END PROGRAM init_3

1

2.10
THE IMPLICIT NONE STATEMENT

There is another very important nonexecutable statement: the IMPLICIT NONE state-
ment. When it is used, the IMPLICIT NONE statement disables the default typing
provisions of Fortran. When the IMPLICIT NONE statement is included in a program,
any variable that does not appear in an explicit type declaration statement is consid-
ered an error. The IMPLICIT NONE statement should appear after the PROGRAM state-
ment and before any type declaration statements.

When the IMPLICIT NONE statement is included in a program, the programmer
must explicitly declare the type of every variable in the program. On first thought, this
might seem to be a disadvantage, since the programmer must do more work when he
or she first writes a program. This initial impression couldn’t be more wrong. In fact,
there are several advantages to using this statement.

The majority of programming errors are simple typographical errors. The IMPLICIT
NONE statement catches these errors at compilation time, before they can produce subtle
errors during execution. For example, consider the following simple program:

PROGRAM test_1
REAL :: time = 10.0
WRITE (*,*) 'Time = ', tmie
END PROGRAM test_1
In this program, the variable time is misspelled tmie at one point. When this
program is compiled with a Fortran compiler and executed, the output is "Time =

0.000000E+00", which is the wrong answer! In contrast, consider the same program
with the IMPLICIT NONE statement present:

PROGRAM test_1

IMPLICIT NONE

REAL :: time = 10.0

WRITE (*,*) 'Time = ', tmie
END PROGRAM test_1

When compiled with the same compiler, this program produces the following

compile-time error:’
1 PROGRAM test_1
2 IMPLICIT NONE
3 REAL :: time = 10.0
4 WRITE (*,*) 'Time = ', tmie

(1) Error: This name does not have a type, and must have an explicit type. [TMIE]

5 END PROGRAM

7The exact error message will vary in different Fortran compilers.

58

CHAPTER 2: Basic Elements of Fortran

Instead of having a wrong answer in an otherwise-working program, we have an
explicit error message flagging the problem at compilation time. This is an enormous
advantage when working with longer programs containing many variables.

Another advantage of the IMPLICIT NONE statement is that it makes the code
more maintainable. Any program using the statement must have a complete list of all
variables included in the declaration section of the program. If the program must be
modified, a programmer can check the list to avoid using variable names that are
already defined in the program. This checking helps to eliminate a very common error,
in which the modifications to the program inadvertently change the values of some
variables used elsewhere in the program.

In general, the use of the IMPLICIT NONE statement becomes more and more
advantageous as the size of a programming project increases. The use of IMPLICIT
NONE is so important to the designing of good programs that we will use it consistently
everywhere throughout this book.

Good Programming Practice

Always explicitly define every variable in your programs, and use the IMPLICIT
NONE statement to help you spot and correct typographical errors before they
become program execution errors.

2.11
PROGRAM EXAMPLES

In this chapter, we have presented the fundamental concepts required to write simple
but functional Fortran programs. We will now present a few example problems in
which these concepts are used.

EXAMPLE
2-3

Temperature Conversion:

Design a Fortran program that reads an input temperature in degrees Fahrenheit,
converts it to an absolute temperature in kelvins, and writes out the result.

SOLUTION
The relationship between temperature in degrees Fahrenheit (°F) and temperature in
kelvins (K) can be found in any physics textbook. It is

5
T (in kelvin) = [9T (in °F)-32.0| + 273.15 (2-2)

The physics books also give us sample values on both temperature scales, which we
can use to check the operation of our program. Two such values are:

The boiling point of water 212°F 373.15K
The sublimation point of dry ice -110°F 194.26 K

Basic Elements of Fortran 59

Our program must perform the following steps:

Prompt the user to enter an input temperature in °F.

Read the input temperature.
Calculate the temperature in kelvins from Equation (2-2).

Write out the result, and stop.

el

The resulting program is shown in Figure 2-6.

FIGURE 2-6
Program to convert degrees Fahrenheit into kelvins.

PROGRAM temp_conversion
Purpose:
To convert an input temperature from degrees Fahrenheit to
an output temperature in kelvins.

|
|
|
|
I Record of revisions:

! Date Programmer Description of change
|

|

|

I

11/03/15 -- S. J. Chapman Original code
.MPLICIT NONE I Force explicit declaration of variables
| Data dictionary: declare variable types, definitions, & units
REAL :: temp_f I Temperature in degrees Fahrenheit
REAL :: temp_k I Temperature in kelvins

! Prompt the user for the input temperature.
WRITE (*,*) '"Enter the temperature in degrees Fahrenheit: '
READ (*,*) temp_f

I Convert to kelvins.
temp_k = (5. / 9.) * (temp_f - 32.) + 273.15

I Write out the result.
WRITE (*,*) temp_f, ' degrees Fahrenheit = ', temp_k, ' kelvins'

I Finish up.
END PROGRAM temp_conversion

To test the completed program, we will run it with the known input values given
above. Note that user inputs appear in bold face below.?

C:\book\fortran\chap2>temp_conversion
Enter the temperature in degrees Fahrenheit:
212
212.000000 degrees Fahrenheit = 373.150000 kelvins

8 Fortran programs such as this are normally executed from a command line. In Windows, a Command
Window can be opened by clicking the Start button, selecting the Run option, and typing “cmd” as the
program to start. When the Command Window is running, the prompt shows the name of the current working
directory (C: \book\fortran\chap?2 in this example), and a program is executed by typing its name on the
command line. Note that the prompt would look different on other operating systems such as Linux or Unix.

60

CHAPTER 2: Basic Elements of Fortran

C:\book\fortran\chap2>temp_conversion
Enter the temperature in degrees Fahrenheit:
-110
-110.000000 degrees Fahrenheit = 194.261100 kelvins

The results of the program match the values from the physics book.

In the above program, we echoed the input values and printed the output values
together with their units. The results of this program only make sense if the units
(degrees Fahrenheit and kelvins) are included together with their values. As a general
rule, the units associated with any input value should always be printed along with the
prompt that requests the value, and the units associated with any output value should
always be printed along with that value.

Good Programming Practice
Always include the appropriate units with any values that you read or write in a
program.

The above program exhibits many of the good programming practices that we
have described in this chapter. It uses the IMPLICIT NONE statement to force the
explicit typing of all variables in the program. It includes a data dictionary as a part of
the declaration section, with each variable being given a type, definition, and units. It
also uses descriptive variable names. The variable temp_f is initialized by a READ
statement before it is used. All input values are echoed, and appropriate units are
attached to all printed values.

EXAMPLE
2-4

Electrical Engineering: Calculating Real, Reactive, and Apparent Power:

Figure 2-7 shows a sinusoidal AC voltage source with voltage V supplying a load of
impedance Z £ 0 Q. From simple circuit theory, the rms current /, the real power P,
reactive power Q, apparent power S, and power factor PF supplied to the load are given
by the equations

V=IR (2-3)
P =VIcos @ (2-4)
Q =VIcos O (2-5)
S=VvI (2-6)

PF = cos 0 2-7)

Basic Elements of Fortran 61

AC power

source \% Load | Z£6

FIGURE 2-7
A sinusoidal AC voltage source with voltage V supplying a load of impedance Z £ 0 Q.

where V is the rms voltage of the power source in units of volts (V). The units of cur-
rent are amperes (A), of real power are watts (W), of reactive power are volt-amperes-
reactive (VAR), and of apparent power are volt-amperes (VA). The power factor has
no units associated with it.

Given the rms voltage of the power source and the magnitude and angle of the
impedance Z, write a program that calculates the rms current /, the real power P, reac-
tive power Q, apparent power S, and power factor PF of the load.

SOLUTION

In this program, we need to read in the rms voltage V of the voltage source and the
magnitude Z and angle 0 of the impedance. The input voltage source will be measured
in volts, the magnitude of the impedance Z in ohms, and the angle of the impedance 6
in degrees. Once the data is read, we must convert the angle 0 into radians for use with
the Fortran trigonometric functions. Next, the desired values must be calculated, and
the results must be printed out.

The program must perform the following steps:

—_—

Prompt the user to enter the source voltage in volts.
Read the source voltage.

Prompt the user to enter the magnitude and angle of the impedance in ohms and
degrees.

Read the magnitude and angle of the impedance.
Calculate the current / from Equation (2-3).
Calculate the real power P from Equation (2-4).
Calculate the reactive power Q from Equation (2-5).
Calculate the apparent power S from Equation (2-6).
Calculate the power factor PF from Equation (2-7).
10. Write out the results, and stop.

w N

O XN A

The final Fortran program is shown in Figure 2-8.

62

CHAPTER 2: Basic Elements of Fortran

FIGURE 2-8
Program to calculate the real power, reactive power, apparent power, and power factor
supplied to a load.

PROGRAM power

Purpose:
To calculate the current, real, reactive, and apparent power,
and the power factor supplied to a load.

Record of revisions:
Date Programmer Description of change

11/03/15 S. J. Chapman Original code

|
|
|
|
|
|
|
|
|
|

IMPLICIT NONE

! Data dictionary: declare constants
REAL,PARAMETER :: DEG_2_RAD = 0.01745329 ! Deg to radians factor

! Data dictionary: declare variable types, definitions, & units
REAL :: amps ! Current in the Tload (A)

REAL :: p ! Real power of Toad (W)

REAL :: pf I Power factor of Toad (no units)

REAL :: q ! Reactive power of the Toad (VAR)

REAL :: s I Apparent power of the Toad (VA)

REAL :: theta | Impedance angle of the load (deg)

REAL :: volts ! Rms voltage of the power source (V)
REAL :: z | Magnitude of the load impedance (ohms)

! Prompt the user for the rms voltage.
WRITE (*,*) 'Enter the rms voltage of the source: '
READ (*,*) volts

! Prompt the user for the magnitude and angle of the impedance.
WRITE (*,*) 'Enter the magnitude and angle of the impedance '
WRITE (*,*) 'in ohms and degrees: '

READ (*,*) z, theta

I Perform calculations

amps = volts / z

p = volts * amps * cos (theta * DEG_2_RAD)
g = volts * amps * sin (theta * DEG_2_RAD)
s = volts * amps

pf = cos (theta * DEG_2_RAD)

Rms current
Real power
Reactive power
Apparent power
Power factor

I Write out the results.
WRITE (*,*) 'Voltage

WRITE (*,*) 'Impedance
WRITE (*,*) 'Current

WRITE (*,*) 'Real Power
WRITE (*,*) 'Reactive Power
WRITE (*,*) 'Apparent Power
WRITE (*,*) 'Power Factor

, volts, ' volts'
, z, ' ohms at ', theta,' degrees'
, amps, ' amps’

, p, ' watts'

q, ' VAR’
s, " VA’
pf

I Finish up.
END PROGRAM power

Basic Elements of Fortran 63

This program also exhibits many of the good programming practices that we have
described. It uses the IMPLICIT NONE statement to force the explicit typing of all
variables in the program. It includes a variable dictionary defining the uses of all of
the variables in the program. It also uses descriptive variable names (although the
variable names are short, P, Q, S, and PF are the standard accepted abbreviations for
the corresponding quantities). All variables are initialized before they are used. The
program defines a named constant for the degrees-to-radians conversion factor, and
then uses that name everywhere throughout the program when the conversion factor
is required. All input values are echoed, and appropriate units are attached to all
printed values.

To verify the operation of program power, we will do a sample calculation by hand
and compare the results with the output of the program. If the rms voltage Vis 120 V,
the magnitude of the impedance Z is 5 €2, and the angle 0 is 30°, then the values are

I—K—w—MA (2-3)

Sz 59
P =VIcos 8= (120 V)(24 A) cos 30° = 2494 W 2-4)
Q=VIisind = (120 V)(24 A) sin 30° = 1440 VAR 2-5)
S=VI=(120V)(24 A) = 2880 VA (2-6)
PF = cos 8 = cos 30° = 0.86603 2-7

When we run program power with the specified input data, the results are identi-
cal with our hand calculations:

C:\book\fortran\chap2>power

Enter the rms voltage of the source:

120

Enter the magnitude and angle of the impedance
in ohms and degrees:

5., 30.

Voltage 120.000000 volts

Impedance 5.000000 ohms at 30.000000 degrees
Current 24.000000 amps

Real Power 2494.153000 watts

1440.000000 VAR
2880.000000 VA
8.660254E-01

Reactive Power
Apparent Power
Power Factor

EXAMPLE Carbon 14 Dating:
2-5
A radioactive isotope of an element is a form of the element that is not stable. Instead,
it spontaneously decays into another element over a period of time. Radioactive decay
is an exponential process. If Q_ is the initial quantity of a radioactive substance at time

64 CHAPTER 2: Basic Elements of Fortran

Decay of carbon 14

100
‘\

80 N
(5}
5 \
&
%" 60
~_
a0 ~_
g
<
8 20

0

0 2000 4000 6000 8000 10000

Years

FIGURE 2-9
The radioactive decay of carbon 14 as a function of time. Notice that 50 percent of the
original carbon 14 is left after about 5730 years have elapsed.

t = 0, then the amount of that substance that will be present at any time ¢ in the future
is given by

O(t) = Qe ™ (2-8)

where A is the radioactive decay constant (see Figure 2-9).

Because radioactive decay occurs at a known rate, it can be used as a clock to
measure the time since the decay started. If we know the initial amount of the radioac-
tive material Q_ present in a sample, and the amount of the material Q left at the
current time, we can solve for ¢ in Equation (2-8) to determine how long the decay has
been going on. The resulting equation is

10
tdecay - y) loge QO (2 9)

Equation (2-8) has practical applications in many areas of science. For example,
archaeologists use a radioactive clock based on carbon 14 to determine the time that has
passed since a once-living thing died. Carbon 14 is continually taken into the body
while a plant or animal is living, so the amount of it present in the body at the time of
death is assumed to be known. The decay constant A of carbon 14 is well known to be
0.00012097/year, so if the amount of carbon 14 remaining now can be accurately mea-
sured, then Equation (2-9) can be used to determine how long ago the living thing died.

Write a program that reads the percentage of carbon 14 remaining in a sample,
calculates the age of the sample from it, and prints out the result with proper units.

SOLUTION
Our program must perform the following steps:

1. Prompt the user to enter the percentage of carbon 14 remaining in the sample.

Basic Elements of Fortran 65

2. Read in the percentage.

3. Convert the percentage into the fraction g
0

4. Calculate the age of the sample in years using Equation (2-8).)
5. Write out the result, and stop.

The resulting code is shown in Figure 2-10.

FIGURE 2-10
Program to calculate the age of a sample from the percentage of carbon 14 remaining in it.

PROGRAM c14_date

Purpose:
To calculate the age of an organic sample from the percentage
of the original carbon 14 remaining in the sample.

Date Programmer Description of change

11/03/15 S. J. Chapman Original code

|
|
|
|
|
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

| Data dictionary: declare constants

REAL,PARAMETER :: LAMDA = 0.00012097 ! The radioactive decay
! constant of carbon 14,
I in units of 1/years.

! Data dictionary: declare variable types, definitions, & units

REAL :: age The age of the sample (years)

REAL :: percent The percentage of carbon 14 remaining at the time
of the measurement (%)

The ratio of the carbon 14 remaining at the time
of the measurement to the original amount of
carbon 14 (no units)

|
|
|
REAL :: ratio !
|
|

I Prompt the user for the percentage of C-14 remaining.
WRITE (*,*) 'Enter the percentage of carbon 14 remaining:'
READ (*,*) percent

! Echo the user's input value.
WRITE (*,*) 'The remaining carbon 14 = ', percent, ' %.'

I Perform calculations
ratio = percent / 100. ! Convert to fractional ratio
age = (-1.0 / LAMDA) * Tog(ratio) ! Get age in years

I Tell the user about the age of the sample.
WRITE (*,*) 'The age of the sample is ', age, ' years.'

! Finish up.
END PROGRAM cl4_date

66

CHAPTER 2: Basic Elements of Fortran

To test the completed program, we will calculate the time it takes for half of the
carbon 14 to disappear. This time is known as the half-life of carbon 14.

C:\book\fortran\chap2>cl4_date
Enter the percentage of carbon 14 remaining:

50.
The remaining carbon 14 = 50.000000 %.
The age of the sample is 5729.910000 years.

The CRC Handbook of Chemistry and Physics states that the half-life of carbon 14 is
5730 years, so output of the program agrees with the reference book.

2.12
DEBUGGING FORTRAN PROGRAMS

There is an old saying that the only sure things in life are death and taxes. We can add
one more certainty to that list: if you write a program of any significant size, it won’t
work the first time you try it! Errors in programs are known as bugs, and the process
of locating and eliminating them is known as debugging. Given that we have written
a program and it is not working, how do we debug it?

Three types of errors are found in Fortran programs. The first type of error is a
syntax error. Syntax errors are errors in the Fortran statement itself, such as spelling
errors or punctuation errors. These errors are detected by the compiler during compi-
lation. The second type of error is the runtime error. A runtime error occurs when an
illegal mathematical operation is attempted during program execution (for example,
attempting to divide by zero). These errors cause the program to abort during execu-
tion. The third type of error is a logical error. Logical errors occur when the program
compiles and runs successfully but produces the wrong answer.

The most common mistakes made during programming are typographical errors.
Some typographical errors create invalid Fortran statements. These errors produce
syntax errors that are caught by the compiler. Other typographical errors occur in vari-
able names. For example, the letters in some variable names might have been trans-
posed. If you have used the IMPLICIT NONE statement, then the compiler will also
catch most of these errors. However, if one legal variable name is substituted for
another legal variable name, the compiler cannot detect the error. This sort of substitu-
tion might occur if you have two similar variable names. For example, if variables
vell and vel2 are both used for velocities in the program, then one of them might be
inadvertently used instead of the other one at some point. This sort of typographical
error will produce a logical error. You must check for that sort of error by manually
inspecting the code, since the compiler cannot catch it.

Sometimes it is possible to successfully compile and link the program, but there
are runtime errors or logical errors when the program is executed. In this case, there is
something wrong either with the input data or with the logical structure of the pro-
gram. The first step in locating this sort of bug should be to check the input data to the

Basic Elements of Fortran 67

program. Your program should have been designed to echo its input data. If not, go
back and add WRITE statements to verify that the input values are what you expect
them to be.

If the variable names seem to be correct and the input data is correct, then you are
probably dealing with a logical error. You should check each of your assignment
statements.

1. If an assignment statement is very long, break it into several smaller assignment
statements. Smaller statements are easier to verify.

2. Check the placement of parentheses in your assignment statements. It is a very
common error to have the operations in an assignment statement evaluated in the
wrong order. If you have any doubts as to the order in which the variables are
being evaluated, add extra sets of parentheses to make your intentions clear.

3. Make sure that you have initialized all of your variables properly.

4. Be sure that any functions you use are in the correct units. For example, the input
to trigonometric functions must be in units of radians, not degrees.

5. Check for possible errors due to integer or mixed-mode arithmetic.

If you are still getting the wrong answer, add WRITE statements at various points
in your program to see the results of intermediate calculations. If you can locate the
point where the calculations go bad, then you know just where to look for the problem,
which is 95% of the battle.

If you still cannot find the problem after all of the above steps, explain what you
are doing to another student or to your instructor, and let them look at the code. It is
very common for a person to see just what he or she expects to see when they look at
their own code. Another person can often quickly spot an error that you have over-
looked time after time.

Good Programming Practice
To reduce your debugging effort, make sure that during your program design you:

1. Use the IMPLICIT NONE statement.

2. Echo all input values.

3. Initialize all variables.

4. Use parentheses to make the functions of assignment statements clear.

All modern compilers have special debugging tools called symbolic debuggers. A
symbolic debugger is a tool that allows you to walk through the execution of your pro-
gram one statement at a time, and to examine the values of any variables at each step
along the way. Symbolic debuggers allow you to see all of the intermediate results
without having to insert a lot of WRITE statements into your code. They are powerful
and flexible, but unfortunately they are different for every type of compiler. If you will
be using a symbolic debugger in your class, your instructor will introduce you to the
debugger appropriate for your compiler and computer.

68

CHAPTER 2: Basic Elements of Fortran

2.13
SUMMARY

In this chapter, we have presented many of the fundamental concepts required to write
functional Fortran programs. We described the basic structure of Fortran programs,
and introduced four data types: integer, real, logical, and character. We introduced the
assignment statement, arithmetic calculations, intrinsic functions, and list-directed
input/output statements. Throughout the chapter, we have emphasized those features of
the language that are important for writing understandable and maintainable Fortran
code.

The Fortran statements introduced in this chapter must appear in a specific order
in a Fortran program. The proper order is summarized in Table 2-5.

The order in which Fortran expressions are evaluated follows a fixed hierarchy,
with operations at a higher level evaluated before operations at lower levels. The hier-
archy of operations is summarized in Table 2-6.

The Fortran language includes a number of built-in functions to help us solve
problems. These functions are called intrinsic functions, since they are intrinsic to the
Fortran language itself. Some common intrinsic functions are summarized in Tables
2-3 and 2-4, and a complete listing of intrinsic functions is contained in Appendix B.

There are two varieties of intrinsic functions: specific functions and generic func-
tions. Specific functions require that their input data be of a specific type; if data of the

TABLE 2-5
The order of Fortran statements in a program

1. PROGRAM Statement
2. IMPLICIT NONE Statement

3. Type Declaration Statements:

REAL Statement(s) ()
INTEGER Statement(s) (Any number in any order)
CHARACTER Statement(s) (
4. Executable Statements:

Assignment Statement(s) ()
READ Statement(s) (Any number in the order)
WRITE Statement(s) (required to accomplish the)
STOP Statement(s) (desired task.)

5. END PROGRAM Statement

TABLE 2-6
Fortran hierarchy of operations

1. Operations within parentheses are evaluated first, starting with the innermost parentheses and working
outward.

2. All exponential operations are evaluated next, working from right to left.

. All multiplications and divisions are evaluated, working from left to right.

4. All additions and subtractions are evaluated, working from left to right.

(O8]

Basic Elements of Fortran 69

wrong type is supplied to a specific function, the result will be meaningless. In
contrast, generic functions can accept input data of more than one type and produce
correct results.

2.13.1 Summary of Good Programming Practice

Every Fortran program should be designed so that another person who is familiar with
Fortran can easily understand it. This is very important, since a good program may be
used for a long period of time. Over that time, conditions will change, and the program
will need to be modified to reflect the changes. The program modifications may be done
by someone other than the original programmer. The programmer making the modifica-
tions must understand the original program well before attempting to change it.

It is much harder to design clear, understandable, and maintainable programs than
it is to simply write programs. To do so, a programmer must develop the discipline to
properly document his or her work. In addition, the programmer must be careful to
avoid known pitfalls along the path to good programs. The following guidelines will
help you to develop good programs:

1. Use meaningful variable names whenever possible. Use names that can be under-
stood at a glance, like day, month, and year.

2. Always use the IMPLICIT NONE statement to catch typographical errors in your
program at compilation time.

3. Create a data dictionary in each program that you write. The data dictionary
should explicitly declare and define each variable in the program. Be sure to in-
clude the physical units associated with each variable, if applicable.

4. Use a consistent number of significant digits in constants. For example, do not use
3.14 for x in one part of your program, and 3.141593 in another part of the pro-
gram. To ensure consistency, a constant may be named, and the constant may be
referenced by name wherever it is needed.

5. Be sure to specify all constants with as much precision as your computer will
support. For example, specify 7 as 3.141593, not 3.14.

6. Do not use integer arithmetic to calculate continuously varying real-world quanti-
ties such as distance and time. Use integer arithmetic only for things that are
intrinsically integer, such as counters.

7. Avoid mixed-mode arithmetic except for exponentiation. If it is necessary to mix

integer and real variables in a single expression, use the intrinsic functions REAL,

INT, NINT, CEILING, and FLOOR to make the type conversions explicit.

Use extra parentheses whenever necessary to improve the readability of your expressions.

9. Always echo any variables that you enter into a program from a keyboard to make
sure that they were typed and processed correctly.

10. Initialize all variables in a program before using them. The variables may be
initialized with assignment statements, with READ statements, or directly in type
declaration statements.

11. Always print the physical units associated with any value being written out. The
units are important for the proper interpretation of a program’s results.

*®

CHAPTER 2: Basic Elements of Fortran

2.13.2 Summary of Fortran Statements

The following summary describes the Fortran statements introduced in this chapter.

Assignment Statement:

variable = expression

Examples:
pi = 3.141593
distance = 0.5 * acceleration * time ** 2
side = hypot * cos(theta)

Description:

The left side of the assignment statement must be a variable name. The right side of the assignment state-
ment can be any constant, variable, function, or expression. The value of the quantity on the right-hand side
of the equal sign is stored into the variable named on the left-hand side of the equal sign.

CHARACTER statement:

CHARACTER(T1en=<1en>) :: variable_namell, variable_name?2, ...]
CHARACTER(K1en>) :: variable_namell, variable_name2, ...]
CHARACTER :: variable_namell, variable_name?2, ...]

Examples:
CHARACTER(1en=10) :: first, last, middle
CHARACTER(10) :: first = 'My Name'
CHARACTER :: middle_initial

Description:

The CHARACTER statement is a type declaration statement that declares variables of the character data type.
The length in characters of each variable is specified by the (len=<len>), or by <len>. If the length is absent,
then the length of the variables defaults to 1.

The value of a CHARACTER variable may be initialized with a string when it is declared, as shown in the
second example above.

END PROGRAM statement:
END PROGRAM [namel

Description:

The END PROGRAM statement must be the last statement in a Fortran program segment. It tells the compiler that
there are no further statements to process. Program execution is stopped when the END PROGRAM statement is
reached. The name of the program may optionally be included in the END PROGRAM statement.

Basic Elements of Fortran 71

ERROR STOP statement:

ERROR STOP
ERROR STOP n
ERROR STOP 'message'

Description:
The ERROR STOP statement stops the execution of a Fortran program, and notifies the operating system that
an execution error occurred.

IMPLICIT NONE statement:
IMPLICIT NONE

Description:
The IMPLICIT NONE statement turns off default typing in Fortran. When it is used in a program, every vari-
able in the program must be explicitly declared in a type declaration statement.

INTEGER statement:
INTEGER :: variable_namell, variable_name?2, ...]
Examples:

INTEGER :: i, j, count
INTEGER :: day = 4

Description:

The INTEGER statement is a type declaration statement that declares variables of the integer data type. This
statement overrides the default typing specified in Fortran. The value of an INTEGER variable may be initial-
ized when it is declared, as shown in the second example above.

PROGRAM statement:

PROGRAM program_name
Example:

PROGRAM my_program
Description:

The PROGRAM statement specifies the name of a Fortran program. It must be the first statement in the
program. The name must be unique, and cannot be used as a variable name within the program. A program
name may consist of 1 to 31 alphabetic, numeric, and underscore characters, but the first character in the
program name must be alphabetic.

72 CHAPTER 2: Basic Elements of Fortran

READ statement (List-Directed READ):

READ (*,*) variable_namell, variable_name2, ...]
Examples:

READ (*,*) stress

READ (*,*) distance, time
Description:

The list-directed READ statement reads one or more values from the standard input device and loads them
into the variables in the list. The values are stored in the order in which the variables are listed. Data values
must be separated by blanks or by commas. As many lines as necessary will be read. Each READ statement
begins searching for values with a new line.

REAL statement:

REAL :: variable_namell, variable_nameZ2, ...]
REAL :: variable_name = value

Examples:

REAL :: distance, time
REAL :: distance = 100

Description:

The REAL statement is a type declaration statement that declares variables of the real data type. This state-
ment overrides the default typing specified in Fortran. The value of a REAL variable may be initialized when
it is declared, as shown in the second example above.

STOP statement:

STOP
STOP n
STOP 'message'

Description:

The STOP statement stops the execution of a Fortran program. There may be more than one STOP statement
within a program. A STOP statement that immediately precedes an END PROGRAM statement may be omitted,
since execution is also stopped when the END PROGRAM statement is reached.

Basic Elements of Fortran 73

WRITE statement (List-Directed WRITE):

WRITE (*,*) expressionl [,expression2, etc.]
Examples:

WRITE (*,*) stress
WRITE (*,*) distance, time
WRITE (*,*) 'SIN(theta) = ', SIN(theta)

Description:
The list-directed WRITE statement writes the values of one or more expressions to the standard output de-
vice. The values are written in the order in which the expressions are listed.

2.13.3 Exercises

2-1. State whether or not each of the following Fortran constants is valid. If valid, state what
type of constant it is. If not, state why it is invalid.

(a) 3.14159

(b) '.TRUE.'

(¢) -123,456.789

(d) +1E-12

(e) "Who's coming for dinner?’
(H "Pass / Fail’

(g) "Enter name:"

2-2. For each of the following pairs of numbers, state whether they represent the same value
or different values within the computer.

(@) 123.E+0; 123
(b) 1234.E-3; 1.234E3
(c) 1.41421; 1.41421E0
(d) 0.000005E+6; 5.

2-3. State whether each of the following program names is valid or not. If not, state why the
name is invalid.

(a) junk

() 3rd

(c) Who_are_you?

(d) time_to_intercept

74

2-4.

2-7.

2-8.

CHAPTER 2: Basic Elements of Fortran

Which of the following expressions are legal in Fortran? If an expression is legal, evalu-
ate it.

(@) 2.%*%3 | 3%%2
B2 *6+6* 2 /2
(©) 2 * (-10.)%*-3,

@ 2/ (-10.) ** 3.
() 23 / (4 / 8)

. Which of the following expressions are legal in Fortran? If an expression is legal, evaluate it.

(a) ((58/4)*(4/58))

(b) ((58/4)*(4/58.))
(¢) ((58./4)*(4/58.))
(d) ((58./4*(4/58.))

. Evaluate each of the following expressions.

@13 /5*6

®) (13 / 5) * 6

(©) 13 / (5 * 6)

@ 13. / 5 * 6

()13 / 5 * 6.

(@ INT(13. / 5) * 6

(g) NINT(13. / 5) * 6

(h) CEILING(13. / 5) * 6
() FLOOR(13. / 5) * 6

Evaluate each of the following expressions.
(@) 3 ** 3 *% 2

(b) (3 ** 3) ** 2

(¢) 3 ** (3 ** 2)

What values will be output from the following program?

PROGRAM sample_1

INTEGER :: i1, i2, i3, i4

REAL :: al = 2.4, a2

il = al

i2 = INT(C -al * il)

i3 = NINT(-al * il)

i4 = FLOOR(-al * i1)

a2 = al**qil

WRITE (*,*) i1, i2, i3, i4, al, a2
END PROGRAM sample_1

Basic Elements of Fortran 75

FIGURE 2-11
The right triangle of Exercise 2-9.

2-9. Figure 2-11 shows a right triangle with a hypotenuse of length C and angle 6. From
elementary trigonometry, the length of sides A and B are given by

A=Ccosd
B =Csind

The following program is intended to calculate the lengths of sides A and B given the
hypotenuse C and angle 8. Will this program run? Will it produce the correct result?
Why or why not?

PROGRAM triangle

REAL :: a, b, c, theta

WRITE (*,*) '"Enter the Tength of the hypotenuse C:'
READ (*,*) c

WRITE (*,*) 'Enter the angle THETA in degrees:'

READ (*,*) theta

a=c* COS (theta)

b =c¢* SIN (theta)

WRITE (*,*) 'The length of the adjacent side is ', a
WRITE (*,*) 'The length of the opposite side is ', b
END PROGRAM triangle

2-10. What output will be produced by the following program?

PROGRAM example
REAL :: a, b, ¢

INTEGER :: k, 1, m
READ (*,*) a, b, c, k
READ (*,*) 1, m

WRITE (*,*) a, b, ¢, k, 1, m
END PROGRAM example

The input data to the program is:

-3.141592

100, 200., 300, 400
-100, -200, -300
-400

2-11. Write a Fortran program that calculates an hourly employee’s weekly pay. The program
should ask the user for the person’s pay rate and the number of hours worked during the
week. It should then calculate the total pay from the formula

Total Pay = Hourly Pay Rate x Hours Worked

76

2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

CHAPTER 2: Basic Elements of Fortran

Finally, it should display the total weekly pay. Check your program by computing the
weekly pay for a person earning $7.90 per hour and working for 42 hours.

The potential energy of an object due to its height above the surface of the Earth is given
by the equation

PE = mgh (2-10)

where m is the mass of the object, g is the acceleration due to gravity, and 4 is the height
above the surface of the Earth. The kinetic energy of a moving object is given by the equation

L,
KE = Emv (2-11)

where m is the mass of the object and v is the velocity of the object. Write a Fortran
statement for the total energy (potential plus kinetic) possessed by an object in the
Earth’s gravitational field.

If a stationary ball is released at a height & above the surface of the Earth, the velocity of
the ball v when it hits the Earth is given by the equation

v = V2gh 2-12)

where g is the acceleration due to gravity, and /% is the height above the surface of the
Earth (assuming no air friction). Write a Fortran equation for the velocity of the ball
when it hits the Earth.

Write a Fortran program that calculates the velocity of the ball v when it hits the Earth
from a given height %, using Equation (2-12) equation reference goes here. Use the pro-
gram to calculate the velocity for a height of () 1 meter; (b) 10 meters; and (c¢) 100 meters.

In Einstein’s Theory of Relativity, the rest mass of matter is related to an equivalent
energy by the equation

E = mc* (2-13)

where E is the energy in joules, m is mass in kilograms, and c is the speed of light in
meters per second (¢ = 2.9979 x 10° m/s). Suppose that a 400 MW (= 400 million
joules per second) nuclear power generating station supplies full power to the electrical
grid for a year. Write a program that calculates the amount of mass consumed in the
course of the year. Use good programming practices in your program. (Note: Assume
that the generating station is 100% efficient in producing electrical energy.)

Generalize the program of the previous exercise to calculate the mass consumed by a gen-
erating station with a user-specified output power for a user-specified period of months.

Period of a Pendulum The period of an oscillating pendulum 7 (in seconds) is given by

the equation
L
T= 271\/; (2-14)

where L is the length of the pendulum in meters, and g is the acceleration due to gravity
in meters per second squared. Write a Fortran program to calculate the period of a

Basic Elements of Fortran 77

2-18.

2-19.

2-20.

2-21.

2-22.

pendulum of length L. The length of the pendulum will be specified by the user when
the program is run. Use good programming practices in your program. (The acceleration
due to gravity at the Earth’s surface is 9.81 m/s2.)

Write a program to calculate the hypotenuse of a right triangle, given the lengths of its
two sides. Use good programming practices in your program.

Logarithms to an Arbitrary Base Write a program to calculate the logarithm of a num-
ber x to an arbitrary base b (log, x). Use the following equation for the calculation

(2-15)
Test the program by calculating the logarithm to the base e of 100. (Note that you can
check your answer using the LOG(X) function, which calculates log,x.)

Write a program using the IMPLICIT NONE statement, and do not declare one of the
variables in the program. What sort of error message is generated by your compiler?

The distance between two points (xy, y;) and (x,, y,) on a Cartesian coordinate plane
(see Figure (2-12)) is given by the equation

d=V(x —x)*+ (3 — »)’ (2-16)

Write a Fortran program to calculate the distance between any two points (x;, y;) and
(x5, y») specified by the user. Use good programming practices in your program. Use the
program to calculate the distance between the points (-1,1) and (6,2).

Decibels Engineers often measure the ratio of two power measurements in decibels, or
dB. The equation for the ratio of two power measurements in decibels is

P
dB = 10 1og10P—2 2-17)
1

where P, is the power level being measured, and P; is some reference power level.
Assume that the reference power level P; is 1 mW, and write a program that accepts an
input power P, and converts it into dB with respect to the 1 mW reference level.

s (oY)

o (X)

FIGURE 2-12
A Cartesian plane containing two points (x;, y;) and (xy, y,).

78 CHAPTER 2: Basic Elements of Fortran
2-23. Hyperbolic cosine The hyperbolic cosine function is defined by the equation

cosh x = % (2-18)

Write a Fortran program to calculate the hyperbolic cosine of a user-supplied value x.
Use the program to calculate the hyperbolic cosine of 3.0. Compare the answer that your
program produces to the answer produced by the Fortran intrinsic function COSH(x).

2-24. Compound Interest Suppose that you deposit a sum of money P in an interest-bearing
account at a local bank (P stands for present value). If the bank pays you interest on the
money at a rate of i percent per year and compounds the interest m times a year, the
amount of money that you will have in the bank after n years is given by the equation

F—P<1+APR (2-19)
- 100m

where F is the future value of the account and APR is the annual percentage rate on the

. APR
account. The quantity 100m S the fraction of interest earned in one compounding
m

period (the extra factor of 100 in the denominator converts the rate from percentages to
fractional amounts). Write a Fortran program that will read an initial amount of money
P, an annual interest rate APR, the number of times m that the interest is compounded in
a year, and the number of years n that the money is left in the account. The program
should calculate the future value F of this account.

Use this program to calculate the future value of the bank account if $1000.00 is
deposited in an account with an APR of 5% for a period of 1 year, and the interest
is compounded (@) annually, () semiannually, or (¢) monthly. How much difference
does the rate of compounding make on the amount in the account?

2-25. Radio Receiver A simplified version of the front end of an AM radio receiver is shown
in Figure 2-13. This receiver consists of an RLC tuned circuit containing a resistor, ca-
pacitor, and an inductor connected in series. The RLC circuit is connected to an external
antenna and ground as shown in the picture.

Antenna

Groun

d JT_
FIGURE 2-13

A simplified representation of an AM radio set.

Basic Elements of Fortran 79

2-26.

The tuned circuit allows the radio to select a specific station out of all the stations
transmitting on the AM band. At the resonant frequency of the circuit, essentially all of
the signal V;, appearing at the antenna appears across the resistor, which represents the
rest of the radio. In other words, the radio receives its strongest signal at the resonant
frequency. The resonant frequency of the LC circuit is given by the equation

1

2rVLC

where L is inductance in henrys (H) and C is capacitance in farads (F). Write a program that
calculates the resonant frequency of this radio set given specific values of L and C. Test
your program by calculating the frequency of the radio when L = 0.1 mH and C = 0.25 nF.

Jo= (2-20)

Aircraft Turning Radius An object moving in a circular path at a constant tangential
velocity v is shown in Figure 2-14. The radial acceleration required for the object to
move in the circular path is given by Equation (2-21)
2
%

a=— (2-21)
where a is the centripetal acceleration of the object in m/s?, v is the tangential velocity of
the object in m/s, and r is the turning radius in meters. Suppose that the object is an
aircraft, and write a program to answer the following questions about it:

(a) Suppose that the aircraft is moving at Mach 0.80, or 80% of the speed of sound. If the
centripetal acceleration is 2.5g, what is the turning radius of the aircraft? (Note: For this
problem, you may assume that Mach 1 is equal to 340 m/s, and that 1g = 9.81 m/s>.)

(b) Suppose that the speed of the aircraft increases to Mach 1.5. What is the turning ra-
dius of the aircraft now?

(¢) Suppose that the maximum acceleration that the pilot can stand is 7g. What is the
minimum possible turning radius of the aircraft at Mach 1.5?

FIGURE 2-14
An object moving in uniform circular motion due to the centripetal acceleration a.

80 CHAPTER 2: Basic Elements of Fortran

2-27. Escape Velocity The escape velocity from the surface of a planet or moon (ignoring the
effects of atmosphere) is given by Equation (2-22)

V2GM

R

v(:‘SL‘ -

(2-22)

where v is the escape velocity in meters per second, G is the gravitational constant
(6.673 x 10™""Nm~%kg~?), M is the mass of the planet in kilograms, and R is the radius
of the planet in meters. Write a program that will calculate the escape velocity as a func-
tion of mass and radius, and use the program to calculate the escape velocity for the
bodies given below.

Body Mass (kg) Radius (m)
Earth 6.0 x 10% 6.4 x 10°
Moon 7.4 x 10?2 1.7 x 10°
Ceres 8.7 x 10% 4.7 x 10°

Jupiter 1.9 x 10%7 7.1 x 107

3

Program Design and
Branching Structures

OBJECTIVES

e Learn the concepts of top-down design and decomposition.

e Learn about pseudocode and flowcharts, and why they should be used.

* Know how to create and use LOGICAL constants and variables.

e Learn about relational and combinational logical operators, and how they fit
into the hierarchy of operations.

e Know how to use the IF construct.

e Know how to use the SELECT CASE construct.

I the previous chapter, we developed several complete working Fortran programs.
However, all of the programs were very simple, consisting of a series of Fortran state-
ments that were executed one after another in a fixed order. Such programs are called
sequential programs. They read input data, process it to produce a desired answer,
print out the answer, and quit. There is no way to repeat sections of the program more
than once, and there is no way to selectively execute only certain portions of the pro-
gram depending on values of the input data.

In the next two chapters, we will introduce a number of Fortran statements that
allow us to control the order in which statements are executed in a program. There are
two broad categories of control statements: branches, which select specific sections of
the code to execute, and loops, which cause specific sections of the code to be repeated.
Branches will be introduced in this chapter, and loops will be covered in Chapter 4.

With the introduction of branches and loops, our programs are going to become
more complex, and it will get easier to make mistakes. To help avoid programming
errors, we will introduce a formal program design procedure based upon the technique
known as top-down design. We will also introduce two common algorithm develop-
ment tools, flowcharts and pseudocode.

After introducing the program design process, we will introduce the logical data
type and the operations that produce them. Logical expressions are used to control
many branching statements, so we will learn about them before studying branches.

Finally, we will study the various types of Fortran branching statements.

81

82

CHAPTER 3: Program Design and Branching Structures

3.1
INTRODUCTION TO TOP-DOWN DESIGN TECHNIQUES

Suppose that you are an engineer working in industry, and that you need to write a
Fortran program to solve some problem. How do you begin?

When given a new problem, there is a natural tendency to sit down at a terminal
and start programming without “wasting” a lot of time thinking about it first. It is often
possible to get away with this “on the fly” approach to programming for very small
problems, such as many of the examples in this book. In the real world, however, prob-
lems are larger, and a programmer attempting this approach will become hopelessly
bogged down. For larger problems, it pays to completely think out the problem and the
approach you are going to take to it before writing a single line of code.

We will introduce a formal program design process in this section, and then apply
that process to every major application developed in the remainder of the book. For
some of the simple examples that we will be doing, the design process will seem like
overkill. However, as the problems that we solve get larger and larger, the process
becomes more and more essential to successful programming.

When I was an undergraduate, one of my professors was fond of saying, “Pro-
gramming is easy. It’s knowing what to program that’s hard.” His point was forcefully
driven home to me after I left university and began working in industry on larger-scale
software projects. I found that the most difficult part of my job was to understand the
problem 1 was trying to solve. Once I really understood the problem, it became easy to
break the problem apart into smaller, more easily manageable pieces with well-defined
functions, and then to tackle those pieces one at a time.

Top-down design is the process of starting with a large task and breaking it down
into smaller, more easily understandable pieces (subtasks) that perform a portion of
the desired task. Each subtask may in turn be subdivided into smaller subtasks if nec-
essary. Once the program is divided into small pieces, each piece can be coded and
tested independently. We do not attempt to combine the subtasks into a complete task
until each of the subtasks has been verified to work properly by itself.

The concept of top-down design is the basis of our formal program design process.
We will now introduce the details of the process, which is illustrated in Figure 3-1. The
steps involved are:

1. Clearly state the problem that you are trying to solve.

Programs are usually written to fill some perceived need, but that need may not
be articulated clearly by the person requesting the program. For example, a user may
ask for a program to solve a system of simultaneous linear equations. This request is
not clear enough to allow a programmer to design a program to meet the need; he or
she must first know much more about the problem to be solved. Is the system of equa-
tions to be solved real or complex? What is the maximum number of equations and
unknowns that the program must handle? Are there any symmetries in the equations
that might be exploited to make the task easier? The program designer will have to talk
with the user requesting the program, and the two of them will have to come up with a
clear statement of exactly what they are trying to accomplish. A clear statement of the

Program Design and Branching Structures 83

Start

|

State the problem you
are trying to solve

Define required inputs
and outputs

Decomposition

U

Design the algorithm

/ \

l Stepwise refinement

U

Convert algorithm into
Fortran statements Top-down design process

Test the resulting
Fortran program

!

Finished!

FIGURE 3-1
The program design process used in this book.

problem will prevent misunderstandings, and it will also help the program designer to
properly organize his or her thoughts. In the example we were describing, a proper
statement of the problem might have been:

Design and write a program to solve a system of simultaneous linear equations
having real coefficients and with up to 20 equations in 20 unknowns.

2. Define the inputs required by the program and the outputs to be produced by
the program.
The inputs to the program and the outputs produced by the program must be
specified so that the new program will properly fit into the overall processing scheme.

84

CHAPTER 3: Program Design and Branching Structures

In the above example, the coefficients of the equations to be solved are probably in
some pre-existing order, and our new program needs to be able to read them in that
order. Similarly, it needs to produce the answers required by the programs that may
follow it in the overall processing scheme, and to write out those answers in the format
needed by the programs following it.

3. Design the algorithm that you intend to implement in the program.

An algorithm is a step-by-step procedure for finding the solution to a problem.
It is at this stage in the process that top-down design techniques come into play. The
designer looks for logical divisions within the problem, and divides it up into subtasks
along those lines. This process is called decomposition. If the subtasks are themselves
large, the designer can break them up into even smaller sub-subtasks. This process
continues until the problem has been divided into many small pieces, each of which
does a simple, clearly understandable job.

After the problem has been decomposed into small pieces, each piece is further
refined through a process called stepwise refinement. In stepwise refinement, a
designer starts with a general description of what the piece of code should do, and then
defines the functions of the piece in greater and greater detail until they are specific
enough to be turned into Fortran statements. Stepwise refinement is usually done with
pseudocode, which will be described in the next section.

It is often helpful to solve a simple example of the problem by hand during the
algorithm development process. If the designer understands the steps that he or she
went through in solving the problem by hand, then he or she will be better able to
apply decomposition and stepwise refinement to the problem.

4. Turn the algorithm into Fortran statements.

If the decomposition and refinement process were carried out properly, this
step will be very simple. All that the programmer will have to do is to replace pseudo-
code with the corresponding Fortran statements on a one-for-one basis.

5. Test the resulting Fortran program.

This step is the real killer. The components of the program must first be tested
individually, if possible, and then the program as a whole must be tested. When testing
a program, we must verify that it works correctly for all legal input data sets. It is very
common for a program to be written, tested with some standard data set, and released
for use, only to find that it produces the wrong answers (or crashes) with a different
input data set. If the algorithm implemented in a program includes different branches,
we must test all of the possible branches to confirm that the program operates correctly
under every possible circumstance.

Large programs typically go through a series of tests before they are released for
general use (see Figure 3-2). The first stage of testing is sometimes called unit testing.
During unit testing, the individual subtasks of the program are tested separately to
confirm that they work correctly. The programmer usually writes small programs
called “stubs” or “test drivers” to execute the code under test, and to see if the code is
returning the proper results. This verifies the operation of the subtasks at a basic level
before they are combined into larger groups.

Program Design and Branching Structures 85
Start

1

Unit testing of
individual subtasks

Subtasks validated separately

Successive builds
(adding subtasks to the As many times as necessary
program)

Subtasks combined into program

Alpha release } As many times as necessary

Worst bugs fixed

Beta release > As many times as necessary

1 Minor bugs fixed

Finished program
FIGURE 3-2
A typical testing process for a large program.

After the unit testing is completed, the program goes through a series of builds
during which the individual subtasks are combined to produce the final program. The
first build of the program typically includes only a few of the subtasks. It is used to
check the interactions among those subtasks and the functions performed by the
combinations of the subtasks. In successive builds, more and more subtasks are added,
until the entire program is complete. Testing is performed on each build, and any
errors (bugs) that are detected are corrected before moving on to the next build.

Testing continues even after the program is complete. The first complete version
of the program is usually called the alpha release. It is exercised by the programmers
and others very close to them in as many different ways as possible, and the bugs dis-
covered during the testing are corrected. When the most serious bugs have been
removed from the program, a new version called the beta release is prepared. The beta
release is normally given to “friendly” outside users who have a need for the program

86

CHAPTER 3: Program Design and Branching Structures

in their normal day-to-day jobs. These users put the program through its paces under
many different conditions and with many different input data sets, and they report any
bugs that they find to the programmers. When those bugs have been corrected, the
program is ready to be released for general use.

Because the programs in this book are fairly small, we will not go through the sort
of extensive testing described above. However, we will follow the basic principles in
testing all of our programs.

The program design process may be summarized as follows:

Clearly state the problem that you are trying to solve.

. Define the inputs required by the program and the outputs to be produced by the
program.

Design the algorithm that you intend to implement in the program.

Turn the algorithm into Fortran statements.

. Test the Fortran program.

DN —

oW

Good Programming Practice
Follow the steps of the program design process to produce reliable, understandable
Fortran programs.

In a large programming project, the time actually spent in programming is
surprisingly small. In his book The Mythical Man-Month," Frederick P. Brooks, Jr.,
suggests that in a typical large software project, 1/3 of the time is spent planning what to
do (steps 1 through 3), 1/6 of the time is spent actually writing the program (step 4), and
fully 1/2 of the time is spent in testing and debugging the program! Clearly, anything that
we can do to reduce the testing and debugging time will be very helpful. We can best
reduce the testing and debugging time by doing a very careful job in the planning phase,
and by using good programming practices. Good programming practices will reduce the
number of bugs in the program, and will make the ones that do creep in easier to find.

3.2
USE OF PSEUDOCODE AND FLOWCHARTS

As a part of the design process, it is necessary to describe the algorithm that you
intend to implement. The description of the algorithm should be in a standard form
that is easy for both you and other people to understand, and the description should aid
you in turning your concept into Fortran code. The standard forms that we use to
describe algorithms are called constructs, and an algorithm described using these
constructs is called a structured algorithm. When the algorithm is implemented in a
Fortran program, the resulting program is called a structured program.

! The Mythical Man-Month, Anniversary Edition, by Frederick P. Brooks, Jr., Addison-Wesley, 1995.

Program Design and Branching Structures 87

The constructs used to build algorithms can be described in two different ways:
pseudocode and flowcharts. Pseudocode is a hybrid mixture of Fortran and English. It
is structured like Fortran, with a separate line for each distinct idea or segment of code,
but the descriptions on each line are in English. Each line of the pseudocode should
describe its idea in plain, easily understandable English. Pseudocode is very useful for
developing algorithms, since it is flexible and easy to modify. It is especially useful
since pseudocode can be written and modified on the same computer terminal used to g
write the Fortran program—no special graphical capabilities are required.

For example, the pseudocode for the algorithm in Example 2-3 is:

Prompt user to enter temperature in degrees Fahrenheit
Read temperature in degrees Fahrenheit (temp_f)
temp_k in kelvins « (5./9.) * (temp_f - 32) + 273.15
Write temperature in kelvins

@ An oval indicates the start or stop of an algorithm

(a)

A rectangle indicates a computation, with the result
of the computation assigned to a variable

(b)

D A parallelogram indicates an input or output operation

(c)

A diamond indicates a point where a choice is made
between two alternatives

(@)

A double-lined rectangle indicates a reference to a
subroutine that is documented elsewhere

(e)

An arrow indicates the direction of program flow
between steps in the algorithm
®)
When it is inconvenient to connect two points by flowlines,
the flowline is connected to a numbered circle, and continued from
a circle with the same number on another portion of the diagram
(8
€ > This shape indicates an iterative or counting loop

(h)
FIGURE 3-3
Common symbols used in flowcharts.

88

CHAPTER 3: Program Design and Branching Structures

Notice that a left arrow (<) is used instead of an equal sign (=) to indicate that a
value is stored in a variable, since this avoids any confusion between assignment and
equality. Pseudocode is intended to aid you in organizing your thoughts before con-
verting them into Fortran code.

Flowcharts are a way to describe algorithms graphically. In a flowchart, different
graphical symbols represent the different operations in the algorithm, and our standard
constructs are made up of collections of one or more of these symbols. Flowcharts are
very useful for describing the algorithm implemented in a program after it is
completed. However, since they are graphical, flowcharts tend to be cumbersome to
modify, and they are not very useful during the preliminary stages of algorithm defini-
tion when rapid changes are occurring. The most common graphical symbols used in
flowcharts are shown in Figure 3-3, and the flowchart for the algorithm in Example
2-3 is shown in Figure 3-4.

Throughout the examples in this book, we will illustrate the use of both pseudo-
code and flowcharts. You are welcome to use whichever one of these tools gives you
the best results in your own programming projects.

(Start)

Tell user to enter
temperature in °F

Get temp_f

Calculate temp_k temp_k = 5/9 * (temp_f - 32) + 273.15

Write temperature
in kelvins

([Stop)

FIGURE 3-4
Flowchart for the algorithm in Example 2-3.

Program Design and Branching Structures 89

3.3
LOGICAL CONSTANTS, VARIABLES, AND OPERATORS

As we mentioned in the introduction to this chapter, most Fortran branching structures
are controlled by logical values. Before studying the branching structures, we will

introduce the data types that control them.

3.3.1 Logical Constants and Variables

The logical data type contains one of only two possible values: TRUE or FALSE. A
logical constant can have one of the following values: . TRUE. or . FALSE. (note that
the periods are required on either side of the values to distinguish them from variable
names). Thus, the following are valid logical constants:

.TRUE.
.FALSE.

The following are not valid logical constants:

TRUE (No periods—this is a variable name)
.FALSE (Unbalanced periods)

Logical constants are rarely used, but logical expressions and variables are
commonly used to control program execution, as we will see later in the chapter.

A logical variable is a variable containing a value of the logical data type.
A logical variable is declared using the LOGICAL statement:

LOGICAL :: varl [, var2, var3, ...]

This type declaration statement should be placed after the PROGRAM statement and
before the first executable statement in the program, as shown in the example below:

PROGRAM example
LOGICAL :: testl, test2

iéiecutable statements follow)

3.3.2 Assignment Statements and Logical Calculations

Like arithmetic calculations, logical calculations are performed with an assignment
statement, whose form is

logical_variable_name = logical_expression

The expression to the right of the equal sign can be any combination of valid logical
constants, logical variables, and logical operators. A logical operator is an operator
on numeric, character, or logical data that yields a logical result. There are two basic
type of logical operators: relational operators and combinational operators.

90 CHAPTER 3: Program Design and Branching Structures

TABLE 3-1
Relational logic operators
Operation
New style Older style Meaning

== .EQ. Equal to
/= .NE. Not equal to
> .GT. Greater than
>= .GE. Greater than or equal to
< LT, Less than
<= .LE. Less than or equal to

3.3.3 Relational Operators

Relational logic operators are operators with two numerical or character operands that
yield a logical result. The result depends on the relationship between the two values
being compared, so these operators are called relational. The general form of a rela-
tional operator is

a; op a

where a, and a, are arithmetic expressions, variables, constants, or character strings,
and op is one of the relational logic operators listed in Table 3-1.

There are two forms of each relational operator. The first one is composed of
symbols, and the second one is composed of characters surrounded by periods. In the
second form, the periods are a part of the operator and must always be present. The
first form of the operators was introduced in Fortran 90, while the second form is a
holdover from earlier versions of Fortran. You may use either form of the operators in
your program, but the first form is preferred in new programs.

If the relationship between a, and a, expressed by the operator is true, then the
operation returns a value of . TRUE.; otherwise, the operation returns a value of
.FALSE..

Some relational operations and their results are given below:

Operation Result
3<4 .TRUE.
3<=4 .TRUE.
3 =14 .FALSE.
3> 4 .FALSE.
4 <=4 .TRUE.
"AT < 'B! .TRUE.

The last logical expression is . TRUE. because characters are evaluated in alphabetical
order.

Program Design and Branching Structures 91

The equivalence relational operator is written with two equal signs, while the
assignment operator is written with a single equal sign. These are very different oper-
ators that beginning programmers often confuse. The == symbol is a comparison
operation that returns a logical result, while the = symbol assigns the value of the ex-
pression to the right of the equal sign to the variable on the left of the equal sign. It is
a very common mistake for beginning programmers to use a single equal sign when
trying to do a comparison.

Programming Pitfalls
Be careful not to confuse the equivalence relational operator (==) with the
assignment operator (=).

In the hierarchy of operations, relational operators are evaluated after all arithme-
tic operators have been evaluated. Therefore, the following two expressions are equiv-
alent (both are . TRUE.).

+ 11

+ 3
+ 3 + 11)

7 < 2
(7) < (2

If the comparison is between real and integer values, then the integer value is con-
verted to a real value before the comparison is performed. Comparisons between

numerical data and character data are illegal and will cause a compile-time error:

== 4. .TRUE. (Integer is converted to real and comparison is made)
<= "A' (Ilegal—produces a compile-time error

3.3.4 Combinational Logic Operators

Combinational logic operators are operators with one or two logical operands that
yield a logical result. There are four binary operators, .AND., .OR., .EQV., and
.NEQV., and one unary operator, . NOT.. The general form of a binary combinational
logic operation is

ll .Op. lz

where [, and [, are logical expressions, variables, or constants, and .op. is one of the
combinational operators listed in Table 3-2.

The periods are a part of the operator and must always be present. If the relation-
ship between /, and [, expressed by the operator is true, then the operation returns a
value of . TRUE.; otherwise, the operation returns a value of . FALSE..

The results of the operators are summarized in the truth tables in Table 3-3(A)
and (B), which show the result of each operation for all possible combinations of /,
and /,.

92 CHAPTER 3: Program Design and Branching Structures

TABLE 3-2
Combinational logic operators
Operator Function Definition
I, .AND. [, Logical AND Result is TRUE if both /, and 1, are
TRUE
I, .OR. I, Logical OR Result is TRUE if either or both of /, and
1, are TRUE
I, JEQV. [, Logical equivalence Result is TRUE if /, is the same as [,
(either both TRUE or both FALSE)
I, JNEQV. [, Logical nonequivalence Result is TRUE if one of /, and [, is
TRUE and the other one is FALSE
.NOT. 7 Logical NOT Result is TRUE if /, is FALSE, and

FALSE if /| is TRUE

TABLE 3-3A
Truth tables for binary combinational logic operators

1, 1, 1, .AND.T, 1, .OR. 1, 1, CEQV. 7, T, LNEQV. T,
.FALSE. .FALSE. .FALSE. .FALSE. .TRUE. .FALSE.
JFALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE.
.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.
.TRUE. .TRUE. .TRUE. .TRUE. .TRUE. .FALSE.

TABLE 3-3B

Truth table for .NOT. operator

1, .NOT. 7,
.FALSE. .TRUE.
.TRUE. .FALSE.

In the hierarchy of operations, combinational logic operators are evaluated after
all arithmetic operations and all relational operators have been evaluated. The order
in which the operators in an expression are evaluated is:

1. All arithmetic operators are evaluated first in the order previously described.

2. All relational operators (==, /=, >, >=, <, <=) are evaluated, working from left to
right.

All .NOT. operators are evaluated.

All .AND. operators are evaluated, working from left to right.

All .0R. operators are evaluated, working from left to right.

All .EQV. and .NEQV. operators are evaluated, working from left to right.

SNk w

As with arithmetic operations, parentheses can be used to change the default order
of evaluation. Examples of some combinational logic operators and their results are
given below.

Program Design and Branching Structures 93

EXAMPLE Assume that the following variables are initialized with the values shown, and calcu-

3-1

late the result of the specified expressions:

logl = .TRUE.

log2 = .TRUE.

Tog3 = .FALSE.
Logical Expression Result
(@) .NOT. logl .FALSE.
(b) Togl .0OR. 10g3 .TRUE.
(c) Togl .AND. 10g3 .FALSE.
(d) 1Tog2 .NEQV. 10g3 .TRUE.
(e) 1Togl .AND. 1og2 .0OR. 10g3 .TRUE.
(f) Togl .OR. 10g2 .AND. 10g3 .TRUE.
(g) -NOT. (logl .EQV. 10g2) .FALSE.

The .NOT. operator is evaluated before other combinational logic operators.
Therefore, the parentheses in part (g) of the above example were required. If they had
been absent, the expression in part (g) would have been evaluated in the order (. NOT.
L1) .EQV. L2.

Combinational logic operations involving numerical or character data are illegal
and will cause a compile-time error:

4 .AND. 3 Error
3.3.5 Logical Values in Input and Output Statements

If a logical variable appears in a list-directed READ statement, then the corresponding input
value must either be the constants . TRUE. or . FALSE., or else a character or a group of
characters beginning with a T or an F. If the input value is . TRUE ., or the first character of
the input value is T, then the logical variable will be set to . TRUE.. If the input value is
. FALSE., or the first character of the input value is F, then the logical variable will be set to
. FALSE.. Any input value beginning with another character will produce a runtime error.

If a logical variable or expression appears in a list-directed WRITE statement, then
the corresponding output value will be the single character T if the value of the vari-
able is . TRUE., and F if the value of the variable is . FALSE..

3.3.6 The Significance of Logical Variables and Expressions

Logical variables and expressions are rarely the final product of a Fortran program.
Nevertheless, they are absolutely essential to the proper operation of most programs.
Most of the major branching and looping structures of Fortran are controlled by
logical values, so must be able to read and write logical expressions to understand
and use Fortran control statements.

94 CHAPTER 3: Program Design and Branching Structures

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 3.3. If you have trouble with the quiz, reread the sections, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book.

1. Suppose that the real variables a, b, and ¢ contain the values —10., 0.1, and
2.1, respectively, and that the logical variable 11, 12, and 13 contain the
values .TRUE., .FALSE., and .FALSE., respectively. Is each of the
following expressions legal or illegal? If an expression is legal, what will
its result be?

(@ a>b .0R. b>c

(b) (.NOT. a) .OR. 11

(¢) 11 .AND. .NOT. 12

(d a <b .EQV. b < c

(¢) 11 .0R. 12 .AND. 13
(f) 11 .0R. (12 .AND. 13)
(¢) (11 .OR. 12) .AND. 13
(h) a .OR. b .AND. 11

2. If the input data is as shown, what will be printed out by the following
program?

PROGRAM quiz_31
INTEGER :: i, j, k
LOGICAL :: 1

READ (*,*) 1,]
READ (*,*) k
T=1i+]==

WRITE (*,*) 1

END PROGRAM quiz_31

The input data is :

1, 3,5
2, 4, 6

34
CONTROL CONSTRUCTS: BRANCHES

Branches are Fortran statements that permit us to select and execute specific sections
of code (called blocks) while skipping other sections of code. They are variations of
the IF statement, plus the SELECT CASE.

Program Design and Branching Structures 95

YT@)‘,\S

3.4.1 The Block IF Construct

The commonest form of the IF statement is the block IF construct. This construct
specifies that a block of code will be executed if and only if a certain logical expres-
sion is true. The block IF construct has the form

IF (Togical_expr) THEN
Statement 1
Statement 2 Block 1

END IF

If the logical expression is true, the program executes the statements in the block
between the IF and END IF statements. If the logical expression is false, then the pro-
gram skips all of the statements in the block between the IF and END IF statements,
and executes the next statement after the END IF. The flowchart for a block IF
construct is shown in Figure 3-5.

The IF (...) THEN is a single Fortran statement that must be written to-
gether on the same line, and the statements to be executed must occupy separate
lines below the IF (...) THEN statement. An END IF statement must follow
them on a separate line. There should not be a statement number on the line con-
taining the END IF statement. For readability, the block of code between the IF
and END IF statements is usually indented by two or three spaces, but this is not
actually required.

Good Programming Practice
Always indent the body of a block IF construct by two or more spaces to improve
the readability of the code.

.FALSE.

logical_expr

Statement 1
Statement 2

FIGURE 3-5
Flowchart for a simple block IF construct.

96 CHAPTER 3: Program Design and Branching Structures

y

.TRUE.

WRITE 'There are two
complex roots to
this equation.'’

-

y

FIGURE 3-6
Flowchart showing structure to determine if a quadratic equation has two complex roots.

As an example of a block IF construct, consider the solution of a quadratic equa-
tion of the form

ax’ +bx+c=0 3-1)

The solution to this equation is

—b + Vb* — dac
X = (3-2)
2a
The term b* — 4ac is known as the discriminant of the equation. If b* — 4ac > 0, then
there are two distinct real roots to the quadratic equation. If 5> — 4ac = 0, then there
is a single repeated root to the equation, and if b* — 4ac < 0, then there are two com-
plex roots to the quadratic equation.
Suppose that we wanted to examine the discriminant of the quadratic equation and
tell a user if the equation has complex roots. In pseudocode, the block IF construct to
do this would take the form

IF (b**2 - 4.*a*c) < 0. THEN
Write message that equation has two complex roots.
END of IF

In Fortran, the block IF construct is

IF ((b**2 - 4.*a*c) < 0.) THEN
WRITE (*,*) 'There are two complex roots to this equation.’
END IF

The flowchart for this construct is shown in Figure 3-6.

3.4.2 The ELSE and ELSE IF Clauses

In the simple block IF construct, a block of code is executed if the controlling logical
expression is true. If the controlling logical expression is false, all of the statements in
the construct are skipped.

Program Design and Branching Structures 97

Sometimes we may want to execute one set of statements if some condition is true,
and different sets of statements if other conditions are true. In fact, there might be
many different options to consider. An ELSE clause and one or more ELSE IF clauses
may be added to the block IF construct for this purpose. The block IF construct with
an ELSE clause and an ELSE IF clause has the form

IF (Togical_expr_1) THEN
Statement 1
Statement 2 Block 1

ELSE IF (Togical_expr_2) THEN
Statement 1

Statement 2 Block 2
ELSE

Statement 1

Statement 2 Block 3
END IF

If logical_expr_1 is true, then the program executes the statements in Block 1, and
skips to the first executable statement following the END IF. Otherwise, the program
checks for the status of logical_expr_2. If logical_expr_2 is true, then the program
executes the statements in Block 2, and skips to the first executable statement follow-
ing the END IF. If both logical expressions are false, then the program executes the
statements in Block 3.

The ELSE and ELSE IF statements must occupy lines by themselves. There should
not be a statement number on a line containing an ELSE or ELSE IF statement.

There can be any number of ELSE IF clauses in a block IF construct. The logical
expression in each clause will be tested only if the logical expressions in every clause
above it are false. Once one of the expressions proves to be true and the corresponding
code block is executed, the program skips to the first executable statement following the
END IF.

The flowchart for a block IF construct with an ELSE IF and an ELSE clause is
shown in Figure 3-7.

To illustrate the use of the ELSE and ELSE IF clauses, let’s reconsider the qua-
dratic equation once more. Suppose that we wanted to examine the discriminant of a
quadratic equation and to tell a user whether the equation has two complex roots, two
identical real roots, or two distinct real roots. In pseudocode, this construct would take
the form

IF (b**2 - 4.*a*c) < 0.0 THEN

Write message that equation has two complex roots.
ELSE IF (b**2 - 4.*a*c) > 0.0 THEN

Write message that equation has two distinct real roots.
ELSE

Write message that equation has two identical real roots.
END IF

98 CHAPTER 3: Program Design and Branching Structures

.FALSE. .FALSE.
logical_expr_2

logical_expr_1

Block 1 Block 2 Block 3

FIGURE 3-7
Flowchart for a block IF construct with an ELSE IF (...) THEN clause and an ELSE clause.

The Fortran statements to do this are

IF ((b**2 - 4.%*a*c) < 0.0) THEN

WRITE (*,*) 'This equation has two complex roots.'
ELSE IF ((b**2 - 4.%*a*c) > 0.0) THEN

WRITE (*,*) 'This equation has two distinct real roots.’
ELSE

WRITE (*,*) 'This equation has two identical real roots.'
END IF

The flowchart for this construct is shown in Figure 3-8.

.FALSE. .FALSE.
b**2-4*a*c > 0

b**2-4*a*c < 0

.TRUE.

y

WRITE 'The equation WRITE 'The equation
has two distinct has two identical
real roots.' real roots.'

WRITE 'The equation
has complex roots.'

FIGURE 3-8
Flowchart showing structure to determine whether a quadratic equation has two complex roots, two identical real
roots, or two distinct real roots.

Program Design and Branching Structures 99

3.4.3 Examples Using Block IF Constructs

We will now look at two examples that illustrate the use of block IF constructs.

EXAMPLE
3-2

The Quadratic Equation:

Design and write a program to solve for the roots of a quadratic equation, regardless
of type.

SOLUTION
We will follow the design steps outlined earlier in the chapter.

1. State the problem.
The problem statement for this example is very simple. We want to write a pro-
gram that will solve for the roots of a quadratic equation, whether they are distinct real
roots, repeated real roots, or complex roots.

2. Define the inputs and outputs.
The inputs required by this program are the coefficients a, b, and ¢ of the qua-
dratic equation

ax’ +bx+c=0 (3-1)

The output from the program will be the roots of the quadratic equation, whether they
are distinct real roots, repeated real roots, or complex roots.

3. Design the algorithm.
This task can be broken down into three major sections, whose functions are input,
processing, and output:

Read the input data
Calculate the roots
Write out the roots

We will now break each of the above major sections into smaller, more detailed pieces.
There are three possible ways to calculate the roots, depending on the value of the
discriminant, so it is logical to implement this algorithm with a three-branched IF
statement. The resulting pseudocode is:

Prompt the user for the coefficients a, b, and c.
Read a, b, and ¢
Echo the input coefficients
discriminant « b**2 - 4., * a * ¢

IF discriminant > 0 THEN
x1l « (-b + sqrt(discriminant)) / (2. * a)
x2 « (-b - sqrt(discriminant)) / (2. * a)
Write message that equation has two distinct real roots.
Write out the two roots.

(continued)

100 CHAPTER 3: Program Design and Branching Structures

(concluded)

ELSE IF discriminant < 0 THEN
real_part « -b / (2. * a)
imag_part « sqrt (abs (discriminant)) / (2. * a)
Write message that equation has two complex roots.

Write
ELSE

x1l «—

Write

out the two roots.

b/ (2. %a)
message that equation has two identical real roots.

Write
END IF

out the repeated root.

The flowchart for this program is shown in Figure 3-9.

///READ a, b, c///
v
///ECHO a, b, c///

.FALSE.

b**2-4*a*c < 0
.TRUE.

WRITE 'The equation
has complex roots.'

.FALSE.

b**2-4*a*c > 0

WRITE 'The equation
has two distinct

WRITE 'The equation
has two identical

real roots.' real roots.'
Calculate
Calculate xI1, x2 real_part, Calculate x1
imag_part
WRITE
real - 7 imag

(Stop)
FIGURE 3-9

Flowchart of program roots.

Program Design and Branching Structures 101

4. Turn the algorithm into Fortran statements.
The final Fortran code is shown in Figure 3-10.

FIGURE 3-10
Program to solve for the roots of a quadratic equation.

PROGRAM roots

! Purpose:

This program solves for the roots of a quadratic equation of the
form a*x**2 + b*x + ¢ = 0. It calculates the answers regardless
of the type of roots that the equation possesses.

Record of revisions:
Date Programmer Description of change

!
!
!
!
!
!
!
! 11/06/15 S. J. Chapman Original code
!

I

MPLICIT NONE

! Data dictionary: dec]are variable types, definitions, & units

REAL :: a I Coefficient of x**2 term of equation

REAL :: b I Coefficient of x term of equation

REAL :: c I Constant term of equation

REAL :: discriminant ! Discriminant of the equation

REAL :: imag_part ! Imaginary part of equation (for complex roots)
REAL :: real_part I Real part of equation (for complex roots)

REAL :: x1 ! First solution of equation (for real roots)
REAL :: x2 I Second solution of equation (for real roots)

I Prompt the user for the coefficients of the equation

WRITE (*,*) 'This program solves for the roots of a quadrat1c !
WRITE (*,*) 'equation of the form A * X**2 + B * X + C = 0.
WRITE (*,*) 'Enter the coefficients A, B, and C: '

READ (*,*) a, b, c

I Echo back coefficients
WRITE (*,*) 'The coefficients A, B, and C are: ', a, b, ¢

I Calculate discriminant
discriminant = b**2 - 4, * a * ¢

! Solve for the roots, depending upon the value of the discriminant
IF (discriminant > 0.) THEN ! there are two real roots, so...

x1 = (-b + sqrt(discriminant)) / (2. * a)
X2 -b - sqrt(discriminant)) / (2. * a)
WRITE (*,*) 'This equation has two real roots:'
WRITE (*,*) 'X1 ", x1

WRITE (*,*) 'X2 ", x2

[l
—

ELSE (discriminant < 0.) THEN ! there are complex roots, so .
real_part = (-b) / (2. *a)

(continued)

102

CHAPTER 3: Program Design and Branching Structures

(concluded)

imag_part = sqrt (abs (discriminant)) / (2. * a)
WRITE (*,*) 'This equation has complex roots:'

WRITE (*,*) 'X1 ="', real_part, ' +i ', imag_part
WRITE (*,*) 'X2 ="', real_part, ' -i ', imag_part
ELSE IF (discriminant == 0.) THEN ! there is one repeated root, so...

xl=(0-b)/ (2. *a)
WRITE (*,*) 'This equation has two identical real roots:'
WRITE (*,*) 'X1 = X2 =", x1

END IF

END PROGRAM roots

5. Test the program.

Next, we must test the program using real input data. Since there are three possible
paths through the program, we must test all three paths before we can be certain that
the program is working properly. From Equation (3-2), it is possible to verify the solu-
tions to the equations given below:

X+5x+6=0 x=-2and x = -3
X 4+4x+4=0 x=-2
X¥+2x+5=0 x=—-1+ 2

If this program is compiled, and then run three times with the above coefficients, the
results are as shown below (user inputs are shown in bold face):

C:\book\fortran\chap3>roots

This program solves for the roots of a quadratic
equation of the form A * X**2 + B * X + C = 0.
Enter the coefficients A, B, and C:

1., 5., 6

The coefficients A, B, and C are: 1.000000 5.000000
6.000000

This equation has two real roots:

X1 = -2.000000

X2 = -3.000000

C:\book\fortran\chap3>roots

This program solves for the roots of a quadratic

equation of the form A * X**2 + B * X + C = 0.

Enter the coefficients A, B, and C:

1., 4., 4.

The coefficients A, B, and C are: 1.000000 4.000000
4.000000

This equation has two identical real roots:

X1 = X2 = -2.000000

Program Design and Branching Structures 103

C:\book\fortran\chap3>roots

This program solves for the roots of a quadratic
equation of the form A * X**2 + B * X + C = 0.
Enter the coefficients A, B, and C:

1., 2., 5.

The coefficients A, B, and C are: 1.000000 2.000000
5.000000

This equation has complex roots:

X1 = -1.000000 +i 2.000000

X2 = -1.000000 -1 2.000000

The program gives the correct answers for our test data in all three possible cases.

EXAMPLE
3-3

Evaluating a Function of Two Variables:

Write a Fortran program to evaluate a function f{x,y) for any two user-specified values
x and y. The function f{x,y) is defined as follows:

x+y x>0andy>0
x+y x>0andy<0
X*+y x<Oandy>0
¥ +y x<Oandy<0

flx,y) =

SOLUTION

The function f{x,y) is evaluated differently depending on the signs of the two indepen-
dent variables x and y. To determine the proper equation to apply, it will be necessary
to check for the signs of the x and y values supplied by the user.

1. State the problem.
This problem statement is very simple: Evaluate the function f{x,y) for any
user-supplied values of x and y.

2. Define the inputs and outputs.
The inputs required by this program are the values of the independent variables x
and y. The output from the program will be the value of the function f{x,y).

3. Design the algorithm.
This task can be broken down into three major sections, whose functions are input,
processing, and output:

Read the input values x and y
Calculate f(x,y)
Write out f(x,y)

We will now break each of the above major sections into smaller, more detailed pieces.
There are four possible ways to calculate the function f{x,y), depending upon the values

104 CHAPTER 3: Program Design and Branching Structures

of x and y, so it is logical to implement this algorithm with a four-branched IF
statement. The resulting pseudocode is:

Prompt the user for the values x and y.
Read x and y
Echo the input coefficients
IF x 2 0 and y 2 0 THEN
fun <« x +y
ELSE IF x 2 0 and y < O THEN
fun <« x + y**2
ELSE IF x < 0 and y 2 0 THEN
fun < x**2 + vy
ELSE
fun « x**2 + y**2
END IF
Write out f(x,y)

The flowchart for this program is shown in Figure 3-11.

READ x, y

|

WRITE x, y

fun < x +y fun « x + y**2 fun < x**2 + y fun « x**2 + y**2

v Y v

WRITE fun

FIGURE 3-11
Flowchart of program funxy.

Program Design and Branching Structures 105

4. Turn the algorithm into Fortran statements.
The final Fortran code is shown in Figure 3-12.

FIGURE 3-12
Program funxy from Example 3-3.

! Purpose: 3
This program solves the function f(x,y) for a user-specified x and vy,
where f(x,y) is defined as:

|

|

!

! I

! | X +Y X>0and Y >0
! | X + Y**2 X>0and Y <O
! FOX,Y) = | X**2 + Y X<0and Y >0
! | X**2 + Y**2 X<0and Y <O

|

! l_

I Record of revisions:

! Date Programmer Description of change
!

I 11/06/15 S. J. Chapman Original code

|

I

MPLICIT NONE

| Data dictionary: declare variable types, definitions, & units

REAL :: x I First independent variable
REAL :: y I Second independent variable
REAL :: fun I Resulting function

! Prompt the user for the values x and y
WRITE (*,*) 'Enter the coefficients x and y: '
READ (*,*) x, y

I Write the coefficients of x and y.
WRITE (*,*) 'The coefficients x and y are: ', X, Yy

I Calculate the function f(x,y) based upon the signs of x and y.
IF ((x >= 0.) .AND. (y >= 0.)) THEN
fun
ELSE I
fun
ELSE I
fun
ELSE
fun = x**2 + y**2
END IF

= 0.) .AND. (y < 0.)) THEN

0.) .AND. C y >= 0.)) THEN

[B R

X
(
X
(
X

! Write the value of the function.
WRITE (*,*) 'The value of the function is: ', fun

END PROGRAM funxy

106

CHAPTER 3: Program Design and Branching Structures

5. Test the program.

Next, we must test the program using real input data. Since there are four possible
paths through the program, we must test all four paths before we can be certain that the
program is working properly. To test all four possible paths, we will execute the pro-
gram with the four sets of input values (x,y) = (2,3), (2,—3), (—2,3), and (-2, —3).
Calculating by hand, we see that

f23)=2+3=5
f2,-3) =2+ (-3)* =11
f(=23) = (-2 +3=7
f(=2-3) = (=2 + (-3)’=13
If this program is compiled, and then run four times with the above values, the results are:

C:\book\fortran\chap3>funxy
Enter the coefficients X and V:

2. 3.
The coefficients X and Y are: 2.000000 3.000000
The value of the function is: 5.000000

C:\book\fortran\chap3>funxy
Enter the coefficients X and Y:

2. -3.
The coefficients X and Y are: 2.000000 -3.000000
The value of the function is: 11.000000

C:\book\fortran\chap3>funxy
Enter the coefficients X and Y:

-2. 3.
The coefficients X and Y are: -2.000000 3.000000
The value of the function is: 7.000000

C:\book\fortran\chap3>funxy
Enter the coefficients X and Y:

-2. -3.
The coefficients X and Y are: -2.000000 -3.000000
The value of the function is: 13.000000

The program gives the correct answers for our test values in all four possible cases.

3.4.4 Named Block IF Constructs

It is possible to assign a name to a block IF construct. The general form of the con-
struct with a name attached is

[name:] IF (Togical_expr_1) THEN
Statement 1
Statement 2 Block 1

Program Design and Branching Structures 107

ELSE IF (Togical_expr_2) THEN [namel
Statement 1
Statement 2 Block 2

ELéé.[nameJ
Statement 1
Statement 2 Block 3

ENI'J.I'F [name]

where name may be up to 63 alphanumeric characters long, beginning with a
letter. The name given to the IF construct must be unique within each program unit,
and must not be the same as any constant or variable name within the program unit. If
a name is assigned to an IF, then the same name must appear on the associated
END IF. Names are optional on the ELSE and ELSE IF statements of the construct, but
if they are used, they must be the same as the name on the IF.

Why would we want to name an I F construct? For simple examples like the ones
we have seen so far, there is no particular reason to do so. The principal reason for
using names is to help us (and the compiler) keep IF constructs straight in our own
minds when they get very complicated. For example, suppose that we have a complex
IF construct that is hundreds of lines long, spanning many pages of listings. If we
name all of the parts of such a construct, then we can tell at a glance which construct a
particular ELSE or ELSE IF statement belongs to. They make a programmer’s inten-
tions explicitly clear. In addition, names on constructs can help the compiler flag the
specific location of an error when one occurs.

Good Programming Practice
Assign a name to any large and complicated IF constructs in your program to help
you keep the parts of the construct associated together in your own mind.

3.4.5 Notes Concerning the Use of Block IF Constructs

The block IF construct is very flexible. It must have one IF (...) THEN statement
and one END IF statement. In between, it can have any number of ELSE IF clauses,
and may also have one ELSE clause. With this combination of features, it is possible to
implement any desired branching construct.

In addition, block IF constructs may be nested. Two block IF constructs are said
to be nested if one of them lies entirely within a single code block of the other one. The
following two IF constructs are properly nested.

outer: IF (x > 0.) THEN
inner: IF (y < 0.) THEN
END.ff inner

END IF 'outer

108

CHAPTER 3: Program Design and Branching Structures

It is a good idea to name IF constructs when they are being nested, since the name
explicitly indicates which IF a particular END IF is associated with. If the constructs are not
named, the Fortran compiler always associates a given END IF with the most recent IF
statement. This works well for a properly written program, but can cause the compiler to
produce confusing error messages in cases where the programmer makes a coding error. For
example, suppose we have a large program containing a construct like the one shown below:

PROGRAM mixup
IF (testl) THEN
IF (test2) THEN
IF (test3) THEN
END IF
END IF
END IF
END PROGRAM mixup

This program contains three nested IF constructs that may span hundreds of lines of code.
Now suppose that the first END IF statement is accidentally deleted during an editing
session. When that happens, the compiler will automatically associate the second END IF
with the innermost IF (test3) construct, and the third END IF with the middle IF
(test2). When the compiler reaches the END PROGRAM statement, it will notice that the
first IF (testl) construct was never ended, and it will generate an error message saying
that there is a missing END IF. Unfortunately, it can’t tell where the problem occurred, so
we will have to go back and manually search the entire program to locate the problem.

In contrast, consider what happens if we assign names to each IF construct. The
resulting program would be:

PROGRAM mixup_1

outer: IF (testl) THEN
middle: IF (test2) THEN
inner: TF (test3) THEN

END.I.F. inner
END IF middle
END IF outer

END PROGRAM mixup_1

Program Design and Branching Structures 109

Suppose that the first END IF statement is again accidentally deleted during an
editing session. When that happens, the compiler will notice that there is no END IF
associated with the inner IF, and it will generate an error message as soon as it
encounters the END IF midd1e statement. Furthermore, the error message will explic-
itly state that the problem is associated with the inner I F construct, so we know just
where to go to fix it.

It is sometimes possible to implement an algorithm using either ELSE IF clauses
or nested IF statements. In that case, a programmer may choose whichever style he or
she prefers.

EXAMPLE Assigning Letter Grades:

3-4

Suppose that we are writing a program that reads in a numerical grade and assigns a
letter grade to it according to the following table:

95 < GRADE A
86 < GRADE < 95 B
76 < GRADE < 86 C
66 < GRADE < 76 D
0 < GRADE < 66 F

Write an IF construct that will assign the grades as described above using (a) multiple
ELSE IF clauses and (b) nested IF constructs.

SOLUTION
(a) One possible structure using ELSE IF clauses is

IF (grade > 95.0) THEN

WRITE (*,*) 'The grade is A.'
ELSE IF (grade > 86.0) THEN

WRITE (*,*) 'The grade is B.'
ELSE IF (grade > 76.0) THEN

WRITE (*,*) 'The grade is C.
ELSE IF (grade > 66.0) THEN

WRITE (*,*) 'The grade is D.'
ELSE

WRITE (*,*) 'The grade is F.
END IF

(b) One possible structure using nested IF constructs is

ifl: IF (grade > 95.0) THEN
WRITE (*,*) 'The grade is A.'
ELSE

if2: IF (grade > 86.0) THEN
WRITE (*,*) 'The grade is B.'

ELSE
if3: IF (grade > 76.0) THEN

WRITE (*,*) 'The grade is C.'

ELSE

110

CHAPTER 3: Program Design and Branching Structures

if4: IF (grade > 66.0) THEN
WRITE (*,*) 'The grade is D.'

ELSE
WRITE (*,*) 'The grade is F.

END IF if4

END IF if3
END IF if2
END IF ifl

It should be clear from the above example that if there are a lot of mutually exclu-
sive options, a single IF construct with ELSE IF clauses will be simpler than a nested
I'F construct.

Good Programming Practice
For branches in which there are many mutually exclusive options, use a single IF
construct with ELSE IF clauses in preference to nested IF constructs.

3.4.6 The Logical IF Statement

There is an alternative form of the block IF construct described above. It is just a sin-
gle statement of the form

IF (Togical_expr) Statement

where Statement is an executable Fortran statement. If the logical expression
is true, the program executes the statement on the same line with it. Otherwise, the
program skips to the next executable statement in the program. This form of the
logical IF is equivalent to a block IF construct with only one statement in the IF
block.

3.4.7 The SELECT CASE Construct

The SELECT CASE construct is another form of branching construct. It permits a
programmer to select a particular code block to execute based on the value of a
single integer, character, or logical expression. The general form of a CASE
construct is:

[name:] SELECT CASE (case_expr)
CASE (case_selector_1) [namel
Statement 1
Statement 2 Block 1

Program Design and Branching Structures 111

CASE (case_selector_2) [namel
Statement 1
Statement 2 Block 2

CASE DEFAULT [name]
Statement 1 }

Statement 2 Block n

END SELECT [name]

If the value of case_expr is in the range of values included in case_selector_1,
then the first code block will be executed. Similarly, if the value of case_expr is in
the range of values included in case_selector_2, then the second code block will be
executed. The same idea applies for any other cases in the construct. The default
code block is optional. If it is present, the default code block will be executed when-
ever the value of case_expr is outside the range of all of the case selectors. If it is not
present and the value of case_expr is outside the range of all of the case selectors,
then none of the code blocks will be executed. The pseudocode for the case con-
struct looks just like its Fortran implementation; a flowchart for this construct is
shown in Figure 3-13.

A name may be assigned to a CASE construct, if desired. The name must be unique
within each program unit. If a name is assigned to a SELECT CASE statement, then the
same name must appear on the associated END SELECT. Names are optional on
the CASE statements of the construct, but if they are used, they must be the same as the
name on the SELECT CASE statement.

The case_expr may be any integer, character, or logical expression. Each case
selector must be an integer, character, or logical value or a range of values. All
case selectors must be mutually exclusive; no single value can appear in more than one
case selector.

Not in range Not in range Not in range

---=»case_sel_n

In range In range

1 In range

Block 1 Block 2 Block n Default Block

FIGURE 3-13
Flowchart for a CASE construct.

112 CHAPTER 3: Program Design and Branching Structures

Let’s look at a simple example of a CASE construct. This example prints out a
message based on the value of an integer variable.

INTEGER :: temp_c ! Temperature in degrees C
temp: SELECT CASE (temp_c)
CASE (:-1)

WRITE (*,*) "It's below freezing today!"
CASE (0)

WRITE (*,*) "It's exactly at the freezing point.”
CASE (1:20)

WRITE (*,*) "It's cool today."
CASE (21:33)

WRITE (*,*) "It's warm today."”
CASE (34:)

WRITE (*,*) "It's hot today."
END SELECT temp

The value of temp_c controls which case is selected. If the temperature is less than
zero, then the first case will be selected, and the message printed out will be “It’s
below freezing today!”. If the temperature is exactly zero, then the second case will be
selected, and so forth. Note that the cases do not overlap—a given temperature can
appear in only one of the cases.

The case_selector can take one of four forms:

case_value Execute block if case_value == case_expr
Tow_value: Execute block if Tow_value <= case_expr
thigh_value Execute block if case_expr <= high_value

lTow_value:high_value Execute block if
Tow_value <= case_expr <= high_value

or it can be a list of any combination of these forms separated by commas.

The following statements determine whether an integer between 1 and 10 is even
or odd, and print out an appropriate message. It illustrates the use of a list of values as
case selectors, and also the use of the CASE DEFAULT block.

INTEGER :: value

SELECT CASE (value)
CASE (1,3,5,7,9)
WRITE (*,*) 'The value is odd.’
CASE (2,4,6,8,10)
WRITE (*,*) 'The value is even.'
CASE (11:)
WRITE (*,*) 'The value is too high.'
CASE DEFAULT
WRITE (*,*) 'The value is negative or zero.'
END SELECT

Program Design and Branching Structures 113

The CASE DEFAULT block is extremely important for good programming design. If
an input value in a SELECT CASE statement does not match any of the cases, none of
the cases will be executed. In a well-designed program, this is usually the result of an
error in the logical design or an illegal input. You should always include a default case,
and have that case create a warning message for the user.

Good Programming Practice
Always include a DEFAULT CASE clause in your case constructs to trap any logical
errors or illegal inputs that might occur in a program.

EXAMPLE
3-5

Selecting the Day of the Week with a SELECT CASE Construct:

Write a program that reads an integer from the keyboard, and displays the day of the
week corresponding to that integer. Be sure to handle the case of an illegal input value.

SOLUTION
In this example, we will prompt the user to enter an integer between 1 and 7, and then
use a SELECT CASE construct to select the day of the week corresponding to that num-
ber, using the convention that Sunday is the first day of the week. The SELECT CASE
construct will also include a default case to handle illegal days of the week.

The resulting program is shown in Figure 3-14.

FIGURE 3-14
Program day_of_week from Example 3-5.

PROGRAM day_of_week

Purpose:

This program displays the day of week corresponding to
a input integer value.

|

|

|

|

1

I Record of revisions:
! Date Programmer Description of change
|

|

|

1

11/06/15 S. J. Chapman Original code

MPLICIT NONE

| Data dictionary: declare variable types, definitions, & units
CHARACTER(1en=11) :: c_day ! Character string containing day
INTEGER :: i_day I Integer day of week

(continued)

114 CHAPTER 3: Program Design and Branching Structures

(concluded)

! Prompt the user for the numeric day of the week
WRITE (*,*) 'Enter the day of the week (1-7): '
READ (*,*) i_day

I Get the corresponding day of the week.
SELECT CASE (i_day)

CASE (1)

c_day = 'Sunday'’
CASE (2)

c_day = 'Monday'’
CASE (3)

c_day = 'Tuesday'
CASE (4)

c_day = 'Wednesday'
CASE (5)

c_day = 'Thursday'
CASE (6)

c_day = 'Friday'’
CASE (7)

c_day = 'Saturday’
CASE DEFAULT

c_day = 'Invalid day'
END SELECT

I Write the resulting day
WRITE (*,*) 'Day = ', c_day

END PROGRAM day_of_week

If this program is compiled, and then executed three times with various values, the
results are:

C:\book\fortran\chap3>day_of_week
Enter the day of the week (1-7):
1

Day = Sunday

C:\book\fortran\chap3>day_of_week
Enter the day of the week (1-7):
5

Day = Thursday

C:\book\fortran\chap3>day_of_week

Enter the day of the week (1-7):

-2

Day = Invalid day
Note that this program gave correct values for valid days of the week, and also dis-
played an error message for an invalid day.

Program Design and Branching Structures 115

EXAMPLE Using Characters in a SELECT CASE Construct:
3-6
Write a program that reads a character string from the keyboard containing a day of the
week, and displays “Weekday” if the day falls between Monday and Friday, and “week-
end” if the day is Saturday or Sunday. Be sure to handle the case of an illegal input value.

SOLUTION

In this example, we will prompt the user to enter a day of the week, and then use a

SELECT CASE construct to select whether the day is a weekday or it falls on the weekend. The

SELECT CASE construct will also include a default case to handle illegal days of the week.
The resulting program is shown in Figure 3-15.

FIGURE 3-15
Program weekday_weekend from Example 3-6.

PROGRAM weekday_weekend

Purpose:
This program accepts a character string containing a
day of the week, and responds with a message specifying
whether the day is a weekday or falls on the weekend.

Date Programmer Description of change

11/06/15 S. J. Chapman Original code

|
|
|
|
|
|
! Record of revisions:
|
|
|
|
I

MPLICIT NONE

I Declare the variables used in this program.
CHARACTER(Ten=11) :: c_day ! Character string containing day
CHARACTER(Ten=11) :: c_type ! Character string with day type

! Prompt the user for the day of the week
WRITE (*,*) 'Enter the name of the day: '
READ (*,*) c_day

| Get the corresponding day of the week.

SELECT CASE (c_day)

CASE ('Monday', 'Tuesday', 'Wednesday','Thursday','Friday')
c_type = 'Weekday'

CASE ('Saturday', 'Sunday')
c_type = 'Weekend'

CASE DEFAULT
c_type = 'Invalid day'

END SELECT

I Write the resulting day type
WRITE (*,*) 'Day Type = ', c_type
END PROGRAM weekday_weekend

116 CHAPTER 3: Program Design and Branching Structures

If this program is compiled, and then executed three times with various values, the

results are:
C:\book\fortran\chap3>weekday_weekend
Enter the name of the day:
Tuesday
Day Type = Weekday

C:\book\fortran\chap3>weekday_weekend
Enter the name of the day:

Sunday

Day Type = Weekend

C:\book\fortran\chap3>weekday_weekend
Enter the name of the day:

Holiday

Day Type = Invalid day

Note that this program gave correct values for valid days of the week, and also dis-
played an error message for an invalid day. This program illustrates the use of a list of
possible case values in each CASE clause.

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 3.5. If you have trouble with the quiz, reread the section,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.

Write Fortran statements that perform the functions described below:

1. If x is greater than or equal to zero, then assign the square root of x to variable
sqrt_x and print out the result. Otherwise, print out an error message about
the argument of the square root function, and set sqrt_x to zero.

2. A variable fun is calculated as numerator / denominator. If the
absolute value of denominator is less than 1.0E-10, write “Divide by 0
error.” Otherwise, calculate and print out fun.

3. The cost per mile for a rented vehicle is $0.30 for the first 100 miles, $0.20
for the next 200 miles, and $0.15 for all miles in excess of 300 miles. Write
Fortran statements that determine the total cost and the average cost per
mile for a given number of miles (stored in variable distance).

Examine the following Fortran statements. Are they correct or incorrect? If they
are correct, what is output by them? If they are incorrect, what is wrong with
them?

(continued)

Program Design and Branching Structures 117

(concluded)

4. IF (volts > 125.) THEN
WRITE (*,*) '"WARNING: High voltage on line. '
IF (volts < 105.) THEN
WRITE (*,*) 'WARNING: Low voltage on Tline. '
ELSE
WRITE (*,*) 'Line voltage is within tolerances.
END IF

]

5. PROGRAM test
LOGICAL :: warn
REAL :: distance
REAL, PARAMETER :: LIMIT = 100.
warn = .TRUE.
distance = 55. + 10.
IF (distance > LIMIT .0OR. warn) THEN
WRITE (*,*) 'Warning: Distance exceeds Timit.'

ELSE
WRITE (*,*) 'Distance = ', distance
END IF
6. REAL, PARAMETER :: PI = 3.141593
REAL :: a = 10.
SELECT CASE (a * sqrt(PI))
CASE (0:)
WRITE (*,*) 'a > 0'
CASE (:0)

WRITE (*,*) 'a < 0'
CASE DEFAULT

WRITE (*,*) 'a = 0'
END SELECT

7. CHARACTER(1en=6) :: color = 'yellow'
SELECT CASE (color)
CASE ('red")
WRITE (*,*) "Stop now!’
CASE ('yellow')
WRITE (*,*) 'Prepare to stop.'
CASE ('green')
WRITE (*,*) 'Proceed through intersection.’
CASE DEFAULT
WRITE (*,*) '"ITlegal color encountered.'’
END SELECT

8. IF (temperature > 37.) THEN
WRITE (*,*) 'Human body temperature exceeded. '
ELSE IF (temperature > 100.)
WRITE (*,*) 'Boiling point of water exceeded. '
END IF

118

CHAPTER 3: Program Design and Branching Structures

3.5
MORE ON DEBUGGING FORTRAN PROGRAMS

It is much easier to make a mistake when writing a program containing branches and
loops than it is when writing simple sequential programs. Even after going through the
full design process, a program of any size is almost guaranteed not to be completely
correct the first time it is used. Suppose that we have built the program and tested it,
only to find that the output values are in error. How do we go about finding the bugs
and fixing them?

The best approach to locating the error is to use a symbolic debugger, if one is
supplied with your compiler. You must ask your instructor or else check with your
system’s manuals to determine how to use the symbolic debugger supplied with your
particular compiler, because they all differ from one another.

An alternate approach to locating the error is to insert WRITE statements into the
code to print out important variables at key points in the program. When the program
is run, the WRITE statements will print out the values of the key variables. These val-
ues can be compared to the ones you expect, and the places where the actual and
expected values differ will serve as a clue to help you locate the problem. For example,
to verify the operation of a block IF construct:

WRITE (*,*) 'At ifl: varl = ', varl
ifl: IF (sgrt(varl) > 1.) THEN
WRITE (*,*) 'At ifl: sqrt(varl) > 1.

ELSE IF (sqrt(varl) < 1.) THEN
WRITE (*,*) '"At ifl: sqrt(varl) < 1.'

ELSE
WRITE (*,*) 'At ifl: sqrt(varl) == 1.'

END IF if1

When the program is executed, its output listing will contain detailed information
about the variables controlling the block IF construct and just which branch was
executed.

Once you have located the portion of the code in which the error occurs, you can
take a look at the specific statements in that area to locate the problem. Two common
errors are described below. Be sure to check for them in your code.

1. If the problem is in an 1F construct, check to see if you used the proper relational
operator in your logical expressions. Did you use > when you really intended >=,
etc.? Logical errors of this sort can be very hard to spot, since the compiler will
not give an error message for them. Be especially careful of logical expressions
that are very complex, since they will be hard to understand, and very easy to
mess up. You should use extra parentheses to make them easier to understand. If
the logical expressions are really large, consider breaking them down into simpler
expressions that are easier to follow.

Program Design and Branching Structures 119

2. Another common problem with 1F statements occurs when real variables are
tested for equality. Because of small round-off errors during floating-point
arithmetic operations, two numbers that theoretically should be equal will differ
by a tiny amount, and the test for equality will fail. When working with real
variables, it is often a good idea to replace a test for equality with a test for near
equality. For example, instead of testing to see if x is equal to 10., you should
test to see if |[x - 10.|] < 0.0001. Any value of x between 9.9999 and
10.0001 will satisfy the latter test, so round-off error will not cause problems. In
Fortran statements,

IF (x == 10.) THEN
would be replaced by
IF (abs(x - 10.) <= 0.0001) THEN

Good Programming Practice

Be cautious about testing for equality with real variables in an IF construct, since
round-off errors may cause two variables that should be equal to fail a test for
equality. Instead, test to see if the variables are nearly equal within the round-off
error to be expected on the computer you are working with.

3.6
SUMMARY

In this chapter, we presented the top-down approach to program design, including
pseudocode and flowcharts.

Next, we discussed the logical data type and more details of the character data
type, which can be used to control Fortran branching structures. This material included
relational operators, which compare two numbers or character expressions to produce
a logical result, and combinational logic operators, which produce a logical result from
one or two logical input values.

The Fortran hierarchy of operations, expanded to include the relational and com-
binational logic operators, is summarized in Table 3-4.

Finally, we have presented the basic types of Fortran branches and loops. The
principal types of branch is the block IF—ELSE IF—ELSE—END IF construct. This con-
struct is very flexible. It can have as many ELSE IF clauses as needed to construct any
desired test. Furthermore, block IF constructs can be nested to produce more complex
tests. A second type of branch is the CASE construct. It may be used to select among
mutually exclusive alternatives specified by an integer, character, or logical control
expression.

120 CHAPTER 3: Program Design and Branching Structures

TABLE 3-4
Fortran hierarchy of operations

—

. Operations within parentheses are evaluated first, starting with the innermost parentheses and working
outward.

. All exponential operations are evaluated next, working from right to left.

. All multiplications and divisions are evaluated, working from left to right.

. All additions and subtractions are evaluated, working from left to right.

. All relational operators (==, /=, >, >=, <, <=) are evaluated, working from left to right.

All .NOT. operators are evaluated.

All . AND. operators are evaluated, working from left to right.

All .OR. operators are evaluated, working from left to right.

All .EQV. and .NEQV. operators are evaluated, working from left to right.

PN YR WD

3.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with branch or loop
constructs. By following them consistently, your code will contain fewer bugs, will be
easier to debug, and will be more understandable to others who may need to work with
it in the future.

1. Always indent code blocks in block IF and CASE constructs to make them more
readable.

2. Be cautious about testing for equality with real variables in an IF construct, since
round-off errors may cause two variables that should be equal to fail a test for
equality. Instead, test to see if the variables are nearly equal within the round-off
error to be expected on the computer you are working with.

3. Always include a DEFAULT CASE clause in your case constructs to trap any logical
errors or illegal inputs that might occur in a program.

3.6.2 Summary of Fortran Statements and Constructs

The following summary describes the Fortran statements and constructs introduced in
this chapter.

Block I F Construct

[name:1 IF (Togical_expr_1) THEN
Block 1

ELSE IF (Togical_expr_2) THEN [namel
Block 2

ELSE [namel
Block 3

END IF [namel

(continued)

Program Design and Branching Structures 121

(concluded)

Description:
The block IF construct permits the execution of a code block based on the results of one or more logical ex-
pressions. If Togical_expr_1 is true, the first code block will be executed. If Togical_expr_1I is false and
Togical_expr_2is true, the second code block will be executed. If both logical expressions are false, the third
code block will be executed. After any block is executed, control jumps the first statement after the construct.
There must be one and only one IF () THEN statement in a block IF construct. There may be any num-
ber of ELSE IF clauses (zero or more), and there may be at most one ELSE clause in the construct. The name
is optional, but if it is used on the IF statement, then it must be used on the END IF statement. The name is
optional onthe ELSE IF and ELSE statements even if it is used on the IF and END IF statements.

CASE construct

[name:] SELECT CASE (case_expr)

CASE (case_selector_1) [namel
Block 1

CASE (case_selector_2) [namel
Block 2

CASE DEFAULT [namel
Block n

END SELECT [namel

Description:
The CASE construct executes a specific block of statements based on the value of the case_expr, which can be
an integer, character, or logical value. Each case selector specifies one or more possible values for the case ex-
pression. If the case_expr is a value included in a given case selector, then the corresponding block of state-
ments is executed, and control will jump to the first executable statement after the end of the construct. If no case
selector is executed, then the CASE DEFAULT block will be executed if present, and control will jump to the first
executable statement after the end of the construct. If CASE DEFAULT is not present, the construct does nothing.
There must be one SELECT CASE statement and one END SELECT statement in a CASE construct. There
will be one or more CASE statements. At most one CASE DEFAULT statement may be included. Note that all
case selectors must be mutually exclusive. The name is optional, but if it is used on the SELECT CASE state-
ment, then it must also be used on the END SELECT statement. The name is optional on the CASE statements
even if it is used on the SELECT CASE and END SELECT statements.

LOGICAL statement:

LOGICAL :: variable_namell, variable_name?, etc.]
Examples:

LOGICAL :: initialize, debug

LOGICAL :: debug = .false.

Description:
The LOGICAL statement is a type declaration statement that declares variables of the logical data type. The
value of a LOGICAL variable may be initialized when it is declared, as shown in the second example above.

122 CHAPTER 3: Program Design and Branching Structures

Logical IF Statement:
IF (Togical_expr) statement

Description:
The Logical IF statement is a special case of the block IF construct. If Togical_expr is true, then the state-
ment on the line with the IF is executed. Execution continues at the next line after the IF statement.

This statement may be used instead of the block IF construct if only one statement needs to be exe-
cuted as a result of the logical condition.

3.6.3. Exercises
3-1. Which of the following expressions are legal in Fortran? If an expression is legal, evalu-

ate it.
(@) 5.5 >=5

) 20 > 20

(¢) .NOT. 6 > 5

(d) .TRUE. > .FALSE.

() 35 / 17. > 35 / 17
(f) 7 <=8 .EQV. 3 / 2 =
(g) 17.5 .AND. (3.3 > 2.)

3-2 The tangent function is defined as tan 6 = sin 6/cos . This expression can be evaluated
to solve for the tangent as long as the magnitude of cos 0 is not too near to 0. (If cos 0 is
0, evaluating the equation for tan 6 will produce a divide-by-zero error.) Assume that 0
is given in degrees, and write Fortran statements to evaluate tan 0 as long as the magni-
tude of cos 0 is greater than or equal to 1072°. If the magnitude of cos 0 is less than
10~%°, write out an error message instead.

3-3 Write the Fortran statements required to calculate y(z) from the equation

3745 >0

y(t)={3t2+5 1<0

for a user-supplied value of ¢.

3-4 The following Fortran statements are intended to alert a user to dangerously high oral
thermometer readings (values are in degrees Fahrenheit). Are they correct or incorrect?
If they are incorrect, explain why and correct them.

IF (temp < 97.5) THEN

WRITE (*,*) 'Temperature below normal’
ELSE IF (temp > 97.5) THEN

WRITE (*,*) 'Temperature normal’

Program Design and Branching Structures 123

ELSE IF (temp > 99.5) THEN

WRITE (*,*) 'Temperature slightly high'
ELSE IF (temp > 103.0) THEN

WRITE (*,*) 'Temperature dangerously high’
END IF

3-5 The cost of sending a package by an express delivery service is $15.00 for the first two
pounds, and $5.00 for each pound or fraction thereof over two pounds. If the package
weighs more than 70 pounds, a $15.00 excess weight surcharge is added to the cost. No
package over 100 pounds will be accepted. Write a program that accepts the weight of a
package in pounds and computes the cost of mailing the package. Be sure to handle the
case of overweight packages.

3-6 The inverse sine function ASIN(X) is only defined for the range —1.0 < x < 1.0. If X is
outside this range, the value NaN (not a number) occurs when the function is evaluated.
The following Fortran statements calculate the inverse sine of a number if it is in the
proper range, and print an error message if it is not. Assume that X and inverse_sine
are real. Is this code correct or incorrect? If it is incorrect, explain why and correct it.

test: IF (ABS(x) <= 1.) THEN
inverse_sine = ASIN(x)
ELSE test
WRITE (*,*) x, ' is out of range!'’
END IF test

3-7 In Example 3-3, we wrote a program to evaluate the function f{x,y) for any two
user-specified values x and y, where the function f{x,y) was defined as follows.

x+y x>0andy >0
x+y2 x>0andy < 0
¥ +y x<O0andy >0
¥ +y x<Oandy <0

S, y) =

The problem was solved by using a single block IF construct with four code blocks to
calculate f{x,y) for all possible combinations of x and y. Rewrite program funxy to use
nested IF constructs, where the outer construct evaluates the value of x and the inner
constructs evaluate the value of y. Be sure to assign names to each of your constructs.

3-8 Write a program to evaluate the function

1
—-X

y(x) =1In]

for any user-specified value of x, where x is a number <1.0 (note that In is the natural
logarithm, the logarithm to the base e). Use an if structure to verify that the value
passed to the program is legal. If the value of x is legal, calculate y(x). If not, write a
suitable error message and quit.

3-9 Suppose that a student has the option of enrolling for a single elective during a term. The
student must select a course from a limited list of options: “English”, “History”,
“Astronomy”’, or “Literature”. Construct a fragment of Fortran code that will prompt the

124

3-10

3-11

3-12

3-13

CHAPTER 3: Program Design and Branching Structures
student for his or her choice, read in the choice, and use the answer as the case expression
for a CASE construct. Be sure to include a default case to handle invalid inputs.

The author of this book now lives in Australia. In 2009, individual citizens and residents
of Australia paid the following income taxes:

Taxable Income (in A$) Tax on This Income

$0-$6000 None

$6001-$34,000 15¢ for each $1 over $6000
$34,001-$80,000 $4200 plus 30¢ for each $1 over $34,000
$80,001-$180,000 $18,000 plus 40¢ for each $1 over $80,000
Over $180,000 $58,000 plus 45¢ for each $1 over $180,000

In addition, a flat 1.5 percent Medicare levy is charged on all income. Write a program
to calculate how much income tax a person will owe based on this information. The
program should accept a total income figure from the user, and calculate the income tax,
Medicare Levy, and total tax payable by the individual.

In 2002, individual citizens and residents of Australia paid the following income taxes:

Taxable Income (in A$) Tax on This Income

$0-$6,000 None

$6,001-$20,000 17¢ for each $1 over $6,000
$20,001-$50,000 $2,380 plus 30¢ for each $1 over $20,000
$50,001-$60,000 $11,380 plus 42¢ for each $1 over $50,000
Over $60,000 $15,580 plus 47¢ for each $1 over $60,000

In addition, a flat 1.5 percent Medicare levy was charged on all income. Write a program
to calculate how much less income tax a person paid on a given amount of income in
2009 than he or she would have paid in 2002.

It is often hard to compare the value of two items if they are priced in different currencies.
Write a program that will allow a user to enter the cost of a purchase in US dollars,
Australian dollars, Euros, or UK pounds, and then convert the cost into any of the other
currencies, as specified by the user. Use the following conversion factors in your program:

A$1.00=US$0.71
€1.00=US$1.12
UK£ 1.00 = US $1.42

Decibels In Exercise 2-22, we wrote a program to calculate a power level in decibels
with respect to a 1 mW reference level. The equation implemented was

P
dB = 101og10P—2 (2-16)
1

Program Design and Branching Structures 125

3-14

where P, is the power level being measured, and P, is reference power level (1 milliwatt).
This equation uses the logarithm to the base 10, which is undefined for negative or zero
values. Modify the program to trap negative or zero input values, and inform the user of
the invalid input values.

Refraction When a ray of light passes from a region with an index of refraction n; into
a region with a different index of refraction n,, the light ray is bent (see Figure 3-16).
The angle at which the light is bent is given by Snell’s law

ny sin 61 =Ny sin 62 (3-3)

where 0, is the angle of incidence of the light in the first region, and 6, is the angle of
incidence of the light in the second region. Using Snell’s law, it is possible to predict
the angle of incidence of a light ray in Region 2 if the angle of incidence 6; in Region
1 and the indices of refraction n; and n, are known. The equation to perform this
calculation is

. -1 np .
6, = sin (sin 91> (3-4)
ny
Write a Fortran program to calculate the angle of incidence (in degrees) of a light ray in
Region 2 given the angle of incidence 6, in Region 1 and the indices of refraction n; and n,.
(Note: If ny > n,, then for some angles 6;, Equation (3-4) will have no real solution because

n
the absolute value of the quantity <n2 sin 9,) will be greater than 1.0. When this occurs,
1

all light is reflected back into Region 1, and no light passes into Region 2 at all. Your pro-
gram must be able to recognize and properly handle this condition.) Test your program by
running it for the following two cases: (a) n; = 1.0, n, = 1.7, and 6, = 45°;, (b) n; = 1.7,
n, = 1.0, and 6, = 45°.

1
1
1
0 1
Region 1 Index of refraction n, Region 1 , Index of refraction n,

'

Region 2 1 Index of refraction n, Region 2 : Index of refraction n,
i i
1 1
1 1
1 1
1 1

0,>0, 0,<6,
(@) (b)
FIGURE 3-16

A ray of light bends as it passes from one medium into another one. (a) If the ray of light passes from a region
with a low index of refraction into a region with a higher index of refraction, the ray of light bends more toward
the vertical. (b) If the ray of light passes from a region with a high index of refraction into a region with a lower
index of refraction, the ray of light bends away from the vertical.

126

4

Loops and Character Manipulation

OBJECTIVES

¢ Know how to create and use while loops.

* Know how to create and use counting loops.

* Know when you should use while loops, and when you should use counting
loops.

e Know the purpose of the CONTINUE and EXIT statements, and how to use
them.

e Understand loop names, and why they are used.

e Learn about character assignments and character operators.

e Learn about substrings and string manipulations.

In the previous chapter, we introduced branching structures, which allowed a program
to select and execute one of several possible sets of statements, depending on the value
of some control expression. In this chapter, we will introduce loops, which cause
specific sections of the code to be repeated.

We will also learn more about how to manipulate character variables in this
chapter. Many of the manipulations will involve loops, and we will use the character
manipulations as practice in using loops.

4.1
CONTROL CONSTRUCTS: LOOPS

Loops are Fortran constructs that permit us to execute a sequence of statements more
than once. There are two basic forms of loop constructs: while loops and iterative
loops (or counting loops). The major difference between these two types of loops is in
how the repetition is controlled. The code in a while loop is repeated an indefinite
number of times until some user-specified condition is satisfied. By contrast, the code
in an iterative loop is repeated a specified number of times, and the number of repeti-
tions is known before the loop starts.

Loops and Character Manipulation 127

YT@\x

4.1.1 The While Loop

A while loop is a block of statements that are repeated indefinitely as long as some
condition is satisfied. The general form of a while loop in Fortran is

DO
IF (Togical_expr) EXIT } Code Block
END DO
The block of statements between the DO and END DO are repeated indefinitely until the
logical_expr becomes true and the EXIT statement is executed. After the EXIT state-
ment is executed, control transfers to the first statement after the END DO.

A while loop may contain one or more EXIT statements to terminate its execution.
Each EXIT statement is usually a part of an IF statement or block of construct. If the
logical_expr in the IF is false when the statement is executed, the loop continues to
execute. If the logical_expr in the IF is true when the statement is executed, control
transfers immediately to the first statement after the END DO. If the logical expression
is true the first time we reach the while loop, the statements in the loop below the IF

will never be executed at all!
The pseudocode corresponding to a while loop is

WHILE
IF Togical_expr EXIT
End of WHILE
and the flowchart for this construct is shown in Figure 4-1.
In a good structured program, every while loop should have a single entry point
and a single exit point. The entry point for a while loop is the DO statement, and the
exit point is the EXIT statement. Having only a single exit point from a loop helps us

to confirm that the loop operates properly under all circumstances. Therefore, each
while loop should have only one EXIT statement.

Good Programming Practice
Each while loop should contain only one EXIT statement.

We will now show an example statistical analysis program that is implemented
using a while loop.

EXAMPLE Statistical Analysis:

4-1

It is very common in science and engineering to work with large sets of numbers,
each of which is a measurement of some particular property that we are interested in.

128

CHAPTER 4: Loops and Character Manipulation

Statement
Statement

ééétement

!

logical_expr

.FALSE.

Statement
Statement

éfétement

l

A simple example would be the grades on the first test in this course. Each grade
would be a measurement of how much a particular student has learned in the course
to date.

Much of the time, we are not interested in looking closely at every single
measurement that we make. Instead, we want to summarize the results of a set of
measurements with a few numbers that tell us a lot about the overall data set. Two
such numbers are the average (or arithmetic mean) and the standard deviation of
the set of measurements. The average or arithmetic mean of a set of numbers is
defined as

FIGURE 4-1
Flowchart for a while loop.

Y=

N
2 (4-1)
i=1

where x, is sample i out of N samples. The standard deviation of a set of numbers is
defined as

2=

N N 2
NZX? - (in>
= i=1 i=1 4-2)
NN - 1)

Standard deviation is a measure of the amount of scatter on the measurements; the
greater the standard deviation, the more scattered the points in the data set are.

Loops and Character Manipulation 129

Implement an algorithm that reads in a set of measurements and calculates the
mean and the standard deviation of the input data set.

SOLUTION

This program must be able to read in an arbitrary number of measurements, and
then calculate the mean and standard deviation of those measurements. We will use
a while loop to accumulate the input measurements before performing the
calculations.

When all of the measurements have been read, we must have some way of telling
the program that there is no more data to enter. For now, we will assume that all the
input measurements are either positive or zero, and we will use a negative input value
as a flag to indicate that there is no more data to read. If a negative value is entered,
then the program will stop reading input values and will calculate the mean and stan-
dard deviation of the data set.

1. State the problem.

Since we assume that the input numbers must be positive or zero, a proper state-
ment of this problem would be: calculate the average and the standard deviation of a
set of measurements, assuming that all of the measurements are either positive or zero,
and assuming that we do not know in advance how many measurements are included
in the data set. A negative input value will mark the end of the set of measurements.

2. Define the inputs and outputs.

The inputs required by this program are an unknown number of positive or zero real
(floating-point) numbers. The outputs from this program are a printout of the mean and the
standard deviation of the input data set. In addition, we will print out the number of data
points input to the program, since this is a useful check that the input data was read
correctly.

3. Design the algorithm.
This program can be broken down into three major steps:

Accumulate the input data
Calculate the mean and standard deviation
Write out the mean, standard deviation, and number of points

The first major step of the program is to accumulate the input data. To do this, we
will have to prompt the user to enter the desired numbers. When the numbers are
entered, we will have to keep track of the number of values entered, plus the sum and
the sum of the squares of those values. The pseudocode for these steps is:

Initialize n, sum_x, and sum_x2 to 0
WHILE

Prompt user for next number

Read in next x

IF x < 0. EXIT

n«—n+1

SUM_X « Sum_x + X

SUM_X2 « sum_x2 + Xx**2
End of WHILE

130

CHAPTER 4: Loops and Character Manipulation

Note that we have to read in the first value before the IF () EXIT test so that the while
loop can have a value to test the first time it executes.

Next, we must calculate the mean and standard deviation. The pseudocode for this
step is just the Fortran versions of Equations (4.1) and (4.2).

x_bar « sum_x / REAL(n)
std_dev « SQRT((REAL(n)*sum_x2 - sum_x**2) / (REAL(n)*REAL(n-1)))

Finally, we must write out the results.

Write out the mean value x_bar
Write out the standard deviation std_dev
Write out the number of input data points n

The flowchart for this program is shown in Figure 4-2.

‘ Initial values:

(Start) ne20
sum_x « 0.

sum_x2 « 0.

ne<n+1
SUM_X ¢« Sum_x + X
SUM_X2 ¢—SUmM_X2+x**2

'

Calculate
x_bar, std_dev

|

WRITE x_bar,
std_dev, n

FIGURE 4-2

Flowchart for the statistical analysis program of Example 4-1.

Loops and Character Manipulation 131

4. Turn the algorithm into Fortran statements.
The final Fortran program is shown in Figure 4-3.

FIGURE 4-3
Program to calculate the mean and standard deviation of a set of nonnegative real numbers.

PROGRAM stats_1

Purpose: il
To calculate mean and the standard deviation of an input

data set containing an arbitrary number of input values.

Date Programmer Description of change

11/10/15 S. J. Chapman Original code

!
|
|
|
!
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare variable types, definitions, & units
INTEGER :: n =20 I The number of input samples.
REAL :: std_dev = 0. ! The standard deviation of the input samples.
REAL :: sum_x = 0. I The sum of the input values.
REAL :: sum_x2 = 0. ! The sum of the squares of the input values.
REAL :: x = 0. I An input data value.

|

REAL :: x_bar The average of the input samples.

! While Loop to read input values.
DO
I Read in next value
WRITE (*,*) '"Enter number: '
READ (*,*) x
WRITE (*,*) 'The number is ', X

I Test for Toop exit
IF (x < 0) EXIT

I Otherwise, accumulate sums.

n =n+1

SUM_X = sum_x + X

Sum_x2 = sum_x2 + x**2
END DO

! Calculate the mean and standard deviation
x_bar = sum_x / real(n)
std_dev = sqrt((real(n) * sum_x2 - sum_x**2) / (real(n) * real(n-1)))

I Tell user.
WRITE (*,*) 'The mean of this data set is:', x_bar
WRITE (*,*) 'The standard deviation is: ', std_dev

WRITE (*,*) 'The number of data points is:', n
END PROGRAM stats_1

132

CHAPTER 4: Loops and Character Manipulation

5. Test the program.
To test this program, we will calculate the answers by hand for a simple data set,
and then compare the answers to the results of the program. If we used three input
values: 3, 4, and 5, then the mean and standard deviation would be

When the above values are fed into the program, the results are

C:\book\fortran\chap4>stats_1l
Enter number:
3

The number is 3.000000

Enter number:

4,

The number is 4.000000

Enter number:

5.

The number is 5.000000

Enter number:

-1.

The number is -1.000000

The mean of this data set is: 4.000000
The standard deviation is: 1.000000
The number of data points is: 3

The program gives the correct answers for our test data set.

In the example above, we failed to follow the design process completely. This
failure has left the program with a fatal flaw! Did you spot it?

We have failed because we did not completely test the program for all
possible types of inputs. Look at the example once again. If we enter either no
numbers or only one number, then we will be dividing by zero in the above
equations! The division-by-zero error will cause the program to abort. We need to
modify the program to detect this problem, inform the user of it, and stop
gracefully.

A modified version of the program called stats_2 is shown in Figure 4-4, with
the changes shown in bold face. Here, we check to see if there are enough input values
before performing the calculations. If not, the program will print out an intelligent
error message and quit. Test the modified program for yourself.

Loops and Character Manipulation 133

FIGURE 4-4
A modified statistical analysis program that avoids the divide-by-zero problems inherent in
program stats_1.

PROGRAM stats_2
|
Purpose:
To calculate mean and the standard deviation of an input
data set containing an arbitrary number of input values.

Record of revisions:

Date Programmer Description of change
11/10/15 S. J. Chapman Original code
1. 11/12/15 S. J. Chapman Correct divide-by-0 error if

0 or 1 input values given.

!
!
!
!
!
!
| ==== 0zl 0 ==========
!
!
!
!
I

MPLICIT NONE

! Data dictionary: declare variable types, definitions, & units
INTEGER :: n =20 I The number of input samples.

REAL :: std_dev = 0. ! The standard deviation of the input samples.
REAL :: sum_x = 0. I The sum of the input values.

REAL :: sum_x2 = 0. ! The sum of the squares of the input values.
REAL :: x = 0. I An input data value.

REAL :: x_bar ! The average of the input samples.

! While Loop to read input values.
DO
I Read in next value
WRITE (*,*) 'Enter number: '
READ (*,*) x
WRITE (*,*) 'The number is ', X

I Test for Toop exit
IF (x <0) EXIT

I Otherwise, accumulate sums.

n =n+1

SUM_X = sum_x + X

Sum_x2 = sum_x2 + x**2
END DO

! Check to see if we have enough input data.
IF (n <2) THEN ! Insufficient information

WRITE (*,*) 'At least 2 values must be entered!’

ELSE ! There is enough information, so
! calculate the mean and standard deviation

x_bar = sum_x / real(n)
std_dev = sqrt((real(n) * sum_x2 - sum_x**2) / (real(n)*real(n-1)))

(continued)

134

CHAPTER 4: Loops and Character Manipulation

(concluded)
I Tell user.
WRITE (*,*) 'The mean of this data set is:', x_bar
WRITE (*,*) 'The standard deviation is: ', std_dev
WRITE (*,*) 'The number of data points is:', n

END IF

END PROGRAM stats_2

4.1.2 The DO WHILE Loop

There is an alternate form of the while loop in Fortran, called the DO WHILE loop. The
DO WHILE construct has the form

DO WHILE (Togical_expr)
cen Statement 1
Statement 2

. Statement n
END DO
If the logical expression is true, statements 1 through n will be executed, and then con-
trol will return to the DO WHILE statement. If the logical expression is still true, the
statements will be executed again. This process will be repeated until the logical
expression becomes false. When control returns to the DO WHILE statement and the
logical expression is false, the program will execute the first statement after the END DO.
This construct is a special case of the more general while loop, in which the exit

test must always occur at the top of the loop. There is no reason to ever use it, since the
general while loop does the same job with more flexibility.

Good Programming Practice
Do not use DO WHILE loops in new programs. Use the more general while loop instead.

4.1.3 The Iterative or Counting Loop

In the Fortran language, a loop that executes a block of statements a specified number
of times is called an iterative DO loop or a counting loop. The counting loop construct
has the form

DO index = istart, iend, incr
Statement 1
... } Body
Statement n

END DO

where index is an integer variable used as the loop counter (also known as the loop
index). The integer quantities istart, iend, and incr are the parameters of the

Loops and Character Manipulation 135

counting loop; they control the values of the variable index during execution. The
parameter incr is optional; if it is missing, it is assumed to be 1.
The statements between the DO statement and the END DO statement are known as
the body of the loop. They are executed repeatedly during each pass of the DO loop.
The counting loop construct functions as follows:

1. Each of the three DO loop parameters istart, iend, and incr may be a constant,
a variable, or an expression. If they are variables or expressions, then their values
are calculated before the start of the loop, and the resulting values are used to con-
trol the loop.

2. At the beginning of the execution of the DO loop, the program assigns the value
istart to control variable index. If index*incr < iend*incr, the program
executes the statements within the body of the loop.

3. After the statements in the body of the loop have been executed, the control
variable is recalculated as

index = index + incr

If index*incrisstill £ iend*incr, the program executes the statements within
the body again.

4. Step 2 is repeated over and over as long as index*incr < iend*incr. When this
condition is no longer true, execution skips to the first statement following the end
of the DO loop.

The number of iterations to be performed by the DO loop may be calculated using the
following equation
iend — istart + incr

iter = - (4-3)
incr

Let’s look at a number of specific examples to make the operation of the counting
loop clearer. First, consider the following example:

Do i =1, 10
Statement 1
éfétement n
END DO
In this case, statements 1 through n will be executed 10 times. The index variable i will
be 1 on the first time, 2 on the second time, and so on. The index variable will be 10 on
the last pass through the statements. When control is returned to the DO statement after
the tenth pass, the index variable i will be increased to 11. Since 11 x 1 > 10 X 1,
control will transfer to the first statement after the END DO statement.
Second, consider the following example:
Do i =1, 10, 2
Statement 1
éfétement n
END DO
In this case, statements 1 through n will be executed five times. The index variable i
will be 1 on the first time, 3 on the second time, and so on. The index variable will be 9

136

CHAPTER 4: Loops and Character Manipulation

on the fifth and last pass through the statements. When control is returned to the DO

statement after the fifth pass, the index variable i will be increased to 11. Since

11 X 2 > 10 X 2, control will transfer to the first statement after the END DO statement.
Third, consider the following example:

Do i =1, 10, -1
Statement 1

éfétement n
END DO
Here, statements I through n will never be executed, since index*incr > iend*incr
on the very first time that the DO statement is reached. Instead, control will transfer to
the first statement after the END DO statement.
Finally, consider the example:
D0 i =3, -3, -2
Statement 1
Statement n
END DO
In this case, statements 1 through n will be executed four times. The index variable i
will be 3 on the first time, 1 on the second time, —1 on the third time, and —3 on the
fourth time. When control is returned to the DO statement after the fourth pass, the
index variable i will be decreased to —5. Since —5 X —2 > —3 X —2, control will

transfer to the first statement after the END DO statement.
The pseudocode corresponding to a counting loop is

DO for index = istart to iend by incr
Statement 1

.éfatement n
End of DO

and the flowchart for this construct is shown in Figure 4-5.

EXAMPLE
4-2

The Factorial Function:

To illustrate the operation of a counting loop, we will use a DO loop to calculate the
factorial function. The factorial function is defined as

1 =0

n! ={ " (4-4)
nXn—-1)Xn-2)xX...x2x1 n>0

The Fortran code to calculate N factorial for positive value of N would be

n_factorial =1
DO i =1, n

n_factorial = n_factorial * i
END DO

Loops and Character Manipulation 137

index =
.FALSE. istart index .TRUE.
i <iend*incr
incr

Statement 1
Statement 2

FIGURE 4-5
Flowchart for a DO loop construct.

Suppose that we wish to calculate the value of 5!. If n is 5, the DO loop parameters
will be istart = 1, iend = 5,and incr = 1. This loop will be executed five
times, with the variable i taking on values of 1, 2, 3, 4, and 5 in the successive loops.
The resulting value of n_factorial willbe 1 X2 x 3 x4 x5 = 120.

EXAMPLE
4-3

Calculating the Day of Year:

The day of year is the number of days (including the current day) that have elapsed
since the beginning of a given year. It is a number in the range 1 to 365 for ordinary
years, and 1 to 366 for leap years. Write a Fortran program that accepts a day, month,
and year, and calculates the day of year corresponding to that date.

SOLUTION
To determine the day of year, this program will need to sum up the number of days
in each month preceding the current month, plus the number of elapsed days in
the current month. A DO loop will be used to perform this sum. Since the number of
days in each month varies, it is necessary to determine the correct number of days to
add for each month. A SELECT CASE construct will be used to determine the proper
number of days to add for each month.

During a leap year, an extra day must be added to the day of year for any month
after February. This extra day accounts for the presence of February 29 in the leap
year. Therefore, to perform the day of year calculation correctly, we must determine

138

CHAPTER 4: Loops and Character Manipulation

which years are leap years. In the Gregorian calendar, leap years are determined by the
following rules:

1. Years evenly divisible by 400 are leap years.

2. Years evenly divisible by 100 but not by 400 are not leap years.
3. All years divisible by 4 but not by 100 are leap years.

4. All other years are not leap years.

We will use the MOD (for modulo) function to determine whether or not a year is evenly
divisible by a given number. If the result of the MOD function is zero, then the year is
evenly divisible.

A program to calculate the day of year is shown in Figure 4-6. Note that the
program sums up the number of days in each month before the current month, and
that it uses a SELECT CASE construct to determine the number of days in each
month.

FIGURE 4-6
A program to calculate the equivalent day of year from a given day, month, and year.

PROGRAM doy
Purpose:
This program calculates the day of year corresponding to a
specified date. It illustrates the use of counting Toops
and the SELECT CASE construct.

!

!

!

!

!

I Record of revisions:
! Date Programmer Description of change
!

!

!

I

11/13/15 S. J. Chapman Original code
MPLICIT NONE

! Data dictionary: declare variable types, definitions, & units

INTEGER :: day I Day (dd)
INTEGER :: day_of_year ! Day of year
INTEGER :: i Index variable

|
INTEGER :: Teap_day I Extra day for leap year
INTEGER :: month ! Month (mm)

INTEGER :: year I Year (yyyy)

! Get day, month, and year to convert

WRITE (*,*) 'This program calculates the day of year given the '
WRITE (*,*) 'current date. Enter current month (1-12), day(1-31),'
WRITE (*,*) 'and year in that order: '

READ (*,*) month, day, year

I Check for leap year, and add extra day if necessary

IF (MOD(year,400) == 0) THEN

leap_day =1 ! Years divisible by 400 are Teap years
ELSE IF (MOD(year,100) == 0) THEN

leap_day = 0 ! Other centuries are not leap years

(continued)

Loops and Character Manipulation 139

(concluded)
ELSE IF (MOD(year,4) == 0) THEN
leap_day =1 I Otherwise every 4th year is a Teap year
ELSE
leap_day = 0 I Other years are not Teap years
END IF

I Calculate day of year
day_of_year = day
DO i =1, month-1

I Add days in months from January to Tast month
SELECT CASE (i)
CASE (1,3,5,7,8,10,12)
day_of_year = day_of_year + 31
CASE (4,6,9,11)

day_of_year = day_of_year + 30
CASE (2)
day_of_year = day_of_year + 28 + leap_day
END SELECT
END DO
I Tell user
WRITE (*,*) 'Day = ', day
WRITE (*,*) 'Month = ', month
WRITE (*,*) 'Year ="', year
WRITE (*,*) 'day of year = ', day_of_year

END PROGRAM doy
We will use the following known results to test the program:

1. Year 1999 is not a leap year. January 1 must be day of year 1, and December 31
must be day of year 365.

2. Year 2000 is a leap year. January 1 must be day of year 1, and December 31 must
be day of year 366.

3. Year 2001 is not a leap year. March 1 must be day of year 60, since January has
31 days, February has 28 days, and this is the first day of March.

If this program is compiled, and then run five times with the above dates, the
results are

C:\book\fortran\chap4>doy

This program calculates the day of year given the
current date. Enter current month (1-12), day(1-31),
and year in that order: 1 1 1999

Day = 1
Month = 1
Year = 1999
day of year = 1

(continued)

140 CHAPTER 4: Loops and Character Manipulation

(concluded)
C:\book\fortran\chap4>doy

This program calculates the day of year given the
current date. Enter current month (1-12), day(1-31),
and year in that order: 12 31 1999

Day = 31
Month = 12
Year = 1999
day of year = 365

C:\book\fortran\chap4>doy

This program calculates the day of year given the
current date. Enter current month (1-12), day(1-31),
and year in that order: 1 1 2000

Day = 1
Month = 1
Year = 2000
day of year = 1

C:\book\fortran\chap4>doy

This program calculates the day of year given the
current date. Enter current month (1-12), day(1-31),
and year in that order: 12 31 2000

Day = 31
Month = 12
Year = 2000
day of year = 366

C:\book\fortran\chap4>doy

This program calculates the day of year given the
current date. Enter current month (1-12), day(1-31),
and year in that order: 3 1 2001

Day = 1
Month = 3
Year = 2001
day of year = 60

The program gives the correct answers for our test dates in all five test cases.

EXAMPLE Statistical Analysis:
4-4
Implement an algorithm that reads in a set of measurements and calculates the mean
and the standard deviation of the input data set, when any value in the data set can be
positive, negative, or zero.

Loops and Character Manipulation 141

SOLUTION
This program must be able to read in an arbitrary number of measurements, and then
calculate the mean and standard deviation of those measurements. Each measurement
can be positive, negative, or zero.

Since we cannot use a data value as a flag this time, we will ask the user for the
number of input values, and then use a DO loop to read in those values. A flowchart for
this program is shown in Figure 4-7. Note that the while loop has been replaced by a

Initial values:

sum_x = 0.

sum_x2 = 0.

[

.FALSE. .TRUE.

y

SUM_X <« Sum_x + X
WRITE '"At Teast 2 SUM_X2 ¢=SUmM_X2+x**2

values must be ‘

entered.’

v

Calculate
x_bar, std_dev

v

WRITE x_bar,
std_dev, n

¥
FIGURE 4-7

Flowchart for modified statistical analysis program using a DO loop.

142

CHAPTER 4: Loops and Character Manipulation

counting loop. The modified program that permits the use of any input value is shown
in Figure 4-8. Verify its operation for yourself by finding the mean and standard devi-
ation of the following five input values: 3., —1., 0., 1., and —2.

FIGURE 4-8
Modified statistical analysis program that works with both positive and input values.

PROGRAM stats_3

Purpose:
To calculate mean and the standard deviation of an input
data set, where each input value can be positive, negative,
or zero.

!

!

!

!

!

!

I Record of revisions:
! Date Programmer Description of change
!

!

!

I

11/13/15 S. J. Chapman Original code
MPLICIT NONE

! Data dictionary: dec]are variable types, definitions, & units
INTEGER :: 1 ! Loop index

INTEGER ::n=20 ' The number of input samples.

REAL :: std_dev ! The standard deviation of the input samples.
REAL :: sum_x = 0. ! The sum of the input values.

REAL :: sum_x2 = 0. ! The sum of the squares of the input values.
REAL :: x = 0. I An input data value.

REAL :: x_bar ! The average of the input samples.

I Get the number of points to input.
WRITE (*,*) "Enter number of points: '
READ (*,*) n

I Check to see if we have enough input data.
IF (n <2) THEN ! Insufficient data

WRITE (*,*) '"At least 2 values must be entered.’
ELSE ! we will have enough data, so Tet's get it.

! Loop to read input values.
DO i=1,n

I Read values

WRITE (*,*) '"Enter number: '
READ (*,*) x

WRITE (*,*) 'The number is ', x

I Accumulate sums.

SUM_X = Sum_x + X
SUM_X2 = Sum_x2 + x**2
END DO

(continued)

Loops and Character Manipulation 143

(concluded)

I Now calculate statistics.
x_bar = sum_x / real(n)
std_dev = sqrt((real(n)*sum_x2 - sum_x**2) / (real(n)*real(n-1)))

I Tell user.
WRITE (*,*) 'The mean of this data set is:', x_bar
WRITE (*,*) 'The standard deviation is: ', std_dev

WRITE (*,*) 'The number of data points is:', n

END PROGRAM stats_3

Details of Operation

Now that we have seen examples of a counting DO loop in operation, we will examine
some of the important details required to use DO loops properly.

1. Itis not necessary to indent the body of the DO loop as we have shown above. The
Fortran compiler will recognize the loop even if every statement in it starts in
column 1. However, the code is much more readable if the body of the DO loop is
indented, so you should always indent the bodies of your DO loops.

Good Programming Practice
Always indent the body of a DO loop by two or more spaces to improve the readability
of the code.

2. The index variable of a DO loop must not be modified anywhere within the D0
loop. Since the index variable is used to control the repetitions in the DO loop,
changing it could produce unexpected results. In the worst case, modifying the
index variable could produce an infinite loop that never completes. Consider the
following example:

PROGRAM bad_1
INTEGER :: i
DO i =1, 4
i=2
END DO
END PROGRAM bad_1

If i is reset to 2 every time through the loop, the loop will never end, because the
index variable can never be greater than 4! This loop will run forever unless the
program containing it is killed. Almost all Fortran compilers will recognize this
problem, and will generate a compile-time error if a program attempts to modify
an index variable within a loop.

144 CHAPTER 4: Loops and Character Manipulation

Programming Pitfalls
Never modify the value of a DO loop index variable while inside the loop.

3. If the number of iterations calculated from Equation 4-3 is less than or equal to
zero, the statements within the DO loop are never executed at all. For example, the
statements in the following DO loop will never be executed

DO i =3, 2
END DO
since

iend — istart + incr _ 2-3+1 _
incr B 1 B

iter = 0

4. It is possible to design counting DO loops that count down as well as up. The
following DO loop executes three times with i being 3, 2, and 1 in the successive
loops.

Do i=3,1, -1
END DO
5. The index variable and control parameters of a DO loop should always be of type
integer.

The use of real variables as DO loop indices and DO loop control parameters
used to be a legal but undesirable feature of Fortran. It was declared obsolescent in
Fortran 90, and has been completely deleted from Fortran 95.

6. It is possible to branch out of a DO loop at any time while the loop is executing. If
program execution does branch out of a DO loop before it would otherwise finish,

the loop index variable retains the value that it had when the branch occurs.
Consider the following example:

INTEGER :: i
DO i=1,5

IF (i >= 3) EXIT
END DO
WRITE (*,*) 1
Execution will branch out of the DO loop and go to the WRITE statement on the
third pass through the loop. When execution gets to the WRITE statement, variable
i will contain a value of 3.
7. If a DO loop completes normally, the value of the index variable is undefined when

the loop is completed. In the example shown below, the value written out by the
WRITE statement is not defined in the Fortran standard.

Loops and Character Manipulation 145

INTEGER :: i
DO i=1,5

END DO

WRITE (*,*) i
On many computers, after the loop has completed, the index variable i will contain
the first value of the index variable to fail the index*incr < iend*incr test. In the
above code, the result would usually contain a 6 after the loop is finished. However,
don’t count on it! Since the value is officially undefined in the Fortran standard, some
compilers may produce a different result. If your code depends on the value of the
index variable after the loop is completed, you may get different results as the program
is moved between computers.

Good Programming Practice
Never depend on an index variable to retain a specific value after a DO loop
completes normally.

4.1.4 The CYCLE and EXIT Statements

There are two additional statements that can be used to control the operation of while
loops and counting DO loops: CYCLE and EXIT.

If the CYCLE statement is executed in the body of a DO loop, the execution of the
current iteration of the loop will stop, and control will be returned to the top of the
loop. The loop index will be incremented, and execution will resume again if the index
has not reached its limit. An example of the CYCLE statement in a counting DO loop is
shown below.

PROGRAM test_cycle

INTEGER :: i

DO i=1,5
IF (i ==3) CYCLE
WRITE (*,*) 1

END DO

WRITE (*,*) '"End of Toop!’
END PROGRAM test_cycle

The flowchart for this loop is shown in Figure 4-9a. When this program is executed,
the output is:

C:\book\fortran\chap4>test_cycle
1

2
4
5

End of Toop!

‘quawele)s I1XH ue Sururejuod dooy O ® Jo 11eyomory (g) “yusweiess FTHAD ¢ Surureiuod doof O € JO 3eyomor] ()
6~ HINDIA

()

Squswalels

ENLVEN

t

Sjusuwelels

ANyl

(®)

Sjusawoalels

ENLEY

AL

sjusawajels

L

ENILVEN

ANdLT

Vi

1 =

L

ENLVEN

146

Loops and Character Manipulation 147

Note that the CYCLE statement was executed on the iteration when i was 3, and control re-
turned to the top of the loop without executing the WRITE statement. After control returned
to the top of the loop, the loop index was incremented and the loop continued to execute.

If the EXIT statement is executed in the body of a loop, the execution of the loop
will stop and control will be transferred to the first executable statement after the loop.
An example of the EXIT statement in a DO loop is shown below.

PROGRAM test_exit

INTEGER :: i

DO i=1,5
IF (i==3) EXIT
WRITE (*,*) i

END DO

WRITE (*,*) 'End of Toop!’
END PROGRAM test_exit

The flowchart for this loop is shown in Figure 4-95. When this program is executed,
the output is:

C:\book\fortran\chap4>test_exit
1
2

End of Toop!

Note that the EXIT statement was executed on the iteration when i was 3, and control
transferred to the first executable statement after the loop without executing the WRITE
statement.

Both the CYCLE and EXIT statements work with both while loops and counting DO
loops.

4.1.5 Named Loops

It is possible to assign a name to a loop. The general form of a while loop with a name
attached is

[name:] DO
Statement
Statement
Statement
IF (Togical_expr) CYCLE [namel

iﬁ'(logical_expr) EXIT [namel
END DO [namel

and the general form of a counting loop with a name attached is

[name:] DO index = istart, iend, incr
Statement
Statement
IF (Togical_expr) CYCLE [name]

END DO [name]

148

X%T@\S

CHAPTER 4: Loops and Character Manipulation

where name may be up to 63 alphanumeric characters long, beginning with a
letter. The name given to the loop must be unique within each program unit. If a
name is assigned to a loop, then the same name must appear on the associated
END DO. Names are optional on any CYCLE and EXIT statements associated with
the loop, but if they are used, they must be the same as the name on the DO
statement.

Why would we want to name a loop? For simple examples like the ones we
have seen so far, there is no particular reason to do so. The principal reason for us-
ing names is to help us (and the compiler) keep loops straight in our own minds
when they get very complicated. For example, suppose that we have a complex loop
that is hundreds of lines long, spanning many pages of listings. There may be many
smaller loops inside body of that loop. If we name all of the parts of the loop, then
we can tell at a glance which construct a particular END DO, CYCLE, or EXIT state-
ment belongs to. They make our intentions explicitly clear. In addition, names on
constructs can help the compiler flag the specific location of an error when one
occurs.

Good Programming Practice
Assign a name to any large and complicated loops in your program to help you keep
the parts of the construct associated together in your own mind.

4.1.6 Nesting Loops and Block IF Constructs

Nesting loops

It is possible for one loop to be completely inside another loop. If one loop is
completely inside another one, the two loops are called nested loops. The following
example shows two nested DO loops used to calculate and write out the product of two
integers.

PROGRAM nested_Tloops
INTEGER :: i, j, product

DO i=1, 3
D0 j=1,3
product =i * j
WRITE (*,*) i, " * ', j, ' =", product
END DO
END DO

END PROGRAM nested_Tloops

In this example, the outer DO loop will assign a value of 1 to index variable 1, and then
the inner DO loop will be executed. The inner DO loop will be executed three times with
index variable J having values 1, 2, and 3. When the entire inner DO loop has been
completed, the outer DO loop will assign a value of 2 to index variable 1, and the inner

Loops and Character Manipulation 149

DO loop will be executed again. This process repeats until the outer DO loop has
executed three times, and the resulting output is

WWWMN NN
* ok ok ok ok ok ok k%
WM WRN — WRN
LI | I |
oW N WN

Note that the inner DO loop executes completely before the index variable of the outer
DO loop is incremented.

When a Fortran compiler encounters an END DO statement, it associates that
statement with the innermost currently open loop. Therefore, the first END DO state-
ment above closes the “DO0 j = 1, 3” loop, and the second END DO statement
above closes the “D0 i = 1, 3” loop. This fact can produce hard-to-find errors if
an END DO statement is accidentally deleted somewhere within a nested loop con-
struct. If each of the nested loops are named, then the error will be much easier to
find.

To illustrate this problem, let’s “accidentally” delete the inner END DO statement
in the previous example, and compile the program with the Intel Visual Fortran
compiler.

PROGRAM bad_nested_Tloops_1
INTEGER :: 1, Jj, product

DO i=1, 3
D0 j=1,3
product =1 * j
WRITE (*,*) i, " * ', j, " =", product
END DO

END PROGRAM bad_nested_Tloops_1
The output of the compiler is:

C:\book\fortran\chap4>ifort bad_nested_Tloops_1.f90

Intel(R) Visual Fortran Intel(R) 64 Compiler for applications running on
Intel(R) 64, Version 16.0.2.180 Build 20160204

Copyright (C) 1985-2016 Intel Corporation. A1l rights reserved.

bad_nested_loops_1.f90(3): error #6321: An unterminated block exists.
D0i=1,3

compilation aborted for bad_nested_loops_1.f90 (code 1)

The compiler reports that there is a problem with the loop construct, but it could not
detect the problem until the END PROGRAM statement is reached, and it cannot tell
where the problem occurred. If the program is very large, we would be faced with a
difficult task when we tried to locate the problem.

150 CHAPTER 4: Loops and Character Manipulation

Now let’s name each loop and “accidentally” delete the inner END DO statement.

PROGRAM bad_nested_loops_2

INTEGER :: 1, j, product

outer: DO i =1, 3

inner: DO j =1, 3

product =1 * j
WRITE (*,*) 1

END DO outer

END PROGRAM bad_nested_Toops_2

, x4, " =", product

When we compile the program with the Intel Visual Fortran compiler, the output is:

C:\book\fortran\chap4>df bad_nested_loops_2.f90

Intel(R) Visual Fortran Intel(R) 64 Compiler for applications running on
Intel(R) 64, Version 16.0.2.180 Build 20160204

Copyright (C) 1985-2016 Intel Corporation. A1l rights reserved.

bad_nested_loops_2.f90(7): error #6606: The block construct names must
match, and they do not. [OUTER]
END DO outer

bad_nested_loops_2.f90(3): error #8147: DO construct with a construct name
must be terminated by an ENDDO statement with the same name.
outer: DO i =1, 3

compilation aborted for bad_nested_loops_2.f90 (code 1)

The compiler reports that there is a problem with the loop construct, and it reports which
loops were involved in the problem. This can be a major aid in debugging the program.

Good Programming Practice
?;@_', Assign names to all nested loops so that they will be easier to understand and debug.

If DO loops are nested, they must have independent index variables. Remember
that it is not possible to change an index variable within the body of a DO loop. There-
fore, it is not possible to use the same index variable for two nested DO loops, since the
inner loop would be attempting to change the index variable of the outer loop within
the body of the outer loop.

Also, if two loops are to be nested, one of them must lie completely within the
other one. The following DO loops are incorrectly nested, and a compile-time error will
be generated for this code.

outer: DO i =1, 3
inner: D0 j = 1, 3
END DO outer

END.bé inner

Loops and Character Manipulation 151

The CYCLE and EXIT statements in nested loops

If a CYCLE or EXIT statement appears inside an unnamed set of nested loops, then
the CYCLE or EXIT statement refers to the innermost of the loops containing it. For
example, consider the following program

PROGRAM test_cycle_1
INTEGER :: 1, j, product

D0 i =1, 3
Do j =1, 3
IF (j = 2) CYCLE
product = i * j il
WRITE (*,*) i, ' * ', j, ' =", product
END DO
END DO

END PROGRAM test_cycle_1

If the inner loop counter j is equal to 2, then the CYCLE statement will be executed.
This will cause the remainder of the code block of the innermost DO loop to be skipped,
and execution of the innermost loop will start over with j increased by 1. The resulting
output values are

WWRN N
* % ok ok *
W Wk W
[| R [[
O wWoN W

Each time the inner loop variable had the value 2, execution of the inner loop was skipped.

It is also possible to make the CYCLE or EXIT statement refer to the outer loop of a
nested construct of named loops by specifying a loop name in the statement. In the
following example, when the inner loop counter j is equal to 2, the CYCLE outer state-
ment will be executed. This will cause the remainder of the code block of the outer DO
loop to be skipped, and execution of the outer loop will start over with i increased by 1.

PROGRAM test_cycle_2
INTEGER :: 1, j, product
outer: DO i =1, 3
inner: DO j =1, 3
)

IF (j == 2) CYCLE outer
product =1 * j
WRITE (*,*) i, " * ', j, " =", product

END DO inner
END DO outer
END PROGRAM test_cycle_2

The resulting output values are

1* 1= 1
2* 1= 2
3*x 1= 3

You should always use loop names with CYCLE or EXIT statements in nested loops
to make sure that the proper loop is affected by the statements.

152

CHAPTER 4: Loops and Character Manipulation

Good Programming Practice
Use loop names with CYCLE or EXIT statements in nested loops to make sure that
the proper loop is affected by the statements.

Nesting loops within IF constructs and vice versa

It is possible to nest loops within block IF constructs or block IF constructs within
loops. If a loop is nested within a block IF construct, the loop must lie entirely within a
single code block of the IF construct. For example, the following statements are illegal
since the loop stretches between the IF and the ELSE code blocks of the IF construct.

outer: IF (a < b) THEN
inner: DO i =1, 3
ELSE
END.bé inner
END IF outer

In contrast, the following statements are legal, since the loop lies entirely within a
single code block of the IF construct.

outer: IF (a < b) THEN
inner: D0 i =1, 3
END.bé inner

ELSE

END IF outer

Exiting from loops inside nested structures

In Fortran 2008 and later, the EXIT statement can exit to any label on any structure
that contains the DO loop. For example, in the code below, when i is equal to 3, execu-
tion will transfer to the first statement after the end of the IF structure.!

ifl: IF (1 > 0) THEN
Toop_1l: DO i =1, 5
IF (1 ==3) EXIT ifl
WRITE (*,*) i
END DO Toop_1

ELSE ifl

END IF ifl

! At the time of writing, this feature has not been fully implemented on all common Fortran compilers.

Loops and Character Manipulation

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 4.1. If you have trouble with the quiz, reread the section, ask
your instructor, or discuss the material with a fellow student. The answers to this

quiz are found in the back of the book.

integer.
1. DO index =5, 10
2. DO j =7, 10, -1
3. DO index =1, 10, 10
4. DO Toop_counter = -2, 10,
5. DO time = -5, -10, -1
6. DO i = -10, -7, -3

7. ires =0
DO index =1, 10
ires = ires + 1
END DO

8. ires =0
DO index =1, 10
ires = ires + index
END DO

9. ires =0
DO index =1, 10
IF (ires == 10) CYCLE
ires = ires + index
END DO

10. ires =0
DO indexl =1, 10
DO index2 =1, 10
ires = ires + 1
END DO
END DO

11. ires =0
DO indexl =1, 10
DO index2 = indexl, 10
IF (index2 > 6) EXIT
ires = ires + 1
END DO
END DO

Examine the following DO loops and determine how many times each loop
will be executed. Assume that all of the index variables shown are of type

2

Examine the following loops and determine the value in ires at the end of each
of the loops. Assume that ires, incr, and all index variables are integers.

153

(continued)

154

CHAPTER 4: Loops and Character Manipulation

(concluded)

Examine the following Fortran statements and tell whether or not they are valid.
If they are invalid, indicate the reason why they are invalid.

12. Toopl: DO i =1, 10
Toop2: DO j =1, 10
lToop3: DO 1 =1, J

END'bé Toop3
END DO Toop2
END DO Toopl

13. loopl: DO i =1, 10
Toop2: DO j =i, 10
lToop3: DO k =1, j

END.bé Toop3
END DO Toop2
END DO Toopl

14. loopx: DO i =1, 10
Toopy: DO j = 1, 10
END DO 1o0px
END DO Toopy
__|

4.2
CHARACTER ASSIGNMENTS AND CHARACTER MANIPULATIONS

Character data can be manipulated using character expressions. A character
expression can be any combination of valid character constants, character variables,
character operators, and character functions. A character operator is an operator on
character data that yields a character result. There are two basic types of character
operators: substring specifications and concatenation. Character functions are func-
tions that yield a character result.

4.2.1 Character Assignments

A character expression may be assigned to a character variable with an assignment
statement. If the character expression is shorter than the length of the character vari-
able to which it is assigned, then the rest of the variable is padded out with blanks. For
example, the statements

CHARACTER(Ten=3) :: file_ext
file_ext = 'f

Loops and Character Manipulation 155

store the value ' fjgly ' into variable file_ext (b denotes a blank character). If the charac-
ter expression is longer than the length of the character variable to which it is assigned,
then the excess portion of the character variable is discarded. For example, the statements
CHARACTER(Ten=3) :: file_ext_2
file_extent_2 = '"FILEQOL'

will store the value 'FIL' into variable file_ext_2, and the characters 'EQl' are
discarded.

4.2.2 Substring Specifications

A substring specification selects a portion of a character variable, and treats that
portion as if it were an independent character variable. For example, if the variable
strl is a six-character variable containing the string ' 123456 "', then the substring
strl1(2:4) would be a three-character variable containing the string '234"'. The
substring str1(2:4) really refers to the same memory locations as characters 2
through 4 of strl, so if the contents of str1(2:4) are changed, the characters in the
middle of variable strl will also be changed.

A character substring is denoted by placing integer values representing the starting
and ending character numbers separated by a colon in parentheses following the vari-
able name. If the ending character number is less than the starting number, a
zero-length character string will be produced.

The following example illustrates the use of substrings.

EXAMPLE
4-5

What will the contents of variables a, b, and c be at the end of the following program?

PROGRAM test_charl
CHARACTER(1en=8) :: a, b, ¢
a "ABCDEFGHIJ'

b = '12345678'

c =a(5:7)

b(7:8) = a(2:6)

END PROGRAM test_charl

SOLUTION
The character manipulations in this program are:

1. Line 3 assigns the string 'ABCDEFGHIJ' to a, but only the first eight characters
are saved since a is only eight characters long. Therefore, a will contain
"ABCDEFGH"'.

2. Line 4 statement assigns the string '12345678"' to b.

3. Line 5 assigns the character substring a (5:7) to c. Since ¢ is eight characters long,
five blanks will be padded onto variable c, and c will contain ' EFGBpEEE" .

4. Line 6 assigns substring a(2:6) to substring b(7:8). Since b(7:8) is only two
characters long, only the first two characters of a(2:6) will be used. Therefore,
variable b will contain '123456BC".

156

CHAPTER 4: Loops and Character Manipulation

4.2.3 The Concatenation (//) Operator

It is possible to combine two or more strings or substrings into a single large string.
This operation is known as concatenation. The concatenation operator in Fortran is a
double slash with no space between the slashes (//). For example, after the following
lines are executed,

PROGRAM test_char2
CHARACTER(1en=10) :: a
CHARACTER(1en=8) :: b, c

a = "ABCDEFGHIJ'

b '12345678"'

a(1:3) // b(4:5) // a(6:8)
END PROGRAM test_char?

variable ¢ will contain the string "ABC45FGH".

4.2.4 Relational Operators with Character Data

Character strings can be compared in logical expressions using the relational operators
==, /=, <, <=, >, and >=. The result of the comparison is a logical value that is either
true or false. For instance, the expression '123' == '"123"' is true, while the expres-
sion '123"' == "1234" is false. In standard Fortran, character strings may be com-
pared with character strings, and numbers may be compared with numbers, but
character strings may not be compared to numbers.

How are two characters compared to determine if one is greater than the other? The
comparison is based on the collating sequence of the characters on the computer where
the program is being executed. The collating sequence of the characters is the order in
which they occur within a specific character set. For example, the character 'A’ is
character number 65 in the ASCII character set, while the character 'B' is character
number 66 in the set (see Appendix A). Therefore, the logical expression 'A' < 'B'
is true in the ASCII character set. On the other hand, the character 'a' is character
number 97 in the ASCII set,so 'a' < '"A' is false in the ASCII character set. Note
that during character comparisons, a lowercase letter is different than the corresponding
uppercase letter.

How are two strings compared to determine if one is greater than the other? The
comparison begins with the first character in each string. If they are the same, then the
second two characters are compared. This process continues until the first difference is
found between the strings. For example, ' AAAAAB' > "AAAAAA'.

What happens if the strings are of different lengths? The comparison begins with
the first letter in each string, and progresses through each letter until a difference is
found. If the two strings are the same all the way to the end of one of them, then the
other string is considered the larger of the two. Therefore,

"AB" > "AAAA' and "AAAAAT > TAAAA'

Loops and Character Manipulation 157

TABLE 4-1
Some common character intrinsic functions

Function name and

argument(s) Argument types Result type Comments
ACHAR(ival) INT CHAR Returns the character corresponding to
ival in the ASCII collating sequence.
IACHAR(char) CHAR INT Returns the integer corresponding to
char in the ASCII collating sequence.
LEN(strl) CHAR INT Returns length of strl in characters.
LEN_TRIM(strl) CHAR INT Returns length of strl, excluding any
trailing blanks.
TRIM(strl) CHAR CHAR Returns strl with trailing blanks
removed.

4.2.5 Character Intrinsic Functions

A few common character intrinsic functions are listed in Table 4-1. Function
IACHAR(c) accepts a single character c, and returns the integer corresponding to its
position in the ASCII character set. For example, the function TACHAR('A") returns
the integer 65, because 'A’ is the 65th character in the ASCII character set.

Function ACHAR(i) accepts an integer value i, and returns the character at that
position in the ASCII character set. For example, the function ACHAR(65) returns the
character 'A', because 'A' is the 65th character in the ASCII character set.

Function LEN(str) and LEN_TRIM(str) return the length of the specified char-
acter string. Function LEN(str) returns the length including any trailing blanks, while
function LEN_TRIM(str) returns the string with any trailing blanks stripped off.

Function TRIM(str) accepts a character string, and returns the string with any
trailing blanks stripped off.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 4.2. If you have trouble with the quiz, reread the sections, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book.

1. Assume that a computer uses the ASCII character set. Is each of the
following expressions legal or illegal? If an expression is legal, what will
its result be? (Note that B denotes a blank character.)

(@) "AAA' >= 'aaa'

(b) "IA" < ALY

(¢c) 'HelloBbB '// 'there'

(d) TRIM('HelloBbb ') // 'there'

(continued)

158 CHAPTER 4: Loops and Character Manipulation

(concluded)

2. Suppose that character variables strl, str2, and str3 contain the values
"abc', "abcd’', "ABC', respectively, and that a computer uses the ASCII
character set. Is each of the following expressions legal or illegal? If an
expression is legal, what will its result be?

(a) str2(2:4)

(b) str3 // str2(4:4)
(¢) strl > str2

(d) strl > str3

(e) str2z > 0

(fHh IACHAR(C'C") == 67
(¢) 'Z'" >= ACHAR(100)

3. What is written out by each of the WRITE statements below?

PROGRAM test_char
CHARACTER(Ten=10) :: strl
CHARACTER(Ten=10) :: str2
CHARACTER(1en=20) :: str3
str3 = strl // str2

WRITE (*,*) LEN(str3)
WRITE (*,*) LEN_TRIM(str3)
str3 = TRIM(strl) // TRIM(str2)
WRITE (*,*) LEN(str3)

WRITE (*,*) LEN_TRIM(str3)

END PROGRAM test_char

"Hello'
"World'

EXAMPLE Shifting Strings to Uppercase:
4-6
As we learned in this chapter, uppercase and lowercase letters are different inside
strings. This difference between upper- and lowercase letters can cause a problem
when we are attempting to match or compare two character strings, since ' STRING' is
not the same as 'string’ or 'String’. If we wanted to compare two strings to see
if they contained the same words, we would not get the correct answer if the capital-
ization of the words differed.

When making comparisons, it is often desirable to shift all characters to upper-
case, so that identical strings will always match. Write a program that accepts two
strings from a user, and compares them to determine if they are equal, ignoring case.
To do the comparison, convert a copy of each string to uppercase, and compare the
copies. Tell the user whether or not the two strings are the same.

SOLUTION
We will assume that the computer executing the program uses the ASCII character set,
or a superset of it such as ISO 8859 or ISO 10646 (Unicode).

Loops and Character Manipulation 159

Appendix A shows the ASCII collating sequence. If we look at Appendix A,
we can see that there is a fixed offset of 32 characters between an uppercase letter
and the corresponding lowercase letter in each collating sequence. All letters are
in order, and there are no nonalphabetic characters mixed into the middle of the
alphabet.

1. State the problem.

Write a program that reads two character strings, converts all of the lowercase
letters in a copy of each character string to uppercase, and compares the strings for
equality. The conversion process should not affect numeric and special characters. The
program should write out a message indicating whether the two strings are equal or
not, ignoring case.

2. Define the inputs and outputs.
The inputs to the program are two strings strl and str2. The output from the
program is a message stating whether or not the two strings are equal, ignoring
case.

3. Describe the algorithm.

Looking at the ASCII table in Appendix A, we note that the uppercase letters
begin at sequence number 65, while the lowercase letters begin at sequence number
97. There are exactly 32 numbers between each uppercase letter and its lowercase
equivalent. Furthermore, there are no other symbols mixed into the middle of the
alphabet.

These facts give us our basic algorithm for shifting strings to uppercase. We will
determine if a character is lowercase by deciding if it is between 'a' and 'z’ in the
ASCII character set. If it is, then we will subtract 32 from its sequence number to con-
vert it to uppercase using the ACHAR and IACHAR functions. The initial pseudocode for
this algorithm is

Prompt for strl and str2
READ strl, str2

Make a copy of strl and str2 in strla and str2a
DO for each character in strl
Determine if character is lowercase. If so,
Convert to integer form
Subtract 32 from the integer
Convert back to character form
End of IF
END of DO
DO for each character in str2
Determine if character is lowercase. If so,
Convert to integer form
Subtract 32 from the integer
Convert back to character form
End of IF
END of DO

Compare shifted strings
Write out results

160 CHAPTER 4: Loops and Character Manipulation

The final pseudocode for this program is

Prompt for strl and str2
READ strl, str2

strla « strl
str2a « str2

DO for i =1 to LEN(strla)
IF strla(i:i) >= "a') .AND. strla(i:i) <= 'z' THEN
strla(i:i) « ACHAR (IACHAR (strla(i:i) - 32))
END of IF
END of DO

DO for i =1 to LEN(str2a)
IF str2a(i:i) >= "a') .AND. str2a(i:i) <= 'z' THEN
str2a(i:i) « ACHAR (IACHAR (str2a(i:i) - 32))
END of IF
END of DO

IF strla == str2a

WRITE that the strings are equal
ELSE

WRITE that the strings are not equal
END IF

where 1ength is the length of the input character string.

4. Turn the algorithm into Fortran statements.
The resulting Fortran program is shown in Figure 4-10.

FIGURE 4-10
Program compare.

PROGRAM compare

Purpose:
To compare two strings to see if they are equivalent,
ignoring case.

Date Programmer Description of change

11/14/15 S. J. Chapman Original code

|
|
|
|
!
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare variable types, definitions, & units
INTEGER :: i I Loop index

CHARACTER(1en=20) :: strl I First string to compare
CHARACTER(1en=20) :: strla ! Copy of first string to compare
CHARACTER(1en=20) :: str2 I Second string to compare
CHARACTER(1en=20) :: str2a ! Copy of second string to compare

(continued)

Loops and Character Manipulation 161

(concluded)

! Prompt for the strings

WRITE (*,*) 'Enter first string to compare:’
READ (*,*) strl

WRITE (*,*) 'Enter second string to compare:'’
READ (*,*) str2

! Make copies so that the original strings are not modified
strla strl

str2a = str2
I Now shift lowercase Tetters to uppercase.

DO i = 1, LEN(strla)
IF (strla(i:i) >= "a' .AND. strla(i:i) <= 'z') THEN
strla(i:i) = ACHAR (TACHAR (strla(i:i)) - 32)
END IF
END DO
DO i = 1, LEN(str2a)
IF (str2a(i:i) >= "a' .AND. str2a(i:i) <= 'z') THEN
str2a(i:i) = ACHAR (TACHAR (str2a(i:i)) - 32)
END IF
END DO

! Compare strings and write result
IF (strla == str2a) THEN

WRITE (*,*) """, strl, "' ="", str2, "' ignoring case.”
ELSE

WRITE (*,*) "*"'" strl, "' /="", str2, "' ignoring case."
END IF

END PROGRAM compare

5. Test the resulting Fortran program.
We will test this program by passing it two pairs of strings to compare. One pair is
identical except for case, and the other pair is not. The results from the program for
two sets of input strings are:

C:\book\fortran\chap4>compare

Enter first string to compare:

'This is a test.’

Enter second string to compare:

'THIS IS A TEST.'

'This is a test. ' = 'THIS IS A TEST. ' ignoring case.

C:\book\fortran\chap4>compare

Enter first string to compare:

'This is a test.'

Enter second string to compare:

'This is another test.'

'This is a test. ' /= 'This is another test' ignoring case.

The program appears to be working correctly.

162

CHAPTER 4: Loops and Character Manipulation

EXAMPLE
4-7

Physics—The Flight of a Ball:

If we assume negligible air friction and ignore the curvature of the Earth, a ball that is
thrown into the air from any point on the Earth’s surface will follow a parabolic flight
path (see Figure 4-11a). The height of the ball at any time ¢ after it is thrown is given
by Equation (4-5)

1
y(1) = yo + vyot + Egt2 (4-5)

where y is the initial height of the object above the ground, v is the initial vertical
velocity of the object, and g is the acceleration due to the Earth’s gravity. The horizon-
tal distance (range) traveled by the ball as a function of time after it is thrown is given
by Equation (4-6)

x(t) = xp + vyt (4-6)

where x; is the initial horizontal position of the ball on the ground, and v, is the initial
horizontal velocity of the ball.

YA

Y

Origin Impact X

(a)

YA
1
1
1
1
1

(b)
FIGURE 4-11
(a) When a ball is thrown upward, it follows a parabolic trajectory. (b) The horizontal and
vertical components of a velocity vector v at an angle € with respect to the horizontal.

Loops and Character Manipulation 163

If the ball is thrown with some initial velocity v, at an angle of € degrees with
respect to the Earth’s surface, then the initial horizontal and vertical components of
velocity will be

Vg = Vg cos 6 “4-7)

Vyo = Vo sin 6 (4_8)

y

Assume that the ball is initially thrown from position (xg, yo) = (0,0) with an
initial velocity v of 20 m/s at an initial angle of @ degrees. Design, write, and test a
program that will determine the horizontal distance traveled by the ball from the time
it was thrown until it touches the ground again. The program should do this for all
angles 6 from 0° to 90° in 1° steps. Determine the angle € that maximizes the range of
the ball.

SOLUTION

In order to solve this problem, we must determine an equation for the range of the
thrown ball. We can do this by first finding the time that the ball remains in the air, and
then finding the horizontal distance that the ball can travel during that time.

The time that the ball will remain in the air after it is thrown may be calculated
from Equation (4.5). The ball will touch the ground at the time 7 for which y(z) = 0.
Remembering that the ball will start from ground level (y(0) = 0), and solving for ¢,
we get:

1
y(t) =Y, + vyut + ngz (4'5)

1,
0=0+vy,,t+5gt

1
0= <vy0 + 2gt>t

so the ball will be at ground level at time #, = 0 (when we threw it), and at time
2Vy0
8

The horizontal distance that the ball will travel in time ¢, is found using Equation (4-6):

(4-9)

t2=—

Range = x(#,) = x, + vol> (4-6)
2v
Range =0 + on(_w)
8
PAVNINTS
Range = — 0

8

164

CHAPTER 4: Loops and Character Manipulation

We can substitute Equations (4.7) and (4.8) for v,, and v,, to get an equation expressed
in terms of the initial velocity v and initial angle 6:

2(vg cos 0) (v, sin 6)
8

Range = —

03)
Range = —? cos @ sin 8 (4-10)

From the problem statement, we know that the initial velocity v is 20 m/s, and that
the ball will be thrown at all angles from 0° to 90° in 1° steps. Finally, any elementary
physics textbook will tell us that the acceleration due to the Earth’s gravity is
—9.81 m/s%.

Now let’s apply our design technique to this problem.

1. State the problem.

A proper statement of this problem would be: Calculate the range that a ball
would travel when it is thrown with an initial velocity of vy at an initial angle 6.
Calculate this range for a v, of 20 m/s and all angles between 0° and 90°, in 1° incre-
ments. Determine the angle 6 that will result in the maximum range for the ball.
Assume that there is no air friction.

2. Define the inputs and outputs.

As the problem is defined above, no inputs are required. We know from the prob-
lem statement what v, and @ will be, so there is no need to read them in. The outputs
from this program will be a table showing the range of the ball for each angle 8, and
the angle @ for which the range is maximum.

3. Design the algorithm.
This program can be broken down into the following major steps:

DO for theta = 0 to 90 degrees
Calculate the range of the ball for each angle theta
Determine if this theta yields the maximum range so far
Write out the range as a function of theta

END of DO

WRITE out the theta yielding maximum range

An iterative DO loop is appropriate for this algorithm, since we are calculating the
range of the ball for a specified number of angles. We will calculate the range for each
value of 0, and compare each range with the maximum range found so far to determine
which angle yields the maximum range. Note that the trigonometric functions work in
radians, so the angles in degrees must be converted to radians before the range is cal-
culated. The detailed pseudocode for this algorithm is

Initialize max_range and max_degrees to 0

Initialize vO to 20 meters/second

DO for theta = 0 to 90 degrees
radian < theta * degrees_2_rad (Convert degrees to radians)
angle « (-2. * vO**2 / gravity) * sin(radian) * cos(radian)
Write out theta and range

Loops and Character Manipulation 165

max_range « 0.
max_degrees « 0
v0 « 20.

.FALSE. / theta=0 .TRUE.

theta < 90
theta=

theta+1l

Calculate range

¥
WRITE theta,
range

range >
max_range

max_range <« range
max_degrees « theta

WRITE max_range,
max_degrees

v
FIGURE 4-12

Flowchart for a program to determine the angle 6 at which a ball thrown with an initial
velocity v, of 20 m/s will travel the farthest.

IF range > max_range then
max_range « range
max_degrees « theta

END of IF

END of DO
Write out max_degrees, max_range

The flowchart for this program is shown in Figure 4-12.

4. Turn the algorithm into Fortran statements.
The final Fortran program is shown in Figure 4-13.

166 CHAPTER 4: Loops and Character Manipulation

FIGURE 4-13
Program bal1 to determine the angle that maximizes the range of a thrown ball.

PROGRAM ball

Purpose:
To calculate distance traveled by a ball thrown at a specified
angle THETA and at a specified velocity VO from a point on the
surface of the earth, ignoring the effects of air friction and
the earth's curvature.

Record of revisions:
Date Programmer Description of change

11/14/15 S. J. Chapman Original code

!
!
!
!
!
!
!
!
!
!
!
!
I

MPLICIT NONE

! Data dictionary: declare constants
REAL, PARAMETER :: DEGREES_2_RAD = 0.01745329 ! Deg ==> rad conv.
REAL, PARAMETER :: GRAVITY = -9.81 I Accel. due to gravity (m/s)

! Data dictionary: declare variable types, definitions, & units

INTEGER :: max_degrees ! angle at which the max rng occurs (degrees)

REAL :: max_range I Maximum range for the ball at vel v0 (meters)
REAL :: range I Range of the ball at a particular angle (meters)
REAL :: radian I Angle at which the ball was thrown (in radians)
INTEGER :: theta ! Angle at which the ball was thrown (in degrees)
REAL :: vO ! Velocity of the ball (in m/s)

I Initialize variables.
max_range = 0.
max_degrees = 0

v0 = 20.

I Loop over all specified angles.
Toop: DO theta = 0, 90

I Get angle in radians
radian = real(theta) * DEGREES_2_RAD

I Calculate range in meters.
range = (-2. * v0**2 / GRAVITY) * SIN(radian) * COS(radian)

I Write out the range for this angle.
WRITE (*,*) 'Theta = ', theta, ' degrees; Range = ', range, &
' meters'

I Compare the range to the previous maximum range. If this
! range is Tlarger, save it and the angle at which it occurred.
IF (range > max_range) THEN

max_range = range

max_degrees = theta

(continued)

Loops and Character Manipulation 167
(concluded)

END IF
END DO Toop

I Skip a line, and then write out the maximum range and the angle

I at which it occurred.

WRITE (*,*) " '

WRITE (*,*) 'Max range = ', max_range, ' at ', max_degrees, ' degrees'

END PROGRAM ball
The degrees-to-radians conversion factor is always a constant, so in the program it is

given a name using the PARAMETER attribute, and all references to the constant within

the program use that name. The acceleration due to gravity at sea level can be found in

any physics text. It is about 9.81 m/sec?, directed downward.

5. Test the program.
To test this program, we will calculate the answers by hand for a few of the angles,
and compare the results with the output of the program.

. 2vy
0 Vip =V,C080 v, =V,sin 6 th,=— 2 X =v,bh
0° 20 m/s 0 m/s 0s Om
5° 19.92 m/s 1.74 m/s 0.355 s 7.08 m
40° 15.32 m/s 12.86 m/s 2.621s 40.15m
45° 14.14 m/s 14.14 m/s 2.883 s 40.77 m

When program bal1 is executed, a 90-line table of angles and ranges is produced. To
save space, only a portion of the table is reproduced below.

C:\book\fortran\chap4>ball

Theta = 0 degrees; Range = 0.000000E+00 meters
Theta = 1 degrees; Range = 1.423017 meters
Theta = 2 degrees; Range = 2.844300 meters
Theta = 3 degrees; Range = 4.262118 meters
Theta = 4 degrees; Range = 5.674743 meters
Theta = 5 degrees; Range = 7.080455 meters
Theta = 40 degrees; Range = 40.155260 meters
Theta = 41 degrees; Range = 40.377900 meters
Theta = 4?2 degrees; Range = 40.551350 meters
Theta = 43 degrees; Range = 40.675390 meters
Theta = 44 degrees; Range = 40.749880 meters
Theta = 45 degrees; Range = 40.774720 meters
Theta = 46 degrees; Range = 40.749880 meters
Theta = 47 degrees; Range = 40.675390 meters
Theta = 48 degrees; Range = 40.551350 meters

168

CHAPTER 4: Loops and Character Manipulation

Theta = 49 degrees; Range = 40.377900 meters
Theta = 50 degrees; Range = 40.155260 meters
Theﬁé = 85 degrees; Range = 7.080470 meters
Theta = 86 degrees; Range = 5.674757 meters
Theta = 87 degrees; Range = 4.262130 meters
Theta = 88 degrees; Range = 2.844310 meters
Theta = 89 degrees; Range = 1.423035 meters
Theta = 90 degrees; Range = 1.587826E-05 meters
Max range = 40.774720 at 45 degrees

The program output matches our hand calculation for the angles calculated above to
the four-digit accuracy of the hand calculation. Note that the maximum range occurred
at an angle of 45°.

4.3
DEBUGGING FORTRAN LOOPS

The best approach to locating an error in a program containing loops is to use a
symbolic debugger, if one is supplied with your compiler. You must ask your instruc-
tor or else check with your system’s manuals to determine how to use the symbolic
debugger supplied with your particular compiler.

An alternate approach to locating the error is to insert WRITE statements into the
code to print out important variables at key points in the program. When the program
is run, the WRITE statements will print out the values of the key variables. These values
can be compared to the ones you expect, and the places where the actual and expected
values differ will serve as a clue to help you locate the problem. For example, to verify
the operation of a counting loop, the following WRITE statements could be added to
the program.

WRITE (*,*) 'At Toopl: ist, ien, inc = ', ist, ien, inc
Toopl: DO i = ist, ien, inc
WRITE (*,*) 'In Toopl: i =", i

ENb.bO Toopl
WRITE (*,*) '"Toopl completed’

When the program is executed, its output listing will contain detailed information
about the variables controlling the DO loop and just how many times the loop was
executed.

Once you have located the portion of the code in which the error occurs, you can
take a look at the specific statements in that area to locate the problem. A list of some
common errors is given below. Be sure to check for them in your code.

1. Most errors in counting DO loops involve mistakes with the loop parameters.
If you add WRITE statements to the DO loop as shown above, the problem
should be fairly clear. Did the DO loop start with the correct value? Did it end

Loops and Character Manipulation 169

with the correct value? Did it increment at the proper step? If not, check the
parameters of the DO loop closely. You will probably spot an error in the control
parameters.

2. Errors in while loops are usually related to errors in the logical expression used to
control their function. These errors may be detected by examining the IF
(Togical_expr) EXIT statement of the while loop with WRITE statements.

4.4
SUMMARY

In this chapter, we have presented the basic types of Fortran loops, plus some addi-
tional details about manipulating character data.

There are two basic types of loops in Fortran, the while loop and the iterative or
counting DO loop. The while loop is used to repeat a section of code in cases where we
do not know in advance how many times the loop must be repeated. The counting DO
loop is used to repeat a section of code in cases where we know in advance how many
times the loop should be repeated.

It is possible to exit from a loop at any time using the EXIT statement. It is also
possible to jump back to the top of a loop using the CYCLE statement. If loops are
nested, an EXIT or CYCLE statement refers by default to the innermost loop.

4.4.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with branch or loop
constructs. By following them consistently, your code will contain fewer bugs, will be
easier to debug, and will be more understandable to others who may need to work with
it in the future.

1. Always indent code blocks in DO loops to make them more readable.

2. Use a while loop to repeat sections of code when you don’t know in advance how
often the loop will be executed.

3. Make sure that there is only one exit from a while loop.

4. Use a counting DO loop to repeat sections of code when you know in advance how
often the loop will be executed.

5. Never attempt to modify the values of DO loop index while inside the loop.

6. Assign names to large and complicated loops or I F constructs, especially if they
are nested.

7. Use loop names with CYCLE and EXIT statements in nested loops to make certain
that the proper loop is affected by the action of the CYCLE or EXIT statement.

4.4.2 Summary of Fortran Statements and Constructs

The following summary describes the Fortran statements and constructs introduced in
this chapter.

170 CHAPTER 4: Loops and Character Manipulation

CYCLE statement:

CYCLE [namel
Example:

CYCLE inner
Description:

The CYCLE statement may appear within any DO loop. When the statement is executed, all of the statements
below it within the loop are skipped, and control returns to the top of the loop. In while loops, execution
resumes from the top of the loop. In counting loops, the loop index is incremented, and if the index is still
less than its limit, execution resumes from the top of the loop.

An unnamed CYCLE statement always causes the innermost loop containing the statement to cycle.
A named CYCLE statement causes the named loop to cycle, even if it is not the innermost loop.

DO Loop (Iterative or Counting Loop) Construct:

[name:] DO index = istart, iend, incr

END.bé [name]
Example:

Toop: DO index =1, last_value, 3

END DO Toop
Description:
The iterative DO loop is used to repeat a block of code a known number of times. During the first iteration of
the DO loop, the variable index is set to the value istart. index is incremented by incr in each successive
loop until its 7ndex*incr > iend*incr, at which time the loop terminates. The loop name is optional, but if

it is used on the D0 statement, then it must be used on the END DO statement. The loop variable index is
incremented and tested before each loop, so the D0 loop code will never be executed at all if istart*incr >

iend*incr.
EXIT statement:

EXIT [name]
Example:

EXIT Toopl
Description:

The EXIT statement may appear within any D0 loop. When an EXIT statement is encountered, the program
stops executing the loop and jumps to the first executable statement after the END DO.

An unnamed EXIT statement always causes the innermost loop containing the statement to exit.
A named EXIT statement causes the named loop to exit, even if it is not the innermost loop.

Loops and Character Manipulation 171

WHILE Loop Construct:
[name:J DO

IF (Togical_expr) EXIT [namel

END DO [namel

Example:
Toopl: DO
iﬁ'(istatus /=0) EXIT loopl
END DO Toopl
Description:

The while loop is used to repeat a block of code until a specified Togical_expr becomes true. It differs from
a counting DO loop in that we do not know in advance how many times the loop will be repeated. When the
IF statement of the loop is executed with the Togical_expr true, execution skips to the next statement
following the end of the loop.

The name of the loop is optional, but if a name is included on the D0 statement, then the same name
must appear on the END DO statement. The name on the EXIT statement is optional; it may be left out even
if the DO and END DO are named.

4.4.3 Exercises

4-1. Which of the following expressions are legal in Fortran? If an expression is legal, eval-
uate it. Assume the ASCII collating sequence.

(@) "123" > 'abc’

(b) '9478"' == 9478

(¢c) ACHAR(65) // ACHAR(95) // ACHAR(72)
(d) ACHAR(TACHAR('j") + 5)

4-2. Write the Fortran statements required to calculate and print out the squares of all the
even integers between 0 and 50.

4-3. Write a Fortran program to evaluate the equation y(x) = x* — 3x + 2 for all values of x
between —1 and 3, in steps of 0.1.

4-4. Write the Fortran statements required to calculate y(z) from the equation:

()_-4ﬁ+5 120
MW= +s5 <o

172 CHAPTER 4: Loops and Character Manipulation

4-5. Write a Fortran program to calculate the factorial function, as defined in Example 4-2.
Be sure to handle the special cases of 0! and of illegal input values.

4-6. What is the difference in behavior between a CYCLE statement and an EXI T statement?

4-7. Modify program stats_2 to use the DO WHILE construct instead of the while construct
currently in the program.

4-8. Examine the following DO statements and determine how many times each loop will be
executed. (Assume that all loop index variables are integers.)

(@) DO irange = -32768, 32767
() DO j = 100, 1, -10

(¢) DO kount = 2, 3, 4

(d) DO index = -4, -7

(¢y) DO i = -10, 10, 10

(H bo i =10, -2, 0

(g) DO

4-9. Examine the following iterative DO loops and determine the value of ires at the end of
each of the loops, and also the number of times each loop executes. Assume that all
variables are integers.

(a) ires =0
DO index = -10, 10
ires = ires + 1
END DO

(b) ires =0
loopl: DO indexl =1, 20, 5
IF (indexl <= 10) CYCLE
Toop2: DO index2 = indexl, 20, 5
ires = ires + index2
END DO loop2
END DO Toopl

(¢) ires =0
loopl: DO indexl = 10, 4, -2
loop2: DO index2 = 2, indexl, 2
IF (index2 > 6) EXIT Toop2
ires = ires + index2
END DO loop?2
END DO Toopl

(d) ires =0
loopl: DO indexl = 10, 4, -2
loop2: DO index2 = 2, indexl, 2
IF (index2 > 6) EXIT Toopl
ires = ires + index2
END DO loop2
END DO Toopl

Loops and Character Manipulation 173

4-10. Examine the following while loops and determine the value of ires at the end of each of
the loops, and the number of times each loop executes. Assume that all variables are
integers.

(a) ires =0
loopl: DO
ires = ires + 1
IF ((ires / 10) * 10 == ires) EXIT
END DO Toopl

(b) ires = 2
loop2: DO 4
ires = ires**?2

IF (ires > 200) EXIT
END DO Toop2

(c¢) ires = 2
DO WHILE (ires > 200)
ires = ires**2
END DO

4-11. Modify program bal1 from Example 4-7 to read in the acceleration due to gravity at a
particular location, and to calculate the maximum range of the ball for that acceleration.
After modifying the program, run it with accelerations of —9.8 m/sec?, —9.7 m/sec?, and
—9.6 m/sec?. What effect does the reduction in gravitational attraction have on the range
of the ball? What effect does the reduction in gravitational attraction have on the best
angle € at which to throw the ball?

4-12. Modify program bal1l from Example 4-7 to read in the initial velocity with which the
ball is thrown. After modifying the program, run it with initial velocities of 10 m/sec,
20 m/sec, and 30 m/sec. What effect does changing the initial velocity v, have on the
range of the ball? What effect does it have on the best angle € at which to throw the ball?

4-13. Program doy in Example 4-3 calculates the day of year associated with any given month,
day, and year. As written, this program does not check to see if the data entered by the
user is valid. It will accept nonsense values for months and days, and do calculations
with them to produce meaningless results. Modify the program so that it checks the in-
put values for validity before using them. If the inputs are invalid, the program should
tell the user what is wrong, and quit. The year should be number greater than zero, the
month should be a number between 1 and 12, and the day should be a number between
1 and a maximum that depends on the month. Use a SELECT CASE construct to imple-
ment the bounds checking performed on the day.

4-14. Write a Fortran program to evaluate the function

1
- X

y(x) = ln1 (4-11)

for any user-specified value of x, where In is the natural logarithm (logarithm to the
base e). Write the program with a while loop, so that the program repeats the calculation
for each legal value of x entered into the program. When an illegal value of x is entered,
terminate the program. (Note that values of x < 1 are illegal, because the natural log of
a negative real number is not defined.)

174

V4

FIGURE 4-14
A semiconduc-
tor diode.

4-15.

4-16.

4-17.

4-18.

4-19.

CHAPTER 4: Loops and Character Manipulation

Write a Fortran program to convert all uppercase characters in a user-supplied character
string to lowercase, without changing the uppercase and nonalphabetic characters in the
string. Assume that your computer uses the ASCII collating sequence.

Calculating Orbits When a satellite orbits the Earth, the satellite’s orbit will form an
ellipse with the Earth located at one of the focal points of the ellipse. The satellite’s orbit
can be expressed in polar coordinates as

p

r=———
1 —ecos@

(4-12)
where r and 6 are the distance and angle of the satellite from the center of the Earth, p is
a parameter specifying the size of the orbit, and ¢ is a parameter representing the eccen-
tricity of the orbit. A circular orbit has an eccentricity & of zero. An elliptical orbit has
an eccentricity of 0 < & < 1. If & > 1, the satellite follows a hyperbolic path and escapes
from the Earth’s gravitational field.

Consider a satellite with a size parameter p = 1200 km. Write a program to calculate
the distance of the satellite from the center of the Earth as a function of @ if the satellite
has an eccentricity of (a) € = 0; (b) € = 0.25; (¢) € = 0.5. Write a single program in
which r and ¢ are both input values.

How close does each orbit come to the Earth? How far away does each orbit get
from the Earth?

Write a program caps that reads in a character string, searches for all of the words
within the string, and capitalizes the first letter of each word, while shifting the remain-
der of the word to lowercase. Assume that all nonalphabetic and nonnumeric characters
can mark the boundaries of a word within the character variable (e.g., periods, commas,
etc.). Nonalphabetic characters should be left unchanged.

Current through a Diode The current flowing through the semiconductor diode shown
in Figure 4-14 is given by the equation

v
iD=Io<e kT 1> (4-13)
where

vp = the voltage across the diode, in volts
ip = the current flow through the diode, in amperes
I, = the leakage current of the diode, in amperes

g = the charge on an electron, 1.602 x 107" C

k = Boltzmann’s constant, 1.38 x 1072 J/K

T = temperature, in kelvins (K)

The leakage current I, of the diode is 2.0 pA. Write a computer program to calculate
the current flowing through this diode for all voltages from —1.0 Vto + 0.6 V,in 0.1 V
steps. Repeat this process for the following temperatures: 75 °F , 100 °F, and 125 °F.
Use the program of Example 2-3 to convert the temperatures from °F to kelvins.

Binary to Decimal Conversion Write a program that prompts a user for a binary number,
which will be entered as a string of Os and 1s in a character variable. For example, the user
might enter 01000101 as a character string. The program should then convert the input binary
number into a decimal number, and display the corresponding decimal number to the user.
This program should be able to handle numbers from 0000000000 to 1111111111,
converting them into the equivalent decimal values O to 1023. It should also test for and

Loops and Character Manipulation 175

4-20.

4-21.

4-22.

4-23.

handle an invalid value among the input characters (a letter, symbol, or a number greater
than one). Test your program with the following binary numbers.

(a) 0010010010
(b) 1111111111
(¢) 10000000001
(d) 01111111110

Decimal to Binary Conversion Write a program that prompts a user for a decimal in-
teger in the range 0 to 1023, and converts the number into the equivalent binary number.
The binary number should consist of Os and 1s in a character string. The program should
display the corresponding binary number to the user. Test your program with the follow-
ing decimal numbers.

(a) 256
() 63
(c) 140
(d) 768

Octal to Decimal Conversion Write a program that prompts a user for an octal num-
ber, which will be entered as a string of Os to 7s in a character variable. For example,
the user might enter 377 as a character string. The program should then convert the in-
put octal number into a decimal number, and display the corresponding decimal num-
ber to the user. Design the program to handle up to five octal digits. (Hint: This might
be a great place fora SELECT CASE structure.) Test your program with the following
binary numbers.

(a) 377

(b) 11111
(c) 70000
) 77777

Fibonacci Numbers The nth Fibonacci number is defined by the following recursive
equations:

S =1
f2) =2 (4-14)
fn) =f(n = 1) + f(n = 2)

Therefore, f(3) = f(2) + f(1) =2 + 1 =3, and so forth for higher numbers. Write a
program to calculate and write out the nth Fibonacci number for n > 2, where n is input
by the user. Use a while loop to perform the calculation.

Tension on a Cable A 200 kilogram object is to be hung from the end of a rigid 3-m
horizontal pole of negligible weight, as shown in Figure 4-15. The pole is attached to a
wall by a pivot and is supported by a 3-m cable that is attached to the wall at a higher
point. The tension on this cable is given by the equation
W-lc-1
L (4-15)

avip* — &

176

CHAPTER 4: Loops and Character Manipulation

Q lc=3m
<,
%

Ip=3m

W = 200 kg

FIGURE 4-15
A 200 pound weight suspended from a rigid bar supported by a cable.

4-24.

4-25.

4-26.

4-27.

where T is the tension on the cable, W is the weight of the object, Ilc is the length of
the cable, Ip is the length of the pole, and d is the distance along the pole at which the
cable is attached. Write a program to determine the distance d at which to attach the
cable to the pole in order to minimize the tension on the cable. To do this, the pro-
gram should calculate the tension on the cable at 0.1 m intervals from d = 0.5 m to
d = 2.8 m, and should locate the position d that produces the minimum tension.

If the maximum tension on the cable in the previous exercise is 350, over what range of
distances d is it safe to attach the cable to the pole?

Bacterial Growth Suppose that a biologist performs an experiment in which he or she
measures the rate at which a specific type of bacterium reproduces asexually in different
culture media. The experiment shows that in Medium A the bacteria reproduce once every
90 minutes, and in Medium B the bacteria reproduce once every 120 minutes. Assume that
a single bacterium is placed on each culture medium at the beginning of the experiment.
Write a Fortran program that calculates and writes out the number of bacteria present in
each culture at intervals of 6 hours from the beginning of the experiment until 24 hours
have elapsed. How do the numbers of bacteria compare on the two media after 24 hours?

Decibels Engineers often measure the ratio of two power measurements in decibels, or
dB. The equation for the ratio of two power measurements in decibels is

P
dB = logjy— (4-16)
P,

where P, is the power level being measured, and P; is some reference power level.
Assume that the reference power level P, is 1 W, and write a program that calculates the
decibel level corresponding to power levels between 1 and 20W, in 0.5 W steps.

Infinite Series Trigonometric functions are usually calculated on computers by using a
truncated infinite series. An infinite series is an infinite set of terms that together add up

Loops and Character Manipulation 177

4-28.

4-29.

to the value of a particular function or expression. For example, one infinite series used
to evaluate the sine of a number is

o X X XX a7
T TR TR TR “-17)
or
0 lxZn—l
inx= Y (-1 4-18
sin x r;() Qn— 1) ()

where x is in units of radians.

Since a computer does not have enough time to add an infinite number of terms for
every sine that is calculated, the infinite series is truncated after a finite number of
terms. The number of terms that should be kept in the series is just enough to calculate
the function to the precision of the floating-point numbers on the computer on which the
function is being evaluated. The truncated infinite series for sin x is

x2n—1

N
: _ el _
smx—nz::l(1) =1 (4-19)

where N is the number of terms to retain in the series.

Write a Fortran program that reads in a value for x in degrees, and then calculates
the sine of x using the sine intrinsic function. Next, calculate the sine of x using Equation
(4.19), with N=1,2, 3, ..., 10. Compare the true value of sin x with the values calcu-
lated using the truncated infinite series. How many terms are required to calculate sin x
to the full accuracy of your computer?

Geometric Mean The geometric mean of a set of numbers x; through x, is defined as
the nth root of the product of the numbers:

geometric mean = Vx;x,xs. . . x, (4-20)

Write a Fortran program that will accept an arbitrary number of positive input values
and calculate both the arithmetic mean (i.e., the average) and the geometric mean of the
numbers. Use a while loop to get the input values, and terminate the inputs a user enters
a negative number. Test your program by calculating the average and geometric mean of
the four numbers 10, 5, 4, and 5.

RMS Average The root-mean-square (rms) average is another way of calculating a
mean for a set of numbers. The rms average of a series of numbers is the square root of
the arithmetic mean of the squares of the numbers:

1
rms average = NZx,z (4-21)

Write a Fortran program that will accept an arbitrary number of positive input values
and calculate the rms average of the numbers. Prompt the user for the number of values
to be entered, and use a DO loop to read in the numbers. Test your program by calculat-
ing the rms average of the four numbers 10, 5, 4, and 5.

178 CHAPTER 4: Loops and Character Manipulation

4-30. Harmonic Mean The harmonic mean is yet another way of calculating a mean for a set
of numbers. The harmonic mean of a set of numbers is given by the equation:

N
harmonic mean = (4-22)
1 1 1 1
—t =+ =+t —
X1 X2 X3 XN

Write a Fortran program that will read in an arbitrary number of positive input values
and calculate the harmonic mean of the numbers. Use any method that you desire to read
in the input values. Test your program by calculating the harmonic mean of the four
numbers 10, 5, 4, and 5.

4-31. Write a single Fortran program that calculates the arithmetic mean (average), rms aver-
age, geometric mean, and harmonic mean for a set of positive numbers. Use any method
that you desire to read in the input values. Compare these values for each of the follow-
ing sets of numbers:

(a) 4,4,4,4,4,4,4
) 5,2,3,6,3,2,6
(c) 4.1,4,7,4,1,7
d 1,2,3,4,5,6,7

4-32. Mean Time Between Failure Calculations The reliability of a piece of electronic
equipment is usually measured in terms of Mean Time Between Failures (MTBF),
where MTBF is the average time that the piece of equipment can operate before a fail-
ure occurs in it. For large systems containing many pieces of electronic equipment, it
is customary to determine the MTBFs of each component, and to calculate the overall
MTBEF of the system from the failure rates of the individual components. If the system
is structured like the one shown in Figure 4-16, every component must work in order
for the whole system to work, and the overall system MTBF can be calculated as

B 1
g + ! +o 4 B
MTBF, = MTBF, MTBF,

MBTF,

(4-23)

Write a program that reads in the number of series components in a system and the
MTBFs for each component, and then calculates the overall MTBF for the system. To

Overall system

> Subsystem 1 Subsystem 2 > Subsystem 3 =
MTBF 1 MTBF 2 MTBF 3
MTBF
FIGURE 4-16

An electronic system containing three subsystems with known MTBFs.

Loops and Character Manipulation 179

4-33.

4-34.

4-35.

test your program, determine the MTBF for a radar system consisting of an antenna
subsystem with an MTBF of 2000 hours, a transmitter with an MTBF of 800 hours, a
receiver with an MTBF of 3000 hours, and a computer with an MTBF of 5000 hours.

Ideal Gas Law An ideal gas is one in which all collisions between molecules are per-
fectly elastic. It is possible to think of the molecules in an ideal gas as perfectly hard
billiard balls that collide and bounce off of each other without losing kinetic energy.

Such a gas can be characterized by three quantities: absolute pressure (P), volume
(V), and absolute temperature (7). The relationship among these quantities in an ideal
gas is known as the Ideal Gas Law:

PV = nRT (4-24)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the gas in liters
(L), n is the number of molecules of the gas in units of moles (mol), R is the universal
gas constant (8.314 L - kPa/mol - K), and 7 is the absolute temperature in kelvins (K).
(Note: 1 mol = 6.02 x 10* molecules.)

Assume that a sample of an ideal gas contains 1 mole of molecules at a temperature
of 273 K, and answer the following questions.

(a) Write a program to calculate and print out the volume of this gas as its pressure var-
ies from 1 to 1001 kPa in steps of 100 kPa.

(b) Suppose that the temperature of the gas is increased to 300 K. How does the volume
of this gas vary with pressure over the same range now?

Assume that the volume of 1 mole of an ideal gas has a fixed volume of 10 L, and calcu-
late and print out the pressure of the gas as a function of temperature as the temperature
is changed from 250 to 400 kelvins.

The Lever The lever (Figure 4-17) is the simplest possible machine. It is used to lift loads
that would otherwise be too heavy to lift. If there is no friction, the relationship between
the force applied to the lever and the weight that can be lifted is given by the equation

FAPP X d] = W@lght X dz (4—25)

where F,pp is the applied force in newtons, d, is the distance from the fulcrum to the
point where the force is applied, d, is the distance from the fulcrum to the location of the
load, and Weight is the weight (= downward force) of the load.

Assume that the applied force consists of weights that can be stacked onto one end
of the lever. Write a program that will calculate weight required to lift a load of 600 kg
if the distance d, from the fulcrum to the location of the load is fixed at 1 m, and the
distance d; from the fulcrum to the point where the weights are applied varies from
0.5m to 3.0 min 0.1 m steps. Assuming that we only have 400 kg of weights available,
what is the shortest distance d; that could be used in this lever?

d

— 1

d
2
E\PPl . —_—

l F;oap (Weight)

FIGURE 4-17
A lever.

180

5

Basic I/0 Concepts

OBJECTIVES

* Know how to use formatted WRITE statements to create neatly formatted output
from a program.

e Learn how touse the I, F, E, ES, L, A, X, T, and / format descriptors.

¢ Know how to use formatted READ statements to read data into a program.

* Know how to open, read, write, navigate through, and close files.

I the previous chapters, we have read values into and written them out of our pro-
grams using list-directed READ and WRITE statements. List-directed I/O statements are
said to be in free format. Free format is specified by the second asterisk in the READ
(*,%*) and WRITE (*,*) statements. As we saw, the results of writing out data in
free format are not always pretty. There are often a large number of extra spaces in the
output. In this chapter, we will learn how to write out data using formats that specify
the exact way in which the numbers should be printed out.

Formats may be used either when writing or when reading data. Since they are
most useful during output, we will examine formatted WRITE statements first, and
postpone formatted READ statements until a later section in the chapter.

The second major topic introduced in this chapter is disk file processing. We will
learn the basics of how to read from and write to disk files. Advanced disk file pro-
cessing will be postponed to Chapter 14.

5.1
FORMATS AND FORMATTED WRITE STATEMENTS

A format may be used to specify the exact manner in which variables are to be printed
out by a program. In general, a format can specify both the horizontal and the vertical
position of the variables on the paper, and also the number of significant digits to be
printed out. A typical formatted WRITE statement for an integer i and a real variable
result is shown below:

Basic I/O Concepts 181

WRITE (*,100) i, result
100 FORMAT (' The result for iteration ', I3,' is ', F7.3)

The FORMAT statement contains the formatting information used by the WRITE state-
ment. The number 100 that appears within the parentheses in the WRITE statement is
the statement label of the FORMAT statement describing how the values contained in i
and result are to be printed out. I3 and F7. 3 are the format descriptors associated
with variables i and result, respectively. In this case, the FORMAT statement speci-
fies that the program should first write out the phrase 'The result for itera-
tion ', followed by the value of variable i. The format descriptor I3 specifies that a
space three characters wide should be used to print out the value of variable i. The

value of i will be followed by the phrase ' is ' and then the value of the variable
result. The format descriptor F7.3 specifies that a space seven characters wide 5
should be used to print out the value of variable result, and that it should be printed

with three digits to the right of the decimal point. The resulting output line is shown
below, compared to the same line printed with free format.

The result for iteration 21 is 3.142 (formatted)
The result for iteration 21 is 3.141593 (free format)

Note that we are able to eliminate both extra blank spaces and undesired decimal
places by using format statements. Note also that the value in variable result was
rounded before it was printed out in F7. 3 format. (Only the value printed out has been
rounded; the contents of variable result are unchanged.) Formatted I/O will permit
us to create neat output listings from our programs.

In addition to FORMAT statements, formats may be specified in character constants
or variables. If a character constant or variable is used to contain the format, then the
constant or the name of the variable appears within the parentheses in the WRITE state-
ment. For example, the following three WRITE statements are equivalent:

WRITE (*,100) i, x ! Format in FORMAT statement
100 FORMAT (1X,16,F10.2)
CHARACTER(1en=20) :: string ! Format in character variable

string = '(1X,16,F10.2)"'
WRITE (*,string) i, x
WRITE (*,'(1X,I16,F10.2)') i, x ! Format in character constant

We will mix formats in FORMAT statements, character constants, and character variables
in examples throughout this chapter.

In the above example, each format descriptor was separated from its neighbors by
commas. With a few exceptions, multiple format descriptors in a single format must be
separated by commas."

! There is another form of formatted output statement:
PRINT fmt, output_Tist
This statement is equivalent to the formatted WRITE statement discussed above, where fmt is either the

number of a format statement or a character constant or variable. The PRINT statement is never used in
this book, but it is discussed in Section 14.3.7.

182

CHAPTER 5: Basic I/0 Concepts

5.2
OUTPUT DEVICES

To understand the structure of a FORMAT statement, we must know something about
the output devices on which our data will be displayed. The output from a Fortran
program is displayed on an output device. There are many types of output devices that
are used with computers. Some output devices produce permanent paper copies of the
data, while others just display it temporarily for us to see. Common output devices
include laser printers, line printers, and monitors.

The traditional way to get a paper copy of the output of a Fortran program was
on a line printer. A line printer was a type of printer that originally got its name
from the fact that it printed output data a line at a time. Since it was the first
common computer output device, Fortran output specifications were designed with
it in mind. Other more modern output devices are generally built to be backward
compatible with the line printer, so that the same output statement can be used for
any of the devices.

A line printer printed on computer paper that was divided into pages on a contin-
uous roll. There were perforations between the pages so that it was easy to separate
them. The most common size of line printer paper in the United States was 11 inches
high by 14% inches wide. Each page was divided into a number of lines, and each line
is divided into 132 columns, with one character per column. Since most line printers
printed either 6 lines per vertical inch or 8 lines per vertical inch, the printers could
print either 60 or 72 lines per page (note that this assumes a 0.5-inch margin at the
top and the bottom of each page; if the margin is made larger, fewer lines could be
printed).

Most modern printers are laser printers, which print on separate sheets of
paper instead of on a connected roll of paper. The paper size is usually “Letter or
Legal” in the North America, and A4 or A3 in the rest of the world. Laser printers
can be set to print either 80 or 132 columns depending on text size, so they can be
compatible with line printers and respond the same way to output from Fortran
programs.

The format specifies where a line is to be printed on a line printer or laser printer
page (vertical position), and also where each variable is to be printed within the line
(horizontal position).

5.2.1 Control Characters in Printer Output

The computer builds up a complete image of each line in memory before sending it to
an output device. The computer memory containing the image of the line is called the
output buffer (see Figure 5-1). In the days of line printers, the first character in a line
had a special function and was known as a control character. The control character
specified the vertical spacing for the line. The remaining 132 characters in the buffer
contain the data to be printed on that line. All versions of Fortran up to and including
Fortran 95 included special behavior for control characters.

Basic I/O Concepts 183

Control
character

A\

1 Image of line to be printed
r

12 133
FIGURE 5-1
The output buffer is usually 133 characters long. The first character is the control character,
and the next 132 characters are an image of what is to be printed on the line.

The control character was not printed on the page by the line printer. Instead, it
provided vertical positioning control information to the printer. Table 5-1 shows the
vertical spacing resulting from different control characters.

A '"1" character caused the printer to skip the remainder of the current page and
print the current line at the top of the next page. A blank character caused the printer
to print the current line right below the previous one, while a ' 0’ character caused the
printer to skip a line before the current line is printed. A '+' character specified no
spacing; in this case, the new line overwrote the previous line. If any other character
was used as the control character, the result should be the same as for a blank.

For list-directed output [WRITE (*,*)1, a blank control character was automat-
ically inserted at the beginning of each output buffer. Therefore, list-directed output
was always printed in single-spaced lines.

The following FORMAT statements illustrate the use of the control character. They
will print a heading at the top of a new page, skip one line, and then print column
headings for Table 5-1 below it.

WRITE (*,100)

100 FORMAT ('1','This heading is at the top of a new page.')
WRITE (*,110)

110 FORMAT ('0'," Control Character Action ')

WRITE (*,120)

120 FORMAT (" ', ")

The results of executing these Fortran statements are shown below.

Control characters were a special mechanism designed to work with line printers.
Line printers are effectively extinct, and have been for many years, so the use of the
column 1 as a control character has been deleted from the Fortran 2003 standard.
According to the new standard, column 1 of the output buffer is an ordinary character
that has no special purpose. It is printed out like any other character.

TABLE 5-1
Fortran control characters

Control character Action
1 Skip to new page
Blank Single spacing
0 Double spacing

+ No spacing (print over previous line)

184

CHAPTER 5: Basic I/0 Concepts

This heading is at the top of a new page.

Control Character Action

FIGURE 5-2
Results printing Table 5-1 column headings using the old control character mechanism.

Programming Pitfalls
Be aware of control characters in older Fortran programs and in compilers that suppor
and modify older programs.

Fortran compilers still support this mechanism for backward compatibility, but it
is normally turned off by default. In modern Fortran programs, the first character in a
line no longer has a special meaning.

5.3
FORMAT DESCRIPTORS

There are many different format descriptors. They fall into four basic categories:

1. Format descriptors that describe the vertical position of a line of text.

2. Format descriptors that describe the horizontal position of data in a line.
3. Format descriptors that describe the output format of a particular value.
4. Format descriptors that control the repetition of portions of a format.

We will deal with some common examples of format descriptors in this chapter. Other
less common format descriptors will be postponed to Chapter 14. Table 5-2 contains a
list of symbols used with format descriptors, together with their meanings.

5.3.1 Integer Output—The I Descriptor

The descriptor used to describe the display format of integer data is the I descriptor. It
has the general form

rlw or riwm

185

Basic I/0 Concepts
TABLE 5-2
Symbols used with format descriptors
Symbol Meaning
c Column number
d Number of digits to right of decimal place for real input or output
m Minimum number of digits to be displayed
n Number of spaces to skip
r Repeat count—the number of times to use a descriptor or group of descriptors
w Field width—the number of characters to use for the input or output

where 7, w, and m have the meanings given in Table 5-2. Integer values are right justi-
fied in their fields. This means that integers are printed out so that the last digit of the
integer occupies the rightmost column of the field. If an integer is too large to fit into
the field in which it is to be printed, then the field is filled with asterisks. For example,

the following statements:

INTEGER :: index = -12, junk = 4, number = -12345
WRITE (*,200) index, index+12, junk, number

WRITE (*,210) index, index+12, junk, number

WRITE (*,220) index, index+12, junk, number

200 FORMAT (' ', 215, 16, I10)

210 FORMAT (' ', 2I5.0, I6, 110.8)

220 FORMAT (' ', 215.3, 16, I5)

will produce the output

-12 0 4 -12345
-12 4 -00012345

The special case of the zero length descriptor 10 causes the integer to be written
out with a variable field width sufficient to hold the information contained in the inte-
ger. For example, the following statements:

INTEGER :: index = -12, junk = 4, number = -12345

WRITE (*,100) index, junk, number
100 FORMAT (10,1X,10,1X,I0)

will produce the output
-12 4 -12345

This form of the format descriptor is especially useful for ensuring that the data will
always be displayed, but it is not suitable for creating tables of data, because the col-
umns of data will not be aligned properly.

186

CHAPTER 5: Basic I/0 Concepts

5.3.2 Real Output—The F Descriptor

One format descriptor used to describe the display format of real data is the F
descriptor. It has the form

rFw.d

where r, w, and d have the meanings given in Table 5-2. Real values are printed
right justified within their fields. If necessary, the number will be rounded off before
it is displayed. For example, suppose that the variable pi contains the value
3.141593. If this variable is displayed using the F7.3 format descriptor, the dis-
played value will be B¥3.142. On the other hand, if the displayed number includes
more significant digits than the internal representation of the number, extra zeros
will be appended to the right of the decimal point. If the variable pi is displayed
with an F10.8 format descriptor, the resulting value will be 3.14159300. If a real
number is too large to fit into the field in which it is to be printed, then the field is
filled with asterisks.
For example, the following statements:

REAL :: a = -12.3, b = .123, ¢ = 123.456
WRITE (*,200) a, b, ¢

WRITE (*,210) a, b, c

200 FORMAT (2F6.3, F8.3)

210 FORMAT (3F10.2)

will produce the output

xHFxxKR (0,123 123.456

5.3.3 Real Output—The E Descriptor

Real data can also be printed in exponential notation using the E descriptor. Scientific
notation is a popular way for scientists and engineers to display very large or very
small numbers. It consists of expressing a number as a normalized value between 1
and 10 multiplied by 10 raised to a power.

To understand the convenience of scientific notation, let’s consider the following
two examples from chemistry and physics. Avogadro’s number is the number of atoms
in a mole of a substance. It can be written out as 602,000,000,000,000,000,000,000 or
it can be expressed in scientific notation as 6.02 X 10*. On the other hand, the charge
on an electron is 0.0000000000000000001602 coulombs. This number can be
expressed in scientific notation as 1.602 x 10~"?. Scientific notation is clearly a much
more convenient way to write these numbers!

The E format descriptor has the form

rEw.d

Basic I/O Concepts 187

where 7, w, and d have the meanings given in Table 5-2. Unlike normal scientific
notation, the real values displayed in exponential notation with the E descriptor are
normalized to a range between 0.1 and 1.0. That is, they are displayed as a number
between 0.1 and 1.0 multiplied by a power of 10. For example, the standard scientific
notation for the number 4096.0 would be 4.096 x 10°, while the computer output
with the E descriptor would be 0.4096 x 10*. Since it is not easy to represent
exponents on a line printer, the computer output would appear on the printer as
0.4096E+04.

If a real number cannot fit into the field in which it is to be printed, then the field is
filled with asterisks. You should be especially careful with field sizes when working
with the E format descriptor, since many items must be considered when sizing the out-
put field. For example, suppose that we want to print out a variable in the E format with
four significant digits of accuracy. Then a field width of 11 characters is required, as
shown below: 1 for the sign of the mantissa, 2 for the zero and decimal point, 4 for the
actual mantissa, 1 for the E, 1 for the sign of the exponent, and 2 for the exponent itself.

+0.ddddEtee
In general, the width of an E format descriptor field must satisfy the expression
w>d+17 (5-1)

or the field may be filled with asterisks.? The seven extra characters required are used
as follows: 1 for the sign of the mantissa, 2 for the zero and decimal point, 1 for the E,
1 for the sign of the exponent, and 2 for the exponent itself.

For example, the following statements:

REAL :: a = 1.2346E6, b = 0.001, ¢ = -77.7E10 , d = -77.7E10
WRITE (*,200) a, b, c, d
200 FORMAT (2E14.4, E13.6, E11.6)

will produce the output?®

.1235E+07 0.1000E-02-0.777000E+12%*****xkkxx

10 15 20 25 30 35 40 45 50 55

2 If the number to be displayed in the field is positive, then the field width w need only be six characters
larger than d. If the number is negative, an extra character is needed for the minus sign. Hence, in general,
w must be > d + 7. Also, note that some compilers suppress the leading zero, so that one less column is
required.

3 The presence of the leading zero in an E format descriptor is optional, and whether or not it is there will
differ among compiler vendors. Some compilers display leading zeros, while others do not. The following
two lines show the output that could be produced by two different compilers for this example, and both
would be considered correct.

0.1235E+07 0.1000E-02-0.777000E+12*****xxkkkx
.1235E+07 .1000E-02 -.777000E+12*%****x*xkkxx

S e B R B RRRl Bl R BN
5 10 15 20 25 30 35 40 45 50 55

188

CHAPTER 5: Basic I/0 Concepts

Notice that the fourth field is all asterisks, since the format descriptor does not satisfy
Equation (5-1).

5.3.4 True Scientific Notation—The ES Descriptor

As mentioned above, the output of the E format descriptor doesn’t exactly match con-
ventional scientific notation. Conventional scientific notation expresses a number as a
value between 1.0 and 10.0 times a power of 10, while the E format expresses the
number as a value between 0.1 and 1.0 times a power of 10.

We can make the computer output match conventional scientific notation by using
a slightly modified version of the E descriptor called the ES descriptor. The ES
descriptor is exactly the same as the E descriptor, except that the number to be output
will be displayed with a mantissa in the range between 1 and 10. The ES format
descriptor has the form

rESw.d

where 7, w, and d have the meanings given in Table 5-2. The formula for the minimum
width of an ES format descriptor is the same as the formula for the width of an E for-
mat descriptor, but the ES descriptor can display one more significant digit in a given
width because the leading zero is replaced by a significant digit. The ES field must
satisfy the expression

w>d+7 (5-1)

or the field may be filled with asterisks.*
For example, the following statements:

REAL :: a = 1.2346E6, b = 0.001, ¢ = -77.7E10
WRITE (*,200) a, b, ¢
200 FORMAT (2ES14.4, ES12.6)

will produce the output

1.2346E+06 1.0000F - Q3***kkkkkkkkk

|
5 10 15 20 25 30 35 40

The third field is all asterisks, since the format descriptor does not satisfy Equation (5-1).

Good Programming Practice

When displaying very large or very small numbers, use the ES format descriptor to
cause them to be displayed in conventional scientific notation. This display will
help a reader to quickly understand the output numbers.

4If the number to be displayed in the field is positive, then the field width w need only be six characters larger
than d. If the number is negative, an extra character is needed for the minus sign. Hence, in general, w > d + 7.

Basic I/O Concepts 189

5.3.5 Logical Output—The L Descriptor

The descriptor used to display logical data has the form
rlw

where r and w have the meanings given in Table 5-2. The value of a logical variable
can only be . TRUE. or . FALSE.. The output of logical variable is either a T or an F,
right justified in the output field.

For example, the following statements:

LOGICAL :: output = .TRUE., debug = .FALSE.
WRITE (*,"(2L5)") output, debug

will produce the output

5.3.6 Character Output—The A Descriptor

Character data is displayed using the A format descriptor.
rA or rAw

where r and w have the meanings given in Table 5-2. The rA descriptor displays char-
acter data in a field whose width is the same as the number of characters being
displayed, while the rAw descriptor displays character data in a field of fixed width w.
If the width w of the field is longer than the length of the character variable, the
variable is printed out right justified in the field. If the width of the field is shorter than
the length of the character variable, only the first w characters of the variable will be
printed out in the field.
For example, the following statements:

CHARACTER(1en=17) :: string = 'This is a string.’
WRITE (*,10) string

WRITE (*,11) string

WRITE (*,12) string

10 FORMAT (" ', A)

11 FORMAT (" ', A20)

12 FORMAT (' ', A6)

will produce the output
This is a string.

This is a string.
This i

190

CHAPTER 5: Basic I/0 Concepts

5.3.7 Horizontal Positioning—The X and T Descriptor

Two format descriptors are available to control the spacing of data in the output buffer,
and therefore on the final output line. They are the X descriptor, which inserts spaces
into the buffer, and the T descriptor, which “tabs” over to a specific column in the buf-
fer. The X descriptor has the form

nX

where 7 is the number of blanks to insert. It is used to add one or more blanks between
two values on the output line. The T descriptor has the form

Te

where c is the column number to go to. It is used to jump directly to a specific column
in the output buffer. The T descriptor works much like a “tab” character on a type-
writer, except that it is possible to jump to any position in the output line, even if we
are already past that position in the FORMAT statement.

For example, the following statements:

CHARACTER(Ten=10) :: first_name = 'James !

CHARACTER :: initial = 'R’

CHARACTER(1en=16) :: last_name = 'Johnson !
CHARACTER(1en=9) :: class = 'C0SC 2301’

INTEGER :: grade = 92

WRITE (*,100) first_name, initial, last_name, grade, class
100 FORMAT (Al10, 1X, Al, 1X, Al0, 4X, I3, T51, A9)

will produce the output

James R Johnson 92 C0SC 2301

The first 1X descriptor produces a blank control character, so this output line is printed
on the next line of the printer. The first name begins in column 1, the middle initial
begins in column 12, the last name begins in column 14, the grade begins in column 28,
and course name begins in column 50. (The course name begins in column 51 of the
buffer, but it is printed in column 50, since the first character in the output buffer is the
control character.) This same output structure could have been created with the following
statements:

WRITE (*,110) first_name, initial, last_name, class, grade
110 FORMAT (A10, T13, A1, T15, Al10, T51, A9, T29, I3)

In this example, we are actually jumping backward in the output line when we print
out the grade.

Since you may freely move anywhere in the output buffer with the T descriptor, it
is possible to accidentally overwrite portions of your output data before the line is
printed. For example, if we change the tab descriptor for class from T51 to T17,

Basic I/O Concepts 191

WRITE (*,120) first_name, initial, last_name, class, grade
120 FORMAT (Al0, T13, Al, T15, Al0, T17, A9, T29, I3)
the program will produce the following output:

JAMES R J0COSC 2301 92

Programming Pitfalls
When using the T descriptor, be careful to make certain that your fields do not

overlap.

5.3.8 Repeating Groups of Format Descriptors

We have seen that many individual format descriptors can be repeated by preceding
them with a repeat count. For example, the format descriptor 2110 is the same as the
pair of descriptors 110, I10.

It is also possible to repeat whole groups of format descriptors by enclosing the
whole group within parentheses and placing a repetition count in front of the parenthe-
ses. For example, the following two FORMAT statements are equivalent:

320 FORMAT (I6, I6, F10.2, F10.2, I6, F10.2, F10.2)
320 FORMAT (I6, 2(I6, 2F10.2))

Groups of format descriptors may be nested if desired. For example, the following two
FORMAT statements are equivalent:

330 FORMAT (I6, F10.2, A, F10.2, A, I6, F10.2, A, F10.2, A)
330 FORMAT (2(I6, 2(F10.2,A)))

However, don’t go overboard with nesting. The more complicated you make your
FORMAT statements, the harder it will be for you or someone else to understand and
debug them.

If an asterisk is used instead of a number for the repetition count, then the contents
of the parentheses will be repeated indefinitely as long as there is additional data to
write out. A FORMAT statement such as

340 FORMAT (I6, *(I6, 2F10.2))

will reuse the (16, 2F10.2) descriptors indefinitely as long as there is more data to
print out.

5.3.9 Changing Output Lines—The Slash (/) Descriptor

The slash (/) descriptor causes the current output buffer to be sent to the printer, and a
new output buffer to be started. With slash descriptors, a single WRITE statement can
display output values on more than one line. Several slashes can be used together to skip

192

CHAPTER 5: Basic I/0 Concepts

several lines. The slash is one of the special descriptors that does not have to be separated
from other descriptors by commas. However, you may use commas if you wish.

For example, suppose that we need to print out the results of an experiment in
which we have measured the amplitude and phase of a signal at a certain time and
depth. Assume that the integer variable index is 10 and the real variables time,
depth, amplitude, and phase are 300., 330., 850.65, and 30., respectively. Then the
statements

WRITE (*,100) index, time, depth, amplitude, phase
100 FORMAT (T20, 'Results for Test Number ',I3,///, &

'Time = ', F7.0/, &

'Depth = ',F7.1," meters',/, &
"Amplitude = ',F8.2/ &,

"Phase = ' F7.1)

generate six separate output buffers. The first buffer puts a title on the output. The next
two output buffers are empty, so two blank lines are printed. The final four output
buffers contain the output for one variable each, so the four values for time, depth,
ampTlitude, and phase are printed on successive lines. The resulting output is shown
in Figure 5-3.

Notice the 1X descriptors after each slash. These descriptors place a blank in the
character of each output buffer, so that each subsequent line starts in column 2.

5.3.10 How Formats are Used during WRITEs

Most Fortran compilers verify the syntax of FORMAT statements and character constants
containing formats at compilation time, but do not otherwise process them. Character
variables containing formats are not even checked at compilation time for valid syntax,
since the format may be modified dynamically during program execution. In all cases,
formats are saved unchanged as character strings within the compiled program. When

Results for Test Number 10

Time = 300.

Depth = 330.0 meters
Amplitude = 850.65

Phase = 30.2

FIGURE 5-3
Results printing amplitude and phase.

Basic I/O Concepts 193

the program is executed, the characters in a format are used as a template to guide the
operation of the formatted WRITE.

At execution time, the list of output variables associated with the WRITE statement
is processed together with the format of the statement. The program begins at the left
end of the variable list and the left end of the format, and scans from left to right,
associating the first variable in the output list with the first format descriptor in the
format, and so forth. The variables in the output list must be of the same type and in
the same order as the format descriptors in the format, or a runtime error will occur.
For example, the program in Figure 5-4 will compile and link correctly, since all the
statements in it are legal Fortran statements, and the program doesn’t check for corre-
spondence between the format descriptors and the data types until it runs. However, it
will abort at runtime, when the check shows a logical format descriptor corresponding
to a character variable. 5

FIGURE 5-4

A Fortran program showing a runtime error resulting from a data/format descriptor
mismatch. Note that the Fortran compiler did not check for format correspondence, so it
missed the error.

C:\book\fortran\chap5>type bad_format.f90
PROGRAM bad_format

IMPLICIT NONE

INTEGER :: i =10

CHARACTER(Ten=6) :: j = "ABCDEF'

WRITE (*,100) i, j

100 FORMAT (110, L10)

END PROGRAM

C:\book\fortran\chap5>ifort bad_format.f90

Intel(R) Visual Fortran Intel(R) 64 Compiler for applications running on
Intel(R) 64, Version 16.0.2.180 Build 20160204

Copyright (C) 1985-2016 Intel Corporation. A1l rights reserved.

Microsoft (R) Incremental Linker Version 12.00.40629.0
Copyright (C) Microsoft Corporation. All rights reserved.

-out:bad_format.exe
-subsystem:console
bad_format.obj

C:\book\fortran\chap5>bad_format
forrtl: severe (61): format/variable-type mismatch, unit -1, file CONOUT$

Image PC Routine Line Source
bad_format.exe 00007FF7512BE7AB Unknown Unknown Unknown
bad_format.exe 00007FF7512B619D Unknown Unknown Unknown
bad_format.exe 00007FF7512B109C Unknown Unknown Unknown
bad_format.exe 00007FF75130124E Unknown Unknown Unknown
bad_format.exe 00007FF751301524 Unknown Unknown Unknown
KERNEL32.DLL 00007FFA56B38102 Unknown Unknown Unknown

ntd11.d11 00007FFA594DC5B4 Unknown Unknown Unknown

194

CHAPTER 5: Basic I/0 Concepts

Programming Pitfalls
Make sure that there is a one-to-one correspondence between the types of the data in 4
WRITE statement and the types of the format descriptors in the associated FORMAT
statement, or your program will fail at execution time.

As the program moves from left to right through the variable list of a WRITE
statement, it also scans from left to right through the associated format. However, the
order in which the contents of a format are used may be modified by the inclusion of
repetition counters and parentheses. Formats are scanned according to the following
rules:

1. Formats are scanned in order from left to right. The first variable format descrip-
tor in the format is associated with the first value in the output list of the WRITE
statement, and so forth. The type of each format descriptor must match the type
of the data being output. In the example shown below, descriptor I5 is associated
with variable i, 110 with variable j, 115 with variable k, and F10.2 with
variable a.

WRITE (*,10) i, j, k, a
10 FORMAT (I5, I10, I15, F10.2)

2. If a format descriptor has a repetition count associated with it, the descriptor will
be used the number of times specified in the repetition count before the next
descriptor will be used. In the example shown below, descriptor 15 is associated
with variable i, and again with variable j. After it has been used twice, 110 is
associated with variable k, and F10. 2 is associated with variable a.

WRITE (*,20) 1, j, k, a
20 FORMAT (2I5, I10, F10.2)

3. If a group of format descriptors included within parentheses has a repetition count
associated with it, the entire group will be used the number of times specified in
the repetition count before the next descriptor will be used. Each descriptor within
the group will be used in order from left to right during each repetition. In the
example shown below, descriptor F10.2 is associated with variable a. Next, the
group in parentheses is used twice, so I5 is associated with i, E14. 6 is associated
with b, I5 is associated with j, and E14. 6 is associated with c. Finally, F10. 2 is
associated with d.

WRITE (*,30) a, i, b, j, ¢, d
30 FORMAT (Fl10.2, 2(15 E14.6), F10.2)

4. If the WRITE statement runs out of variables before the end of the format, the
use of the format stops at the first format descriptor without a corresponding
variable, or at the end of the format, whichever comes first. For example, the
statements

Basic I/O Concepts 195

INTEGER :: m =1
WRITE (*,40) m
40 FORMAT ('M =", I3, 'N=", 14, '0=", F7.2)

will produce the output

since the use of the format stops at 14, which is the first unmatched format
descriptor. The statements

REAL :: voltage = 13800.

WRITE (*,50) voltage / 1000. 5
50 FORMAT ('Voltage = ', F8.1, " kV")
will produce the output

Voltage = 13.8 kV

since there are no unmatched descriptors, and the use of the format stops at the
end of the statement.

5. If the scan reaches the end of the format before the WRITE statement runs out of
values, the program sends the current output buffer to the printer, and starts over
at the rightmost open parenthesis in the format that is not preceded by a repetition
count. For example, the statements

INTEGER :: j =1, k=2, 1=3, m=4, n=5
WRITE (*,60) j, k, 1, m, n
60 FORMAT ('value = ', I3)

will produce the output

value
value
value
value

o non
[Sa RN OS I Nl

When the program reaches the end of the FORMAT statement after it prints j with
the I3 descriptor, it sends that output buffer to the printer and goes back to the
rightmost open parenthesis not preceded by a repetition count. In this case, the
rightmost open parenthesis without a repetition count is the opening parenthesis
of the statement, so the entire statement is used again to print k, 1, m, and n. By
contrast, the statements

INTEGER :: j =1, k=2, 1
WRITE (*,60) j, k, 1, m, n
",

60 FORMAT ('Value = ', "New Line',2(3X,15)))

196

CHAPTER 5: Basic I/0 Concepts

will produce the output

Value =

New Line 1 2
New Line 3 4
New Line 5

In this case, the entire FORMAT statement is used to print values j and k. Since the
rightmost open parenthesis not preceded by a repetition count is the one just
before 'New Line’, that part of the statement is used again to print 1, m, and n.
Note that the open parenthesis associated with (3X, I5) was ignored because it
had a repetition count associated with it.

EXAMPLE
5-1

Generating a Table of Information:

A good way to illustrate the use of formatted WRITE statements is to generate and print
out a table of data. The example program shown in Figure 5-5 generates the square
roots, squares, and cubes of all integers between 1 and 10, and presents the data in a
table with appropriate headings.

FIGURE 5-5
A Fortran program to generate a table of square roots, squares, and cubes.

PROGRAM table
|

Purpose:
To illustrate the use of formatted WRITE statements. This
program generates a table containing the square roots, squares,
and cubes of all integers between 1 and 10. The table includes
a title and column headings.

Date Programmer Description of change

11/18/15 S. J. Chapman Original code

|
|
|
|
|
|
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

INTEGER :: cube ! The cube of i
INTEGER :: 1 ! Index variable
INTEGER :: square ! The square of i
REAL :: square_root ! The square root of i

I Print the title of the table on a new page.
WRITE (*,100)
100 FORMAT (T3, 'Table of Square Roots, Squares, and Cubes'/)

I Print the column headings after skipping one Tine.
WRITE (*,110)

(continued)

Basic I/0 Concepts 197

(concluded)

110 FORMAT (T4, 'Number',T13,'Square Root',T29,'Square',T39, 'Cube’)
WRITE (*,120)
120 FORMAT (T4,'======',T13,' ',T29,' ',T39,'===="/)

! Generate the required values, and print them out.
DO i =1, 10
square_root = SQRT (REAL(i))
square = i**2
cube = **3
WRITE (*,130) i, square_root, square, cube
130 FORMAT (1X, T4, I4, T13, F10.6, T27, 16, T37, 16)

END DO
5
END PROGRAM table

This program uses the tab format descriptor to set up neat columns of data for the
table. When this program is compiled and executed using the Intel Fortran compiler,
the results are

C:\book\fortran\chap5>table
Table of Square Roots, Squares, and Cubes

Number Square Root Square Cube
1 1.000000 1 1
2 1.414214 4 8
3 1.732051 9 27
4 2.000000 16 64
5 2.236068 25 125
6 2.449490 36 216
7 2.645751 49 343
8 2.828427 64 512
9 3.000000 81 729

10 3.162278 100 1000

EXAMPLE Charge on a Capacitor:
5-2
A capacitor is an electrical device that stores electric charge. It essentially consists of
two flat plates with an insulating material (the dielectric) between them (see
Figure 5-6). The capacitance of a capacitor is defined as

o0
1%

(5-2)

where Q is the amount of charge stored in a capacitor in units of coulombs and V is the
voltage between the two plates of the capacitor in volts. The units of capacitance are
farads (F), with 1 farad = 1 coulomb per volt. When a charge is present on the plates

198

CHAPTER 5: Basic I/0 Concepts

FIGURE 5-6
A capacitor consists of two metal plates separated by an insulating material.

of the capacitor, there is an electric field between the two plates. The energy stored in
this electric field is given by the equation

1 2
=5Cv (5-3)

where E is the energy in joules. Write a program that will perform one of the following
calculations:

1. For a known capacitance and voltage, calculate the charge on the plates, the num-
ber of electrons on the plates, and the energy stored in the electric field.

2. For a known charge and voltage, calculate the capacitance of the capacitor, the
number of electrons on the plates, and the energy stored in the electric field.

SOLUTION

This program must be able to ask the user which calculation he or she wishes to perform,
read in the appropriate values for that calculation, and write out the results in a reasonable
format. Note that this problem will require us to work with very small and very large
numbers, so we will have to pay special attention to the FORMAT statements in the program.
For example, capacitors are typically rated in microfarads (uF or 107 F) or picofarads
(pF or 1012 F), and there are 6.241461 x 10'® electrons per coulomb of charge.

1. State the problem.
The problem may be succinctly stated as follows:

(a) For a known capacitance and voltage, calculate the charge on a capacitor, the
number of electrons stored, and the energy stored in its electric field.

(b) For a known charge and voltage, calculate the capacitance of the capacitor,
the number of electrons stored, and the energy stored in its electric field.

2. Define the inputs and outputs.
There are two possible sets of input values to this program:
(a) Capacitance in farads and voltage in volts.
(b) Charge in coulombs and voltage in volts.

The outputs from the program in either mode will be the capacitance of the capacitor,
the voltage across the capacitor, the charge on the plates of the capacitor, and the

Basic I/O Concepts 199

number of electrons on the plates of the capacitor. The output must be printed out in a
reasonable and understandable format.

3. Describe the algorithm.
This program can be broken down into four major steps:

Decide which calculation is required

Get the input data for that calculation

Calculate the unknown quantities

Write out the capacitance, voltage, charge and number of electrons

The first major step of the program is to decide which calculation is required.
There are two types of calculations: Type 1 requires capacitance and voltage, while
Type 2 requires charge and voltage. We must prompt the user for the type of input data,
read his or her answer, and then read in the appropriate data. The pseudocode for these 5

steps is:
Prompt user for the type of calculation "type”
WHILE
Read type

IF type == 1 or type == 2 EXIT
Tell user of invalid value
End of WHILE

IF type == 1 THEN
Prompt the user for the capacitance c in farads
Read capacitance c
Prompt the user for the voltage v in volts
Read voltage v
ELSE IF type == 2 THEN
Prompt the user for the charge "charge” in coulombs
Read "charge"
Prompt the user for the voltage v in volts
Read voltage v
END IF

Next, we must calculate unknown values. For Type 1 calculations, the unknown
values are charge, the number of electrons, and the energy in the electric field, while
for Type 2 calculations, the unknown values are capacitance, the number of electrons,
and the energy in the electric field. The pseudocode for this step is shown below:

IF type == 1 THEN
charge « ¢ * v
ELSE
¢ « charge / v
END IF
electrons « charge * electrons_per_coulomb
energy « 0.5 * ¢ * y**2

where eTectrons_per_coulomb is the number of electrons per coulomb of charge
(6.241461 x 10'%). Finally, we must write out the results in a useful format.

WRITE v, ¢, charge, electrons, energy

The flowchart for this program is shown in Figure 5-7.

200

CHAPTER 5: Basic I/0 Concepts

(Start)

.TRUE.

Read

.FALSE.

calculation Calculate

charge

Calculate ¢

Calculate
electrons,
energy

WRITE v,
charge,
electrons,
energy

.TRUE.

Read c, v Read
charge, v

C,

®

FIGURE 5-7
Flowchart for the program to calculate information about a capacitor.

4. Turn the algorithm into Fortran statements.
The final Fortran program is shown in Figure 5-8.

FIGURE 5-8
Program to perform capacitor calculations.

PROGRAM capacitor
|

|
|
|
|

Purpose:
To calculate the behavior of a capacitor as follows:

1.

If capacitance and voltage are known, calculate
charge, number of electrons, and energy stored.

(continued)

Basic I/0 Concepts 201

(continued)

2. If charge and voltage are known, calculate capa-
citance, number of electrons, and energy stored.

|
|
!
I Record of revisions:

! Date Programmer Description of change
|

|

|

I

11/18/15 S. J. Chapman Original code
IMPLICIT NONE

| Data dictionary: declare constants

REAL, PARAMETER :: ELECTRONS_PER_COULOMB = 6.241461E18

5
! Data dictionary: declare variable types, definitions, & units
REAL :: c Capacitance of the capacitor (farads).

|

REAL :: charge I Charge on the capacitor (coulombs).

REAL :: electrons ! Number of electrons on the plates of the capacitor

REAL :: energy I Energy stored in the electric field (joules)
|
|
|
|

INTEGER :: type Type of input data available for the calculation:
1: CandV

2: CHARGE and V
REAL :: v Voltage on the capacitor (volts).
! Prompt user for the type of input data available.
WRITE (*, 100)
100 FORMAT (' This program calculates information about a ' &
"capacitor.',/, ' Please specify the type of information',&
" available from the following 1ist:',/,&
' 1 -- capacitance and voltage ',/.,&
' 2 -- charge and voltage ',//,&
" Select options 1 or 2: ")

I Get response and validate it.

DO

READ (*,*) type

IF ((type == 1) .0R. (type == 2)) EXIT

WRITE (*,110) type

110 FORMAT (' Invalid response: ', 16, '. Please enter 1 or 2:')
END DO

! Get additional data based upon the type of calculation.
input: IF (type == 1) THEN

I Get capacitance.

WRITE (*,'Enter capacitance in farads: ')
READ (*,*) ¢

I Get voltage.

WRITE (*,'Enter voltage in volts: ')
READ (*,*) v

ELSE

(continued)

202 CHAPTER 5: Basic I/0 Concepts

(concluded)

I Get charge.
WRITE (*,'Enter charge in coulombs: ')
READ (*,*) charge

I Get voltage.
WRITE (*,'Enter voltage in volts: ')
READ (*,*) v

END IF input

! Calculate the unknown quantities.
calculate: IF (type == 1) THEN

charge = ¢ * v ! Charge
ELSE

c = charge / v ! Capacitance
END IF calculate
electrons = charge * ELECTRONS_PER_COULOMB I Electrons
energy = 0.5 * ¢ * y**2 I Energy

I Write out answers.
WRITE (*,120) v, c, charge, electrons, energy
120 FORMAT ('For this capacitor: ',/, &
" Voltage =
" Capacitance
" Total charge

, F10.2, " V',/, &
, ES10.3, " F',/, &
, ES10.3, ' C',/, &
, £S10.3,/, &

, F10.4, ' joules')

Number of electrons
Total energy

END PROGRAM capacitor

5. Test the program.

To test this program, we will calculate the answers by hand for a simple data set,
and then compare the answers to the results of the program. If we use a voltage of 100 V
and a capacitance of 100 pF, the resulting charge on the plates of the capacitor is 0.01
C, there are 6.241 x 10'® electrons on the capacitor, and the energy stored is
0.5 joules.

Running these values through the program using both options 1 and 2 yields the
following results:

C:\book\fortran\chap5>capacitor

This program calculates information about a capacitor.

Please specify the type of information available from the following Tist:
1 -- capacitance and voltage
2 -- charge and voltage

Select options 1 or 2:

1

Enter capacitance in farads:
100.e-6

Enter voltage in volts:

100.

(continued)

Basic I/0 Concepts 203

(concluded)

For this capacitor:
Voltage = 100.00 V
Capacitance = 1.000E-04 F
Total charge = 1.000E-02 C
Number of electrons = 6.241E+16

Total energy .5000 joules
C:\book\fortran\chap5>capacitor

This program calculates information about a capacitor.
Please specify the type of information available from the following Tist:

1 -- capacitance and voltage
2 -- charge and voltage

Select options 1 or 2: S

2

Enter charge in coulombs:

0.01

Enter voltage in volts:

100.

For this capacitor:
Voltage = 100.00 V
Capacitance = 1.000E-04 F
Total charge = 1.000E-02 C
Number of electrons = 6.241E+16

Total energy .5000 joules

The program gives the correct answers for our test data set.
R

In Example 5-2, sometimes formats appeared in FORMAT statements, and sometimes
they appeared as character constants within WRITE statements. Since these two forms of
formats are equivalent, either one could be used to provide a format for any WRITE state-
ment. If that is so, when should we use a FORMAT statement, and when should we use a
character constant? This author usually lets common sense be a guide: If a format is
small and fits conveniently, I place it in a character constant within the WRITE statement.
If the format is large and complicated, I place it in separate FORMAT statement.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Sections 5.1 through 5.3. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book. Unless otherwise stated,
assume that variables beginning with the letters I -N are integers, and all other
variables are reals.

(continued)

204

CHAPTER 5: Basic I/0 Concepts

(continued)

Write Fortran statements that perform the operations described below.

1. Printthetitle 'This is a test!' starting in column 25.

2. Skip a line, then display the values of i, j, and data_1 in fields
10 characters wide. Allow two decimal points for the real variable.

3. Beginning in column 12, write out the string ' The result is' followed
by the value of result expressed to five significant digits in correct scien-
tific notation.

Assume that real variables a, b, and ¢ are initialized with —0.0001, 6.02 x 10%,
and 3.141593, respectively, and that integer variables i, j, and k are initialized
with 32767, 24, and —1010101, respectively. What will be printed out by each of
the following sets of statements?

4. WRITE (*,10) a, b, ¢
10 FORMAT (3F10.4)

5. WRITE (*,20) a, b, c
20 FORMAT (F10.3, 2X, E10.3, 2X, F10.5)

6. WRITE (*,40) a, b, c
40 FORMAT (ES10.4, ES11.4, F10.4)

7. WRITE (*,'(I5)") i, J, k

8. CHARACTER(1en=30) :: fmt
fmt = "(I0, 2X, I8.8, 2X, I8)"
WRITE (*,fmt) i, j, k

Assume that string_1 is a 10-character variable initialized with the string
"ABCDEFGHIJ', and that string_2 is a 5-character variable initialized with the
string '12345'. What will be printed out by each of the following sets of
statements?

9. WRITE (*,"(2A10)") string_1, string_2

10. WRITE (*,80) string_1, string_2
80 FORMAT (T21,A10,T24,A5)

11. WRITE (*,100) string_1, string_2
100 FORMAT (A5,2X,Ab5)

Examine the following Fortran statements. Are they correct or incorrect? If they
are incorrect, why are they incorrect? Assume default typing for variable names
where they are not otherwise defined.

12. WRITE (*,'(216,F10.4)") istart, istop, step
(continued)

Basic I/O Concepts 205

(concluded)

13. LOGICAL :: test
CHARACTER(Ten=6) :: name
INTEGER :: ierror
WRITE (*,200) name, test, ierror
200 FORMAT ('Test name: ',A,/,' Completion status : ',&
16, ' Test results: ', L6)

What output will be generated by the following program? Describe the output
from the program, including both the horizontal and vertical position of each
output item.

14. INTEGER :: indexl = 1, index2 = 2
REAL :: x1 = 1.2, yl 2.4, x2 =2.4, y2 = 4.8
WRITE (*,120) indexl, x1, yl, index2, x2, y2
120 FORMAT (T11, 'Output Data',/, &

('"POINT(',I2,') = ',2F14.6))

54
FORMATTED READ STATEMENTS

An input device is a piece of equipment that can enter data into a computer. The
most common input device on a modern computer is a keyboard. As data is entered
into the input device, it is stored in an input buffer in the computer’s memory. Once
an entire line has been typed into the input buffer, the user hits the ENTER key on
his or her keyboard, and the input buffer is made available for processing by the
computer.

A READ statement reads one or more data values from the input buffer associated
with an input device. The particular input device to read from is specified by the i/o
unit number in the READ statement, as we will explain later in the chapter. It is possible
to use a formatted READ statement to specify the exact manner in which the contents
of an input buffer are to be interpreted.

In general, a format specifies which columns of the input buffer are to be associ-
ated with a particular variable and how those columns are to be interpreted. A typical
formatted READ statement is shown below:

READ (*,100) increment
100 FORMAT (6X,16)

This statement specifies that the first six columns of the input buffer are to be skipped,
and then the contents of columns 7 through 12 are to be interpreted as an integer, with
the resulting value stored in variable increment. As with WRITEs, formats may be
stored in FORMAT statements, character constants, or character variables.

206

CHAPTER 5: Basic I/0 Concepts

Formats associated with READs use many of the same format descriptors as for-
mats associated with WRITEs. However, the interpretation of those descriptors is
somewhat different. The meanings of the format descriptors commonly found with
READs are described below.

5.4.1 Integer Input—The I Descriptor

The descriptor used to read integer data is the I descriptor. It has the general form
riw

where r and w have the meanings given in Table 5-2. An integer value may be placed
anywhere within its field, and it will be read and interpreted correctly.

5.4.2 Real Input—The F Descriptor

The format descriptor used to describe the input format of real data is the F descriptor.
It has the form

rFw.d

where r, w, and d have the meanings given in Table 5-2. The interpretation of real data
in a formatted READ statement is rather complicated. The input value in an F input
field may be a real number with a decimal point, a real number in exponential nota-
tion, or a number without a decimal point. If a real number with a decimal point or a
real number in exponential notation is present in the field, then the number is always
interpreted correctly. For example, consider the following statement:

READ (*,'(3F10.4)') a, b, ¢
Assume that the input data for this statement is

1.5 0.15E+01 15.0E-01

After the statement is executed, all three variables will contain the number 1.5.

If a number without a decimal point appears in the field, then a decimal point is
assumed to be in the position specified by the d term of the format descriptor. For exam-
ple, if the format descriptor is F10.4, then the four rightmost digits of the number are
assumed to be the fractional part of the input value, and the remaining digits are assumed
to be the integer part of the input value. Consider the following Fortran statements

READ (*,'(3F10.4)') a, b, ¢
Assume that the input data for these statements is

15 150 15000

Basic I/O Concepts 207

Then after these statements are executed, a will contain 0.0015, b will contain 0.0150,
and ¢ will contain 1.5000. The use of values without decimal points in a real input
field is very confusing. It is a relic from an earlier version of Fortran that should never
be used in your programs.

Good Programming Practice
Always include a decimal point in any real values used with a formatted READ
statement.

The E and ES format descriptors are completely identical to the F descriptor for
inputting data. They may be used in the place of the F descriptor, if desired.

5.4.3 Logical Input—The L Descriptor

The descriptor used to read logical data has the form
rlw

where r and w have the meanings given in Table 5-2. The value of a logical variable
can only be . TRUE. or . FALSE.. The input value must be either the values . TRUE. or
.FALSE., or else a block of characters beginning with a T or an F as the first nonblank
character in the input field. If any other character is the first nonblank character in the
field, a runtime error will occur. The logical input format descriptor is rarely used.

5.4.4 Character Input—The A Descriptor

Character data is read using the A format descriptor.
rA or rAw

where r and w have the meanings given in Table 5-2. The rA descriptor reads character
data in a field whose width is the same as the length of the character variable being
read, while the rAw descriptor reads character data in a field of fixed width w. If the
width w of the field is larger than the length of the character variable, the data from
the rightmost portion of the field is loaded into the character variable. If the width of
the field is smaller than the length of the character variable, the characters in the field
will be stored in the leftmost characters of the variable, and the remainder of the
variable will be padded with blanks.
For example, consider the following statements

CHARACTER(1en=10) :: string_1, string_2
CHARACTER(1en=5) :: string_3
CHARACTER(1en=15) :: string_4, string_5
READ (*,'(A)") string_1

READ (*,'(A10)") string_2

READ (*,'(A10)') string_3

READ (*,'(A10)") string_4

READ (*,'(A)') string_b

208

CHAPTER 5: Basic I/0 Concepts

Assume that the input data for these statements is

ABCDEFGHIJKLMNO
ABCDEFGHIJKLMNO
ABCDEFGHIJKLMNO
ABCDEFGHIJKLMNO
ABCDEFGHIJKLMNO

After the statements are executed, variable string_1 will contain 'ABCDEFGHIJ',
since string_1 is 10 characters long, and the A descriptor will read as many char-
acters as the length of variable. Variable string_2 will contain 'ABCDEFGHIJ',
since string_2 is 10 characters long, and the A10 descriptor will read 10 charac-
ters. Variable string_3 is only 5 characters long, and the A10 descriptor is 10
characters long, so string_3 will contain the 5 rightmost of the 10 characters in
the field: ' FGHIJ'. Variable string_4 will contain ' ABCDEFGHIJBE BB ', since
string_4 is 15 characters long, and the A10 descriptor will only read 10 characters.
Finally string_5 will contain ' ABCDEFGHIJKLMNO', since string_5 is 15 char-
acters long, and the A descriptor will read as many characters as the length of the
variable.

5.4.5 Horizontal Positioning—The X and T Descriptors

The X and T format descriptors may be used when reading formatted input data. The
chief use of the X descriptor is to skip over fields in the input data that we do not wish
to read. The T descriptor may be used for the same purpose, but it may also be used to
read the same data twice in two different formats. For example, the following code
reads the values in characters 1 through 6 of the input buffer twice—once as an integer
and once as a character string.

CHARACTER(1en=6) :: string
INTEGER :: input
READ (*,'(16,T1,A6)') input, string

5.4.6 Vertical Positioning—The Slash (/) Descriptor

The slash (/) format descriptor causes a formatted READ statement to discard
the current input buffer, get another one from the input device, and start process-
ing from the beginning of the new input buffer. For example, the following
formatted READ statement reads the values of variables a and b from the first input
line, skips down two lines, and reads the values of variables ¢ and d from the third
input line.

REAL :: a, b, ¢, d

READ (*,300) a, b, c, d
300 FORMAT (2F10.2,//,2F10.2)

Basic I/O Concepts 209

If the input data for these statements is

then the contents of variables a, b, c, and d will be 1.0, 2.0, 7.0, and 8.0,
respectively.

5.4.7 How Formats are Used during READs

Most Fortran compilers verify the syntax of FORMAT statements and character con-
stants containing formats at compilation time, but do not otherwise process them.
Character variables containing formats are not even checked at compilation time for
valid syntax, since the format may be modified dynamically during program execu-
tion. In all cases, formats are saved unchanged as character strings within the compiled
program. When the program is executed, the characters in a format are used as a tem-
plate to guide the operation of the formatted READ.

At execution time, the list of input variables associated with the READ statement is
processed together with the format of the statement. The rules for scanning a format
are essentially the same for READs as they are for WRITEs. The order of scanning, rep-
etition counts, and the use of parentheses are identical.

When the number of variables to be read and the number of descriptors in the
format differ, formatted READs behave as follows:

1. If the READ statement runs out of variables before the end of the format, the use of
the format stops after the last variable has been read. The next READ statement will
start with a new input buffer, and all of the other data in the original input buffer
will be lost. For example, consider the following statements

READ (*,30) 1,
READ (*,30) k, 1, m
30 FORMAT (5I5)

and the following input data

After the first statement is executed, the values of i and j will be 1 and 2, respec-
tively. The first READ ends at that point, so that input buffer is thrown away with-
out ever using the remainder of the buffer. The next READ uses the second input
buffer, so the values of k, 1, and m will be 6, 7, and 8.

2. If the scan reaches the end of the format before the READ statement runs out of
variables, the program discards the current input buffer. It gets a new input buffer

210

CHAPTER 5: Basic I/0 Concepts

and resumes in the format at the rightmost open parenthesis that is not preceded
by a repetition count. For example, consider the statements

READ (*,40) i, j, k, 1, m
40 FORMAT (I5,(T6,215))

and the input data

When the READ statement is executed, variables i, j, and k will be read from the first
input buffer. They will contain 1, 2, and 3, respectively. The FORMAT statement ends at
that point, so the first input buffer is discarded and the next one is used. The FORMAT
statement starts over at the rightmost open parentheses not preceded by a repetition
count, so variables 1 and m will contain 7 and 8, respectively.

This quiz provides a quick check to see if you have understood the concepts in-
troduced in Section 5.4. If you have trouble with the quiz, reread the section, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book. Unless otherwise stated, assume that vari-
ables beginning with the letters I -N are integers, and all other variables are reals.

Write Fortran statements that perform the functions described below.
1. Read the values of a real variable amp1itude from columns 10 to 20, an

integer variable count from columns 30 to 35, and a character variable
identity from columns 60 to 72 of the current input buffer.

2. Read a 25-character variable called tit1e from columns 10 to 34 of the
first input line, and then read 5 integer variables i1 through i5 from col-
umns 5 to 12 on each of the next 5 lines.

3. Read columns 11 to 20 from the current input line into a character variable
string, skip two lines, and read columns 11 to 20 into an integer variable
number. Do this with a single formatted READ statement.

What will be stored in each of the following variables?

4. READ (*,'(3F10.4)') a, b, ¢
With the input data:

1.65E-10 17. -11.7

(continued)

Basic I/O Concepts 211

(concluded)

5. READ (*,20) a, b, ¢
20 FORMAT (El0.2,F10.2,/,20X,F10.2)

With the input data:
-3.1415932.7182818210.1E10
-11 -5. 37.5532

6. READ (*,'(3I5)") i, j, k

With the input data:
-35 67053687

S e e e I
5 10 15 20 25 30 35

7. CHARACTER(1en=5) :: string_1
CHARACTER(Ten=10) :: string_2, string_4
CHARACTER(Ten=15) :: string_3
READ (*,'(4A10)') string_1, string_2, string_3, string_4

With the input data:

ABCDEFGHIJLKMNOPQRSTUVWXYZ0123 _TEST_ 1

o e R B B e
5 10 15 20 25 30 35 40

Examine the following Fortran statements. Are they correct or incorrect? If they
are incorrect, why are they incorrect? If they are correct, what do they do?

8. READ (*,100) nvals, timel, time2
100 FORMAT (10X,I10,F10.2,F10.4)

9. READ (*,220) junk, scratch
220 FORMAT (T60,I15,/,E15.3)

10. READ (*,220) icount, range, azimuth, elevation
220 FORMAT (I6, 4X, F20.2)

5.5
AN INTRODUCTION TO FILES AND FILE PROCESSING

The programs that we have written up to now have involved relatively small amounts
of input and output data. We have typed in the input data from the keyboard each time
that a program has been run, and the output data has gone directly to a terminal or
printer. This is acceptable for small data sets, but it rapidly becomes prohibitive when
working with large volumes of data. Imagine having to type in 100,000 input values

212

CHAPTER 5: Basic I/0 Concepts

each time a program is run! Such a process would be both time consuming and prone
to typing errors. We need a convenient way to read in and write out large data sets, and
to be able to use them repeatedly without retyping.

Fortunately, computers have a standard structure for holding data that we will be
able to use in our programs. This structure is called a file. A file consists of many lines
of data that are related to each other, and that can be accessed as a unit. Each line of
information in a file is called a record. Fortran can read information from a file or
write information to a file one record at a time.

The files on a computer can be stored on various types of devices, which are col-
lectively know as secondary memory. (The computer’s RAM is its primary memory.)
Secondary memory is slower than the computer’s main memory, but it still allows
relatively quick access to the data. Common secondary storage devices include hard
disk drives, USB memory sticks, and CDs or DVDs.

In the early days of computers, magnetic tapes were the most common type of
secondary storage device. Computer magnetic tapes store data in a manner similar to
the audio cassette tapes that were used to play music. Like them, computer magnetic
tapes must be read (or “played”) in order from the beginning of the tape to the end of
it. When we read data in consecutive order one record after another in this manner, we
are using sequential access. Other devices such as hard disks have the ability to jump
from one record to another anywhere within a file. When we jump freely from one
record to another following no specific order, we are using direct access. For histori-
cal reasons, sequential access is the default access technique in Fortran, even if we are
working with devices capable of direct access.

To use files within a Fortran program, we will need some way to select the desired
file and to read from or write to it. Fortunately, Fortran has a wonderfully flexible
method to read from and write to files, whether they are on disk, magnetic tape, or some
other device attached to the computer. This mechanism is known as the input/output
unit (i/o unit, sometimes called a “logical unit”, or simply a “unit”). The i/o unit corre-
sponds to the first asterisk in the READ (*,*) and WRITE (*,*) statements. If that
asterisk is replaced by an i/o unit number, then the corresponding read or write will be
to the device assigned to that unit instead of to the standard input or output device. The
statements to read or write any file or device attached to the computer are exactly the
same except for the i/o unit number in the first position, so we already know most of
what we need to know to use file i/0. An i/o unit number must be of type INTEGER.

Several Fortran statements may be used to control disk file input and output. The
ones discussed in this chapter are summarized in Table 5-3.

TABLE 5-3
Fortran file control statements
I/0 statement Function
OPEN Associate a specific disk file with a specific i/o unit number.
CLOSE End the association of a specific disk file with a specific i/0 unit number.
READ Read data from a specified i/o unit number.
WRITE Write data to a specified i/0 unit number.
REWIND Move to the beginning of a file.

BACKSPACE Move back one record in a file.

Basic I/O Concepts 213

I/O unit numbers are assigned to disk files or devices using the OPEN statement,
and detached from them using the CLOSE statement. Once a file is attached to an i/o
unit using the OPEN statement, we can read and write in exactly the same manner that
we have already learned. When we are through with the file, the CLOSE statement
closes the file and releases the /0 unit to be assigned to some other file. The REWIND
and BACKSPACE statements may be used to change the current reading or writing posi-
tion in a file while it is open.

Certain unit numbers are pre-defined to be connected to certain input or output
devices, so that we don’t need an OPEN statement to use these devices. These pre-
defined units vary from processor to processor.’ Typically, i/o unit 5 is pre-defined to
be the standard input device for your program (i.e., the keyboard if you are running at
a terminal, or the input batch file if you are running in batch mode). Similarly, i/o unit
6 is usually pre-defined to be the standard output device for your program (the screen
if you are running at a terminal, or the line printer if you are running in batch mode).
These assignments date back to the early days of Fortran on IBM computers, so they
have been copied by most other vendors in their Fortran compilers. Another common
association is i/o unit O for the standard error device for your program. This assign-
ment goes back to the C language and Unix-based computers.

However, you cannot count on any of these associations always being true for
every processor. If you need to read from and write to the standard devices, always use
the asterisk instead of the standard unit number for that device. The asterisk is
guaranteed to work correctly on any computer system.

&J@ Good Programming Practice

Always use asterisks instead of i/o unit numbers when referring to the standard in-
put or standard output devices. The standard i/o unit numbers vary from processor
to processor, but the asterisk works correctly on all processors.

If we want to access any files or devices other than the pre-defined standard
devices, we must first use an OPEN statement to associate the file or device with a
specific i/o unit number. Once the association has been established, we can use
ordinary Fortran READs and WRITEs with that unit to work with the data in the file.®

5.5.1 The OPEN Statement

The OPEN statement associates a file with a given i/o unit number. Its form is

OPEN (open_Tlist)

3 A processor is defined as the combination of a specific computer with a specific compiler.

6 Some Fortran compilers attach default files to logical units that have not been opened. For example, in
Intel Fortran, a write to an unopened i/0 unit 26 will automatically go into a file called fort.26. You
should never use this feature, since it is non-standard and varies from processor to processor. Your
programs will be much more portable if you always use an OPEN statement before writing to a file.

214

CHAPTER 5: Basic I/0 Concepts

where open_117st contains a series of clauses specifying the i/0 unit number, the file
name, and information about how to access the file. The clauses in the list are separated
by commas. The full list of possible clauses in the OPEN statement will be postponed
until Chapter 14. For now, we will introduce only the six most important items from
the list. They are

1. A UNIT= clause indicating the i/o unit number to associate with this file. This
clause has the form,

UNIT=1nt_expr

where int_expr can be a nonnegative integer value.

2. A FILE=clause specifying the name of the file to be opened. This clause has the form,
FILE=char_expr

where char_expr is a character value containing name of the file to be opened.

3. A STATUS= clause specifying the status of the file to be opened. This clause has the
form,

STATUS=char_expr
where char_expr is one of the following: 'OLD', "NEW', 'REPLACE", ' SCRATCH',
or "UNKNOWN"'.

4. An ACTION= clause specifying whether a file is to be opened for reading only, for
writing only, or for both reading and writing. This clause has the form,

ACTION=char_expr

where char_expr is one of the following: 'READ', "WRITE', or 'READWRITE'.If
no action is specified, the file is opened for both reading and writing.

5. An IOSTAT= clause specifying the name of an integer variable in which the status
of the open operation can be returned. This clause has the form,

I0STAT=1nt_var

where int_var is an integer variable. If the OPEN statement is successful, a O will
be returned in the integer variable. If it is not successful, a positive number
corresponding to a system error message will be returned in the variable. The
system error messages vary from processor to processor, but a zero always means
success.

6. An IOMSG= clause specifying the name of a character variable that will contain a
message if an error occurs. This clause has the form,

10MSG= chart_var

where char_var is a character variable. If the OPEN statement is successful, the
contents of the character variable will be unchanged. If it is not successful, a
descriptive error message will be returned in this string.

Basic I/O Concepts 215

The above clauses may appear in any order in the OPEN statement. Some examples
of correct OPEN statements are shown below.

Case 1: Opening a File for Input

The statement below opens a file named EXAMPLE.DAT and attaches it to i/o
unit 8.

INTEGER :: ierror
OPEN (UNIT=8, FILE='EXAMPLE.DAT', STATUS='OLD', ACTION='READ', &
I0STAT=ierror, IOMSG=err_string)

The STATUS='0LD' clause specifies that the file already exists; if it does not exist,
then the OPEN statement will return an error code in variable ierror, and an error
message in character string err_string. This is the proper form of the OPEN state-
ment for an input file. If we are opening a file to read input data from, then the file had
better be present with data in it! If it is not there, something is obviously wrong. By
checking the returned value in ierror, we can tell that there is a problem and take
appropriate action.

The ACTION='READ"' clause specifies that the file should be read-only. If an at-
tempt is made to write to the file, an error will occur. This behavior is appropriate for
an input file.

Case 2: Opening a File for Output
The statements below open a file named OUTDAT and attach it to i/o unit 25.

INTEGER :: unit, ierror

CHARACTER(Ten=6) :: filename

unit = 25

filename = "OUTDAT'

OPEN (UNIT=unit, FILE=filename, STATUS='NEW', ACTION='WRITE', &
I0STAT=ierror, I0MSG=err_string)

or

OPEN (UNIT=unit, FILE=filename, STATUS='REPLACE', ACTION='WRITE', &
I0STAT=ierror, IOMSG=err_string)

The STATUS='NEW' clause specifies that the file is a new file; if it already exists, then
the OPEN statement will return an error code in variable ierror. This is the proper
form of the OPEN statement for an output file if we want to make sure that we don’t
overwrite the data in a file that already exists.

The STATUS='REPLACE" clause specifies that a new file should be opened for
output whether a file by the same name exists or not. If the file already exists, the pro-
gram will delete it, create a new file, and open it for output. The old contents of the file
will be lost. If it does not exist, the program will create a new file by that name and
open it. This is the proper form of the OPEN statement for an output file if we want to
open the file whether or not a previous file exists with the same name.

The ACTION="WRITE" clause specifies that the file should be write-only. If an
attempt is made to read from the file, an error will occur. This behavior is appropriate
for an output file.

216

CHAPTER 5: Basic I/0 Concepts

Case 3: Opening a Scratch File
The statement below opens a scratch file and attaches it to i/o unit 12.

OPEN (UNIT=12, STATUS='SCRATCH', IO0STAT=ierror)

A scratch file is a temporary file that is created by the program, and that will be deleted
automatically when the file is closed or when the program terminates. This type of file
may be used for saving intermediate results while a program is running, but it may not
be used to save anything that we want to keep after the program finishes. Notice that
no file name is specified in the OPEN statement. In fact, it is an error to specify a file
name with a scratch file. Since no ACTION= clause is included, the file has been
opened for both reading and writing.

Good Programming Practice

Always be careful to specify the proper status in OPEN statements, depending on
whether you are reading from or writing to a file. This practice will help prevent
errors such as accidentally overwriting data files that you want to keep.

5.5.2 The CLOSE Statement

The CLOSE statement closes a file and releases the i/0 unit number associated with it.
Its form is

CLOSE (close_list)

where close_list must contain a clause specifying the i/o number, and may specify
other options that will be discussed with the advanced i/o material in Chapter 14. If no
CLOSE statement is included in the program for a given file, that file will be closed
automatically when the program terminates.

After a nonscratch file is closed, it may be reopened at any time using a new OPEN
statement. When it is reopened, it may be associated with the same i/o unit or with a
different i/0 unit. After the file is closed, the i/o unit that was associated with it is free
to be reassigned to any other file in a new OPEN statement.

5.5.3 READs and WRITEs to Disk Files

Once a file has been connected to an i/o unit via the OPEN statement, it is possible to
read from or write to the file using the same READ and WRITE statements that we have
been using. For example, the statements

OPEN (UNIT=8, FILE="INPUT.DAT',STATUS='OLD',IOSTAT=ierror)
READ (8,*) x, y, z

Basic I/O Concepts 217

will read the values of variables X, y, and z in free format from the file INPUT.DAT,
and the statements

OPEN (UNIT=9, FILE='OUTPUT.DAT',STATUS='REPLACE',I0STAT=ierror)
WRITE (9,100) x, y, z
100 FORMAT (" X = ', F10.2, " Y ="', F10.2, " Z =", F10.2)

will write the values of variables X, y, and z to the file OUTPUT.DAT in the specified
format.

5.5.4 The IOSTAT=and IOMSG= Clauses in the READ Statement

The I0STAT= and I0MSG= clauses are important additional features that may be
added to the READ statement when working with disk files. The form of the I0STAT=
clause is

I0STAT= int_var

where int_var is an integer variable. If the READ statement is successful, a 0 will be
returned in the integer variable. If it is not successful due to a file or format error, a
positive number corresponding to a system error message will be returned in the vari-
able. If it is not successful because the end of the input data file has been reached, a
negative number will be returned in the variable.’

If an IOMSG= clause is included in a READ statement and the returned i/o status is
nonzero, then the character string returned by the IOMSG= clause will explain in
words what went wrong. The program should be designed to display this message to
the user.

If no I0OSTAT= clause is present in a READ statement, any attempt to read a line
beyond the end of a file will abort the program. This behavior is unacceptable in a
well-designed program. We often want to read all of the data from a file until the end
is reached, and then perform some sort of processing on that data. This is where the
I0STAT= clause comes in: If an IOSTAT= clause is present, the program will not abort
on an attempt to read a line beyond the end of a file. Instead, the READ will complete
with the IOSTAT variable set to a negative number. We can then test the value of the
variable, and process the data accordingly.

Good Programming Practice
Always include the I0STAT= clause when reading from a disk file. This clause
provides a graceful way to detect end-of-data conditions on the input files.

7 There is an alternate method of detecting file read errors and end-of-file conditions using ERR= and
END= clauses. These clauses of the READ statement will be described in Chapter 14. The I0STAT=

clause and I0OMSG= clause lend themselves better to structured programming than the other clauses do, so
they are being postponed to the later chapter.

218

CHAPTER 5: Basic I/0 Concepts

EXAMPLE Reading Data from a File:

5-3

It is very common to read a large data set into a program from a file, and then to
process the data in some fashion. Often, the program will have no way of knowing in
advance just how much data is present in the file. In that case, the program needs to
read the data in a while loop until the end of the data set is reached, and then must
detect that there is no more data to read. Once it has read in all of the data, the program
can process it in whatever manner is required.

Let’s illustrate this process by writing a program that can read in an unknown
number of real values from a disk file, and detect the end of the data in the
disk file.

SOLUTION

This program must open the input disk file, and then read the values from it using the
I0STAT= clause to detect problems. If the IOSTAT variable contains a negative number
after a READ, then the end of the file has been reached. If the IOSTAT variable contains
0 after a READ, then everything was ok. If the IOSTAT variable contains a positive
number after a READ, then a READ error occurred. In this example, the program should
stop if a READ error occurs.

1. State the problem.
The problem may be succinctly stated as follows:

Write a program that can read an unknown number of real values from a
user-specified input data file, detecting the end of the data file as it occurs.

2. Define the inputs and outputs.
The inputs to this program consist of:

(a) The name of the file to be opened.
(b) The data contained in that file.

The outputs from the program will be the input values in the data file. At the end of the
file, an informative message will be written out telling how many valid input values were
found.

3. Describe the algorithm.
This pseudocode for this program is

Initialize nvals to 0

Prompt user for file name

Get the name of the input file
OPEN the input file

Check for errors on OPEN

If no OPEN error THEN
! Read input data
WHILE
READ value
IF status /= 0 EXIT
nvals < nvals + 1

Basic I/0 Concepts 219

WRITE valid data to screen
END of WHILE

! Check to see if the WHILE terminated due to end of file
! or READ error
IF status > 0
WRITE 'READ error occurred on line', nvals
ELSE
WRITE number of valid input values nvals
END of IF (status > 0)
END of IF (no OPEN error)
END PROGRAM

A flowchart for the program is shown in Figure 5-9.

READ value

nvals «< 0

v

READ fiTename

.FALSE.

status ==

nvals < nvals + 1

! y
OPEN filename WRITE nvals,
value
' [
.FALSE.
WRITE "Error opening "TRUE.
file: IOSTAT ='
WRITE 'Error WRITE 'End of
reading line' file', NVALS
|
(Stop)
FIGURE 5-9

Flowchart for a program to read an unknown number of values from an input data file.

220

CHAPTER 5: Basic I/0 Concepts

4. Turn the algorithm into Fortran statements.
The final Fortran program is shown in Figure 5-10.

FIGURE 5-10
Program to read an unknown number of values from a user-specified input disk file.

PROGRAM read_file

Purpose:
To illustrate how to read an unknown number of values from
an input data file, detecting both any formatting errors and
the end of file.

Date Programmer Description of change

11/18/15 S. J. Chapman Original code

|
|
|
|
|
!
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare variable types, definitions, & units

CHARACTER(Ten=20) :: filename ! Name of file to open
CHARACTER(1en=80) :: msg I Error message

INTEGER :: nvals =0 I Number of values read in
INTEGER :: status 1 ' I/0 status

REAL :: value I The real value read in

! Get the file name, and echo it back to the user.
WRITE (*,*) 'Please enter input file name: '

READ (*,*) filename

WRITE (*,1000) filename

1000 FORMAT ('The input file name is: ', A)

! Open the file, and check for errors on open.

OPEN (UNIT=3, FILE=filename, STATUS='0OLD', ACTION='READ', &
I0STAT=status, IOMSG=msg)

openif: IF (status == 0) THEN

I OPEN was ok. Read values.
readloop: DO

READ (3,*,I0STAT=status) value I Get next value

IF (status /=0) EXIT I EXIT if not valid.
nvals = nvals + 1 I Valid: increase count
WRITE (*,1010) nvals, value ! Echo to screen

1010 FORMAT ('Line ', I6, ': Value = ',F10.4)
END DO readloop

I The WHILE Toop has terminated. Was it because of a READ

I error or because of the end of the input file?
readif: IF (status > 0) THEN ! a READ error occurred. Tell user.

(continued)

Basic I/O Concepts 221

(concluded)

WRITE (*,1020) nvals + 1
1020 FORMAT ('An error occurred reading line ', 16)
ELSE ! the end of the data was reached. Tell user.

WRITE (*,1030) nvals
1030 FORMAT ('End of file reached. There were ', 16, &
" values in the file.")
END IF readif

ELSE openif
WRITE (*,1040) status

1040 FORMAT ('Error opening file: IOSTAT = ', 16)

WRITE (*,1050) TRIM(msg)
1050 FORMAT (A)

END IF openif

I Close file
CLOSE (UNIT=3)

END PROGRAM read_file

Note that the input file is opened with STATUS='0LD", since we are reading from
the file, and the input data must already exist before the program is executed.

5. Test the program.

To test this program, we will create two input files, one with valid data and one with
an input data error. We will run the program with both input files, and verify that it works
correctly both for valid data and for data containing input errors. Also, we will run the
program with an invalid file name to show that it can properly handle missing input files.

The valid input file is called READ1. DAT. It contains the following lines:

-17.0
30.001
1.0
12000.
-0.012

The invalid input file is called READ2 . DAT. It contains the following lines:

-17.0

30.001
ABCDEF
12000.
-0.012

Running these files through the program yields the following results:

C:\book\fortran\chap5>read_file
PTease enter input file name:

readl.dat

The input file name is: readl.dat
Line 1: Value = -17.0000
Line 2: Value = 30.0010

222

CHAPTER 5: Basic I/0 Concepts

Line 3: Value = 1.0000
Line 4: Value = 12000.0000
Line 5: Value = -.0120

End of file reached. There were 5 values in the file.

C:\book\fortran\chap5>read_file
Please enter input file name:

read2.dat

The input file name is: read2.dat
Line 1: Value = -17.0000
Line 2: Value = 30.0010

An error occurred reading line 3
Finally, let’s test the program with an invalid input file name.

C:\book\fortran\chap5>read_file

Please enter input file name:

XXX

The input file name is: xxx

Error opening file: IOSTAT = 29

file not found, unit 3, file C:\Data\book\fortran\chap5\xxx

The number of the I0STAT error reported by this program will vary from processor to
processor, but it will always be positive. You must consult a listing of the runtime error
codes for your particular compiler to find the exact meaning of the error code that your
computer reports. For the Fortran compiler used here, I0STAT = 29 means “File not
found.” Note that the error message returned from the IOMSG clause is clear to the
user, without having to look up the meaning of status 29!

This program correctly read all of the values in the input file, and detected the end
of the data set when it occurred.

5.5.5 File Positioning

As we stated previously, ordinary Fortran files are sequential—they are read in order
from the first record in the file to the last record in the file. However, we sometimes
need to read a piece of data more than once, or to process a whole file more than once
during a program. How can we skip around within a sequential file?

Fortran provides two statements to help us move around within a sequential file.
They are the BACKSPACE statement, which moves back one record each time it is
called, and the REWIND statement, which restarts the file at its beginning. The forms of
these statements are

BACKSPACE (UNIT=unit)
and

REWIND (UNIT=unit)

Basic I/O Concepts 223

where unit is the i/o unit number associated with the file that we want to work with.?
Both statements can also include I0STAT= and I0MSG= clauses to detect errors
during the backspace or rewind operation without causing the program to abort.

EXAMPLE Using File Positioning Commands:
5-4
We will now illustrate the use of scratch files and file positioning commands in a sim-
ple example problem. Write a program that accepts a series of nonnegative real values
and stores them in a scratch file. After the data is input, the program should ask the
user what data record he or she is interested in, and then recover and display that value

from the disk file.

SOLUTION

Since the program is expected to read only positive or zero values, we can use a nega-
tive value as a flag to terminate the input to the program. A Fortran program that does
this is shown in Figure 5-11. This program opens a scratch file, and then reads input
values from the user. If a value is nonnegative, it is written to the scratch file. When a
negative value is encountered, the program asks the user for the record to display. It
checks to see if a valid record number was entered. If the record number is valid, it
rewinds the file and reads forward to that record number. Finally, it displays the con-
tents of that record to the user.

FIGURE 5-11
Sample program illustrating the use of file positioning commands.

PROGRAM scratch_file

|
I Purpose:

! To illustrate the use of a scratch file and positioning
! commands as follows:

! 1. Read in an arbitrary number of positive or zero

! values, saving them in a scratch file. Stop

! reading when a negative value is encountered.

! 2. Ask the user for a record number to display.

! 3. Rewind the file, get that value, and display it.
|

|

|

|

|

|

I

Record of revisions:
Date Programmer Description of change

11/19/15 S. J. Chapman Original code

MPLICIT NONE

! Data dictionary: declare constants
INTEGER, PARAMETER :: LU =8 ! i/o unit for scratch file

(continued)

8 Alternate forms of these statements are described in Chapter 14.

224

CHAPTER 5: Basic I/0 Concepts

(continued)

! Data dictionary: declare variable types, definitions, & units
REAL :: data I Data value stored in a disk file
INTEGER :: icount = 0 ! The number of input data records
INTEGER :: irec ! Record number to recover and display
INTEGER :: j I Loop index

! Open the scratch file
OPEN (UNIT=LU, STATUS='SCRATCH")

I Prompt user and get input data.

WRITE (*, 100)

100 FORMAT ('Enter positive or zero input values. ',/, &
"A negative value terminates input.')

I Get the input values, and write them to the scratch file

DO
WRITE (*, 110) icount + 1 ! Prompt for next value
110 FORMAT ('Enter sample ',I4,':')
READ (*,*) data I Read value
IF (data < 0.) EXIT I Exit on negative numbers
icount = icount + 1 ! Valid value: bump count
WRITE (LU,120) data I Write data to scratch file
120 FORMAT (ES16.6)

END DO

I Now we have all of the records. Ask which record to see.

I icount records are in the file.

WRITE (*,130) icount

130 FORMAT ('Which record do you want to see (1 to ',I4, ")? ")
READ (*,*) irec

! Do we have a legal record number? If so, get the record.
! If not, tell the user and stop.
IF ((irec >= 1) .AND. (irec <= icount)) THEN

I This is a Tegal record. Rewind the scratch file.
REWIND (UNIT=LU)

I Read forward to the desired record.
DO j =1, irec

READ (LU,*) data
END DO

I Tell user.
WRITE (*,140) irec, data
140 FORMAT ('The value of record ', I4, ' is ', ES14.5)

ELSE

I We have an illegal record number. Tell user.

WRITE (*,150) irec

150 FORMAT ('I1legal record number entered: ', 18)
END IF

(continued)

Basic I/0 Concepts 225

(concluded)

I Close file

CLOSE(LU)

END PROGRAM scratch_file

Let us test the program with valid data:
C:\book\fortran\chap5>scratch_file

Enter positive or zero input values.
A negative input value terminates input.

Enter sample 1:

234,

Enter sample 2:
12.34

Enter sample 3:
0.

Enter sample 4:
16.

Enter sample 5:
11.235

Enter sample 6:
2.

Enter sample 7:
-1

Which record do you want to see (1 to 6)7?
5

The value of record 5 is 1.12350E+01

Next, we should test the program with an invalid record number to see that the error
condition is handled properly.

C:\book\fortran\chap5>scratch_file

Enter positive or zero input values.
A negative input value terminates input.
Enter sample 1:

234,

Enter sample 2:
12.34

Enter sample 3:
0.

Enter sample 4.
16.

Enter sample 5:
11.235

Enter sample 6:
2.

Enter sample 7:
-1

Which record do you want to see (1 to 6):
7

IT1egal record number entered: 7
The program appears to be functioning correctly.

226

CHAPTER 5: Basic I/0 Concepts

EXAMPLE
5-5

Fitting a Line to a Set of Noisy Measurements:

The velocity of a falling object in the presence of a constant gravitational field is given
by the equation

v(t) = at + v, (5-4)

where v(7) is the velocity at any time ¢, a is the acceleration due to gravity, and v, is the
velocity at time 0. This equation is derived from elementary physics—it is known to
every freshman physics student. If we plot velocity versus time for the falling object,
our (v, f) measurement points should fall along a straight line. However, the same
freshman physics student also knows that if we go out into the laboratory and attempt
to measure the velocity versus time of an object, our measurements will not fall along
a straight line. They may come close, but they will never line up perfectly. Why not?
Because we can never make perfect measurements. There is always some noise
included in the measurements, which distorts them.

There are many cases in science and engineering where there are noisy sets of
data such as this, and we wish to estimate the straight line that “best fits” the data.
This problem is called the linear regression problem. Given a noisy set of measure-
ments (x, y) that appear to fall along a straight line, how can we find the equation of
the line

y=mx+b (5-5)

that “best fits” the measurements? If we can determine the regression coefficients m
and b, then we can use this equation to predict the value of y at any given x by evaluat-
ing Equation 5-5 for that value of x.

A standard method for finding the regression coefficients m and b is the method of
least squares. This method is named “least squares” because it produces the line
y = mx + b for which the sum of the squares of the differences between the observed
y values and the predicted y values is as small as possible. The slope of the least
squares line is given by

2xy) — (Zx)y
m = Z9) ~ (20 (5-6)

(Zx7) — (Zx)x

and the intercept of the least squares line is given by
b=y—mx (5-7)

where

2x is the sum of the x values

2x? is the sum of the squares of the x values

Zxy is the sum of the products of the corresponding x and y values
X is the mean (average) of the x values

y is the mean (average) of the y values

Basic I/O Concepts 227

Write a program that will calculate the least squares slope m and y-axis intercept
b for a given set of noisy measured data points (x, y) which are to be found in an input
data file.

SoLUTION

1. State the problem.
Calculate the slope m and intercept b of a least squares line that best fits an input
data set consisting of an arbitrary number of (x, y) pairs. The input (x, y) data resides
in a user-specified input file.

2. Define the inputs and outputs.

The inputs required by this program are pairs of points (x, y), where x and y are
real quantities. Each pair of points will be located on a separate line in the input disk
file. The number of points in the disk file is not known in advance.

The outputs from this program are the slope and intercept of the least squares
fitted line, plus the number of points going into the fit.

3. Describe the algorithm.
This program can be broken down into four major steps:

Get the name of the input file and open it
Accumulate the input statistics

Calculate the slope and intercept

Write out the sTope and intercept

The first major step of the program is to get the name of the input file and to open
the file. To do this, we will have to prompt the user to enter the name of the input file.
After the file is opened, we must check to see that the open was successful. Next, we
must read the file and keep track of the number of values entered, plus the sums Xx,
Ty, =x%, and Zxy. The pseudocode for these steps is:

Initialize n, sum_x, sum_x2, sum_y, and sum_xy to O
Prompt user for input file name

Open file "filename”

Check for error on OPEN

WHILE
READ x, y from file "filename"
IF (end of file) EXIT
n«—n+1
SUM_X « Sum_x + X
SUM_Y « sum_y + vy
SUM_X2 « sum_x2 + x**2
SUM_XY « sum_xy + X*y
End of WHILE

Next, we must calculate the slope and intercept of the least squares line. The
pseudocode for this step is just the Fortran versions of Equations (5-6) and (5-7).

x_bar « sum_x / real(n)

y_bar « sum_y / real(n)

slope « (sum_xy - sum_x * y_bar) / (sum_x2 - sum_x * x_bar)
y_int « y_bar - slope * x_bar

228 CHAPTER 5: Basic I/0 Concepts

Finally, we must write out the results.
Write out slope "sTope" and intercept "y_int".

4. Turn the algorithm into Fortran statements.
The final Fortran program is shown in Figure 5-12.

FIGURE 5-12
The least squares fit program of Example 5-5.

PROGRAM least_squares_fit

Purpose:
To perform a least-squares fit of an input data set
to a straight line, and print out the resulting slope
and intercept values. The input data for this fit
comes from a user-specified input data file.

Record of revisions:
Date Programmer Description of change

11/19/15 S. J. Chapman Original code

!
!
!
!
!
!
!
!
!
!
!
!
I

MPLICIT NONE

| Data dictionary: declare constants
INTEGER, PARAMETER :: LU = 18 ! I/0 unit for disk I/0

| Data dictionary: declare variable types, definitions, & units
! Note that cumulative variables are all initialized to zero.
CHARACTER(1en=24) :: filename ! Input file name (<= 24 chars)
INTEGER :: dierror I Status flag from I/0 statements
CHARACTER(1en=80) :: msg I Error message
INTEGER :: n =20 I Number of input data pairs (x,y)
REAL :: slope ! Slope of the Tine
REAL :: sum_x = 0. ! Sum of all input X values
REAL :: sum_x2 = 0. I Sum of all input X values squared
REAL :: sum_xy =0 I Sum of all input X*Y values
REAL :: sum_y = 0. ! Sum of all input Y values

|

|

|

|

|

REAL :: x An input X value

REAL :: x_bar Average X value

REAL :: y An input Y value

REAL :: y_bar Average Y value

REAL :: y_int Y-axis intercept of the line

I Prompt user and get the name of the input file.

WRITE (*,1000)

1000 FORMAT ('This program performs a least-squares fit of an ',/, &
"input data set to a straight Tine. Enter the name’,/ &
'of the file containing the input (x,y) pairs: ')

(continued)

Basic I/0 Concepts 229

(concluded)

READ (*,'(A)") filename
I Open the input file
OPEN (UNIT=LU, FILE=filename, STATUS='0OLD', IOSTAT=ierror, IOMSG=msg)

I Check to see of the OPEN failed.
errorcheck: IF (ierror > 0) THEN

WRITE (*,1010) filename

1010 FORMAT ('ERROR: File ',A," does not exist!')
WRITE (*,'(A)") TRIM(msg)

ELSE
I File opened successfully. Read the (x,y) pairs from

! the input file.

DO
READ (LU,*,I0STAT=ierror) x, y ! Get pair
IF (ierror /=0) EXIT
n =n+1 !
SUM_X = Sum_x + X I Calculate
sum_y = sum_y +y ! statistics
SUm_x2 = sum_x2 + x**2 !
SUM_XY = Sum_xy + x *y !
END DO

I Now calculate the sTope and intercept.

x_bar = sum_x / real(n)

y_bar = sum_y / real(n)

sTope = (sum_xy - sum_x * y_bar) / (sum_x2 - sum_x * x_bar)
y_int = y_bar - slope * x_bar

I Tell user.

WRITE (*, 1020) slope, y_int, N
1020 FORMAT ('Regression coefficients for the least-squares line:',&

/,' slope (m) ="', F12.3,&
/," Intercept (b) ="', F12.3,&
/," No of points ="', I12)

! Close input file, and quit.
CLOSE (UNIT=LU)

END IF errorcheck

END PROGRAM Teast_squares_fit

5. Test the program.
To test this program, we will try a simple data set. For example, if every point in
the input data set actually falls along a line, then the resulting slope and intercept
should be exactly the slope and intercept of that line. Thus, the data set

1.1, 1.1
2.2, 2.2

230

CHAPTER 5: Basic I/0 Concepts

~No ol bW
~No ol bW
~No o bW
~NOo ol b w

s
s
’
s
s

should produce a slope of 1.0 and an intercept of 0.0. If we place these values in a file
called INPUT, and run the program, the results are:

C:\book\fortran\chap5>1east_squares_fit

This program performs a least-squares fit of an
input data set to a straight 1ine. Enter the name
of the file containing the input (x,y) pairs:

INPUT

Regression coefficients for the least-squares line:
slope (m) = 1.000
Intercept (b) = .000
No of points = 7

Now let’s add some noise to the measurements. The data set becomes

1.1, 1.01
2.2, 2.30
3.3, 3.05
4.4, 4.28
5.5, 5.75
6.6, 6.48
7.7, 7.84

If these values are placed in a file called INPUT1, and the program is run on that file,
the results are:

C:\book\fortran\chap5>least_squares_fit

This program performs a least-squares fit of an
input data set to a straight 1ine. Enter the name
of the file containing the input (x,y) pairs:

INPUT1

Regression coefficients for the least-squares line:
slope (m) = 1.024
Intercept (b) = -.120
No of points = 7

If we calculate the answer by hand, it is easy to show that the program gives the cor-
rect answers for our two test data sets. The noisy input data set and the resulting least
squares fitted line are shown in Figure 5-13.

The program in this example has a problem—it cannot distinguish between the
end of an input file and a read error (such as character data instead of real data) in the
input file. How would you modify the program to distinguish between these two pos-
sible cases?

Also, note that this program stored two simple formats in character constants
instead of defining a separate format statement for each of them. This is good practice
when the formats are simple.

Basic I/0 Concepts 231

Least squares fit to noisy data

<& Measured points

m— Fitted line

FIGURE 5-13
A noisy input data set and the resulting least squares fitted line.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 5.5. If you have trouble with the quiz, reread the section, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book.

Write Fortran statements that perform the functions described below. Unless oth-
erwise stated, assume that variables beginning with the letters I-N are integers,
and all other variables are reals.

1. Open an existing file named IN052691 on i/o unit 25 for read-only input,
and check the status to see if the OPEN was successful.

2. Open a new output file, making sure that you do not overwrite any existing
file by the same name. The name of the output file is stored in character
variable out_name.

3. Close the file attached to unit 24.

4. Read variables first and 1ast from i/o unit 8 in free format, checking for
end of data during the READ.

5. Backspace eight lines in the file attached to i/o unit 13.
Examine the following Fortran statements. Are they correct or incorrect? If they

are incorrect, why are they incorrect? Unless otherwise stated, assume that vari-
ables beginning with the letters I -N are integers, and all other variables are reals.

6. OPEN (UNIT=35, FILE='DATAl', STATUS='REPLACE',IO0STAT=ierror)
READ (35,*) n, datal, data2

(continued)

232

CHAPTER 5: Basic I/0 Concepts

(concluded)

7. CHARACTER(1en=80) :: str
OPEN (UNIT=11, FILE='DATAl', STATUS='SCRATCH',I0STAT=ierror, &
I0MSG=str)

8. OPEN (UNIT=15,STATUS='SCRATCH',ACTION='READ', I0STAT=ierror)
OPEN (UNIT=x, FILE='JUNK', STATUS='NEW',IOSTAT=ierror)

10. OPEN (UNIT=9, FILE='TEMP.DAT', STATUS='OLD', ACTION='READ', &
I0STAT=ierror)
READ (9,*) x, y

5.6
SUMMARY

In this chapter, we presented a basic introduction to formatted WRITE and READ
statements, and to the use of disk files for input and output of data.

In a formatted WRITE statement, the second asterisk of the unformatted WRITE
statement (WRITE (*,*)) is replaced by a FORMAT statement number or a character
constant or variable containing the format. The format describes how the output data
is to be displayed. It consists of format descriptors that describe the vertical and hori-
zontal position of the data on a page, as well as display format for integer, real, logical,
and character data types.

The format descriptors discussed in this chapter are summarized in Table 5-4.

TABLE 5-4
Fortran format descriptors discussed in Chapter 5
FORMAT descriptors Usage
Aw A Character data
Ew.d Real data in exponential notation
ESw.d Real data in scientific notation
Fw.d Real data in decimal notation
Iw Iw.m Integer data
1o Integer data with variable field width
Lw Logical data
Te TAB: move to column c of current line
nX Horizontal spacing: skip n spaces
/ Vertical spacing: move down one line
where:

¢ column number

d number of digits to right of decimal place
m minimum number of digits to be displayed
n number of spaces to skip

w field width in characters

Basic I/O Concepts 233

Formatted READ statements use a format to describe how the input data is to be inter-
preted. All of the above format descriptors are also legal in formatted READ statements.

A disk file is opened using the OPEN statement, read and written using READ and
WRITE statements, and closed using the CLOSE statement. The OPEN statement
associates a file with an i/0 unit number, and that i/0 unit number is used by the READ
statements and WRITE statements in the program to access the file. When the file is
closed, the association is broken.

It is possible to move around within a sequential disk file using the BACKSPACE
and REWIND statements. The BACKSPACE statement moves the current position in the
file backward by one record whenever it is executed, and the REWIND statement moves
the current position back to the first record in the file.

5.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with formatted
output statements or with disk i/0. By following them consistently, your code will con-
tain fewer bugs, will be easier to debug, and will be more understandable to others
who may need to work with it in the future.

1. Always be careful to match the type of data in a WRITE statement to the type of
descriptors in the corresponding format. Integers should be associated with I
format descriptors; reals with E, ES, or F format descriptors; logicals with L
descriptors; and characters with A descriptors. A mismatch between data types and
format descriptors will result in an error at execution time.

2. Use the ES format descriptor instead of the E descriptor when displaying data in
exponential format to make the output data appear to be in conventional scientific
notation.

3. Use an asterisk instead of an i/o unit number when reading from the standard input
device or writing to the standard output device. This makes your code more porta-
ble, since the asterisk is the same on all systems, while the actual unit numbers
assigned to standard input and standard output devices may vary from system to
system.

4. Always open input files with STATUS='0LD'. By definition, an input file must
already exist if we are to read data from it. If the file does not exist, this is an error,
and the STATUS="0LD" will catch that error. Input files should also be opened
with ACTION="READ' to prevent accidental overwriting of the input data.

5. Open output files with STATUS="NEW' or STATUS='REPLACE', depending on
whether or not you want to preserve the existing contents of the output file. If the
file is opened with STATUS='"NEW', it should be impossible to overwrite an exist-
ing file, so the program cannot accidentally destroy data. If you don’t care about
the existing data in the output file, open the file with STATUS="REPLACE', and
the file will be overwritten if it exists. Open scratch files with STATUS='SCRATCH',
so that they will be automatically deleted upon closing.

6. Always include the I0STAT= clause when reading from disk files to detect an end-
of-file or error condition.

234 CHAPTER 5: Basic I/0 Concepts

5.6.2 Summary of Fortran Statements and Structures

The following summary describes the Fortran statements and structures introduced in
this chapter.

BACKSPACE statement:

BACKSPACE (UNIT=unit)
Example:

BACKSPACE (UNIT=8)

Description:
The BACKSPACE statement moves the current position of a file back by one record.

CLOSE statement:

CLOSE (close_Tlist)
Example:

CLOSE (UNIT=8)

Description:
The CLOSE statement closes the file associated with a i/o unit number.

FORMAT statement:
Tabel FORMAT (format descriptor, ...)

Example:
100 FORMAT (' This is a test: ', 16)

Description:
The FORMAT statement describes the position and format of the data being read or written.

Formatted READ Statement:
READ (unit,format) input_list

Examples:

READ (1,100) time, speed
100 FORMAT (F10.4, F18.4)
READ (1,'(I6)') index

(continued)

Basic I/O Concepts

235

(concluded)

Description:

The formatted READ statement reads data from an input buffer according to the format descriptors specified
in the format. The format is a character string that may be specified in a FORMAT statement, a character con-
stant, or a character variable.

Formatted WRI TE Statement:

WRITE (unit,format) output_Tlist

Examples:

WRITE (*,100) i, j, slope

100 FORMAT (2I10, F10.2)

WRITE (*,'(2110, F10.2)') i, j, slope
Description:

The formatted WRITE statement outputs the data in the output list according to the format descriptors spec-
ified in the format. The format is a character string that may be specified in a FORMAT statement, a charac-
ter constant, or a character variable.

OPEN statement:
OPEN (open_Tist)
Example:

OPEN (UNIT=8, FILE='"IN', STATUS='OLD' ACTION='READ', &
I0STAT=ierror, IOMSG=msg)

Description:
The OPEN statement associates a file with an i/o unit number, so that it can be accessed by READ or WRITE
statements.

REWIND statement:

REWIND (UNIT=Tu)
Example:

REWIND (UNIT=8)
Description:

The REWIND statement moves the current position of a file back to the beginning.

236

CHAPTER 5: Basic I/0 Concepts

5.6.3 Exercises

5-1.
5-2.

5-4.

5-5.

What is the purpose of a format? In what three ways can formats be specified?

What is printed out by the following Fortran statements?

(@) INTEGER :: i
CHARACTER(1en=20) :: fmt
fmt = "('i = ', 16.5)"
i=-123
WRITE (*,fmt) i
WRITE (*,'(10)") i

(b) REAL :: a, b, sum, difference

a = 1.0020E6
b = 1.0001E6
sum=a + b

difference = a - b

WRITE (*,101) a, b, sum, difference

101 FORMAT ('A = ',ES14.6,' B = ',E1l4.6, &
" Sum = ',E14.6," Diff ="', F14.6)

(¢) INTEGER :: i1, 12
il =10
12 = 4%%2
WRITE (*,300) il > i2
300 FORMAT ('Result ="', L6)

. What is printed out by the following Fortran statements?

REAL :: a = 1.602E-19, b = 57.2957795, ¢ = -1.

C
WRITE (*,'(ES14.7,2(1X,E13.7))"') a, b, ¢

For the Fortran statements and input data given below, state what the values of each
variable will be when the READ statement has been completed.

Statements:
CHARACTER(5) :: a
CHARACTER(10) :: b
CHARACTER(15) :: ¢
READ (*,'(3A10)') a, b, ¢
Input Data:

This is a test of reading characters.

For the Fortran statements and input data given below, state what the values of each
variable will be when the READ statements have been completed.

(a) Statements:

INTEGER :: iteml, item2, item3, item4, itemb
INTEGER :: item6, item7, item8, item9, iteml0

READ (*,*) iteml, item2, item3, item4, itemb, iteméb
READ (*,*) item7, item8, item9, iteml0

Basic I/0 Concepts 237

Input Data:
-300 -250 -210 -160 135
-105 -70 -55 -28 -11
17 55 102 165 225

(b) Statements:

INTEGER :: iteml, item2, item3, item4, itemb
INTEGER :: item6, item7, item8, item9, iteml0

READ (*,8) iteml, item2, item3, item4, item5, iteméb
READ (*,8) item7, item8, item9, iteml0

8 FORMAT (4110)
Input Data: Same as for (a) above.

5-6. Table of Logarithms Write a Fortran program to generate a table of the base 10
logarithms between 1 and 10 in steps of 0.1. The table should include a title describ-
ing the table and row and column headings. This table should be organized as shown
below:

X.0 X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8 X.9
0.000 0.041 0.079 0.114
0.301 0.322 0.342 0.362

5-7. Example 5-3 illustrates the technique of reading an arbitrary amount of real data from an
input data file. Modify that program to read in the data from an input data file and to
calculate the mean and standard deviation of the samples in the file.

5-8. A real number Tength is to be displayed in Fw.d format with four digits to the right of
the decimal point (d = 4). If the number is known to lie within the range —10000.0 <
length < 10000.0, what is the minimum field width w that will always be able to
display the value of 1ength?

5-9. In what columns will the following characters be printed? Why?

WRITE (*,'(T30,A)') 'Rubbish!’

238

5-10.

5-11.

5-12.

5-13.

5-14.

5-15.

5-16.

5-17.

CHAPTER 5: Basic I/0 Concepts

Write Fortran statements to perform the functions described below. Assume that
variables beginning with I-N are integers, and all other variables are reals.

(a) Skip to a new line and print the title ' INPUT DATA' starting in column 40.

(b) Skip a line, and then display the data point number ipoint in columns 6 to 10, and
the data point value data_1 in columns 15 to 26. Display the data value in scientific
notation with seven significant digits.

What is the minimum field width necessary to display any real data value in E or ES
format with six significant bits of accuracy?

Write a Fortran program that reads in a time in seconds since the start of the day (this
value will be somewhere between 0. and 86400.), and writes out the time in the form
HH:MM: SS using the 24-hour-clock convention. Use the Iw.m format descriptor to ensure
that leading zeros are preserved in the MM and SS fields. Also, be sure to check the input
number of seconds for validity, and write an appropriate error message if an invalid
number is entered.

Gravitational Acceleration The acceleration due to the Earth’s gravity at any height &
above the surface of the Earth is given by the equation

M

®+ 7 oo

g=-G

where G is the gravitational constant (6.672 x 107! N m?/kg?), M is the mass of the
Earth (5.98 x 10** kg), R is the mean radius of the Earth (6371 km), and 4 is the height
above the Earth’s surface. If M is measured in kg and R and /4 in meters, then the re-
sulting acceleration will be in units of meters per second squared. Write a program to
calculate the acceleration due to the Earth’s gravity in 500 km increments at heights
from 0 km to 40,000 km above the surface of the Earth. Print out the results in a table
of height versus acceleration with appropriate labels, including the units of the output
values.

What is the proper STATUS to use when opening a file for reading input data? What is the
proper STATUS to use when opening a file for writing output data? What is the proper
STATUS to use when opening a temporary storage file?

What is the proper ACTION to use when opening a file for reading input data? What is the
proper ACTION to use when opening a file for writing output data? What is the proper
ACTION to use when opening a temporary storage file?

Is a CLOSE statement always required in a Fortran program that uses disk files? Why or
why not?

Write Fortran statements to perform the functions described below. Assume that file
INPUT.DAT contains a series of real values organized with one value per record.

(a) Open an existing file named INPUT.DAT on i/o unit 98 for input, and a new file
named NEWOUT.DAT on i/o unit 99 for output.

(b) Read data values from file INPUT.DAT until the end of file is reached. Write all
positive data values to the output file.

(c) Close the input and output data files.

Basic I/O Concepts

239

FIGURE 5-14
A rectangle.

5-18.

5-19.

5-20.

5-21.

Write a program that reads an arbitrary number of real values from a user-specified input
data file, rounds the values to the nearest integer, and writes the integers out to a user-
specified output file. Open the input and output files with the appropriate status, and be
sure to handle end of file and error conditions properly.

Area of a Rectangle The area of the rectangle in Figure 5-14 is given by Equation
(5-9) and the perimeter of the rectangle is given by Equation (5-10).

area = WX H 5-9)
perimeter = 2W + 2H (5-10)

Assume that the total perimeter of a rectangle is limited to 10, and write a program that
calculates and plots the area of the rectangle as its width is varied from the smallest
possible value to the largest possible value. Use format statements to create a neat output
table. At what width is the area of the rectangle maximized?

Write a program that opens a scratch file and writes the integers 1 through 10 in the first
10 records. Next, move back six records in the file, and read the value stored in that re-
cord. Save that value in variable X. Next, move back three records in the file, and read
the value stored in that record. Save that value in variable y. Multiply the two values x
and y together. What is their product?

Examine the following Fortran statements. Are they correct or incorrect? If they are in-
correct, why are they incorrect? (Unless otherwise indicated, assume that variables be-
ginning with I-N are integers, and all other variables are reals.)

(a) OPEN (UNIT=1, FILE='"INFO.DAT', STATUS='NEW', I0STAT=ierror)
READ (1,*) 1, j, k

(b) OPEN (UNIT=17, FILE='TEMP.DAT', STATUS='SCRATCH', IOSTAT=ierror)

(¢c) OPEN (UNIT=99, FILE="INFO.DAT', STATUS='NEW', &
ACTION="READWRITE', IOSTAT=ierror)
WRITE (99,%) i, j, k

(d) INTEGER :: unit = 8
OPEN (UNIT=unit, FILE="INFO.DAT', STATUS='OLD', I0STAT=ierror)
READ (8,*) unit
CLOSE (UNIT=unit)

(e) OPEN (UNIT=9, FILE='OQUTPUT.DAT', STATUS='NEW', ACTION='WRITE', &
I0STAT=ierror)

240

5-22.

5-23.

5-24.

5-25.

CHAPTER 5: Basic I/0 Concepts

WRITE (9,*) mydatl, mydat2
WRITE (9,*) mydat3, mydat4
CLOSE (UNIT=9)

Table of Sines and Cosines Write a program to generate a table containing the sine and
cosine of @ for 8 between 0° and 90°, in 1° increments. The program should properly
label each of the columns in the table.

Table of Speed versus Height The velocity of an initially stationary ball can be calcu-
lated as a function of the distance it has fallen from the equation

v = V2gAh (5-11)

where g is the acceleration due to gravity and A# is the distance that the ball has fallen.
If g is in units of m/s?> and A% is in units of meters, then the velocity will be in units of
m/s. Write a program to create a table of the velocity of the ball as a function of how
far it has fallen for distances from 0 to 200 meters in steps of 10 m. The program should
properly label each of the columns in the table.

Potential versus Kinetic Energy The potential energy of a ball due to its height above
ground is given by the equation

PE = mgh (5-12)

where m is the mass of the ball in kilograms, g is the acceleration due to gravity in m/s?,
and £ is the height of the ball about the surface of the Earth in meters. The kinetic energy
of a ball due to its speed is given by the equation

1
KE = Emv2 (5-13)

where m is the mass of the ball in kilograms, and v is the velocity of the ball in m/s.
Assume that a ball is initially stationary at a height of 100 m. When this ball is released,
it will start to fall. Calculate the potential energy and the kinetic energy of the ball at 10 m
increments as it falls from the initial height of 100 m to the ground, and create a table
containing height, PE, KE, and the total energy (PE + KE) of the ball at each step. The
program should properly label each of the columns in the table. What happens to the to-
tal energy as the ball falls? (Note: You can use Equation (5-11) to calculate the velocity
at a given height, and then use that velocity to calculate the KE.)

Interest Calculations Suppose that you have a sum of money P in an interest-bearing
account at a local bank (P stands for present value). If the bank pays you interest on the
money at a rate of i percent per year and compounds the interest monthly, the amount of
money that you will have in the bank after » months is given by the equation

. n
i
F=P|l1+ 5-14

< 1200> ()
where F is the future value of the account and i/12 is the monthly percentage interest
rate (the extra factor of 100 in the denominator converts the interest rate from percent-
ages to fractional amounts). Write a Fortran program that will read an initial amount of
money P and an annual interest rate i, and will calculate and write out a table showing

Basic I/O Concepts

5-26.

5-27.

5-28.

5-29.

5-30.

5-31.

5-32.

5-33.

241

the future value of the account every month for the next 4 years. The table should be
written to an output file called ‘interest’. Be sure to properly label the columns of your
table.

Write a program to read a set of integers from an input data file, and locate the largest
and smallest values within the data file. Print out the largest and smallest values, to-
gether with the lines on which they were found. Assume that you do not know the num-
ber of values in the file before the file is read.

Means In Exercise 4-31, we wrote a Fortran program that calculated the arithmetic mean
(average), rms average, geometric mean, and harmonic mean for a set of numbers. Mod-
ify that program to read an arbitrary number of values from an input data file, and calcu-
late the means of those numbers. To test the program, place the following values into an
input data file and run the program on that file: 1.0, 2.0, 5.0, 4.0, 3.0, 2.1, 4.7, 3.0.

Converting Radians to Degrees/Minutes/Seconds Angles are often measured in
degrees (°), minutes ('), and seconds ("), with 360 degrees in a circle, 60 minutes in a
degree, and 60 seconds in a minute. Write a program that reads angles in radians from an
input disk file, and converts them into degrees, minutes, and seconds. Test your program
by placing the following four angles expressed in radians into an input file, and reading
that file into the program: 0.0, 1.0, 3.141593, 6.0.

There is a logical error in program least_squares_fit from Example 5-5. The error
can cause the program to abort with a divide-by-zero error. It slipped through the exam-
ple because we did not test the program exhaustively for all possible inputs. Find the
error, and rewrite the program to eliminate it.

Ideal Gas Law Modify the Ideal Gas Law programs in Exercise 4-33 to print their
output in neat columns, with appropriate column headings.

Antenna Gain Pattern The gain G of a certain microwave dish antenna can be
expressed as a function of angle by the equation
G(0) = |sinc 60| for —

<0< (3-15)

S
S

where 6 is measured in radians from the boresite of the dish, and the sinc function is
defined as follows:

sin x
. x#0
sincx ={ x (5-16)
1 x=0

Calculate a table of gain versus the angle off boresite in degrees for this antenna for the
range 0° < 0 < 90° in 1° steps. Label this table with the title “Antenna Gain vs Angle
(deg)”, and include column headings on the output.

Bacterial Growth Modify the bacterial growth problem of Exercise 4-25 to produce a
neat table containing the number of bacteria as a function of time.

Output Power from a Motor The output power produced by a rotating motor is given
by the equation

P =1xp w, G-17)

242

5-34.

5-35.

5-36.

CHAPTER 5: Basic I/0 Concepts

where 7yp is the induced torque on the shaft in newton-meters, w,, is the rotational
speed of the shaft in radians per second, and P is in watts. Assume that the rotational
speed of a particular motor shaft is given by the equation

w,, = 377(1 = ¢ " rad/s (5-18)

and the induced torque on the shaft is given by

TIND = 106_0‘25tN s m (5—19)

Calculate the torque, speed, and power supplied by this shaft versus time for 0 <7< 10s
at intervals of 0.25 s, and display the results in a table. Be sure to label your table and
provide column headings.

Calculating Orbits When a satellite orbits the Earth, the satellite’s orbit will form an
ellipse with the Earth located at one of the focal points of the ellipse. The satellite’s orbit
can be expressed in polar coordinates as

p

r=————
1 —ecos@

(5-20)
where r and 6 are the distance and angle of the satellite from the center of the Earth,
p is a parameter specifying the size of the orbit, and € is a parameter representing the
eccentricity of the orbit. A circular orbit has an eccentricity € of 0. An elliptical orbit has
an eccentricity of 0 < e < 1. If € > 1, the satellite follows a hyperbolic path and escapes
from the Earth’s gravitational field.

Consider a satellite with a size parameter p = 10,000 km. Calculate and create a
table of the height of this satellite versus 8 if (a) e = 0; (b) € = 0.25; (¢) € = 0.5. How
close does each orbit come to the center of the Earth? How far away does each orbit get
from the center of the Earth?

Apogee and Perigee The term r in Equation (5-20) refers to the range from a satellite to
the center of the Earth. If the radius of the Earth R = 6.371 x 10° m, then we can calcu-
late the satellite height above the Earth from the equation

h=r—R (5-21)

where £ is the height in meters, and r is the range to the center of the Earth calculated
from Equation (5-20).

The apogee of an orbit is the maximum height of the orbit above the surface of the
Earth, and the perigee of an orbit is the minimum height of the orbit above the surface of
the Earth. We can use Equations (5-20) and (5-21) to calculate the apogee and perigee of
an orbit.

Consider a satellite with a size parameter p = 10,000 km. Calculate and create a table
of the apogee and perigee of this satellite versus eccentricity for 0 < ¢ < 0.5, in steps
of 0.05.

Dynamically Modifying Format Descriptors Write a program to read a set of four real
values in free format from each line of an input data file, and print them out on the stan-
dard output device. Each value should be printed in F14 . 6 format if it is exactly zero or
if it lies in the range 0.01 < Ivaluel < 1000.0, and in ES14 . 6 format otherwise. (Hint:
Define the output format in a character variable, and modify it to match each line of data
as it is printed.) Test your program on the following data set:

Basic I/0 Concepts

243

0.00012 -250. 6.02E23 -0.012
1

0.0 12345.6

o O

5-37. Correlation Coefficient The method of least squares is used to fit a straight line to a
noisy input data set consisting of pairs of values (x, y). As we saw in Example 5-5, the
best fit to equation

y=mx+b (5-5)
is given by
2xy) — (Zx)y
m= (xz) (X)i) (5-6)
(Zx) — (Zx)x
and
b=3 - mx -7
where

>x is the sum of the x values

¥x? is the sum of the squares of the x values

2xy is the sum of the products of the corresponding x and y values
X is the mean (average) of the x values

y is the mean (average) of the y values

Figure 5-15 shows two data sets and the least squares fits associated with each one.
As you can see, the low-noise data fits the least squares line much better than the noisy
data does. It would be useful to have some quantitative way to describe how well the
data fits the least squares line given by Equations (5-5) through (5-7).

(a) (b)

FIGURE 5-15
Two different least squares fits: (a) with good, low-noise data; (b) with very noisy data.

244 CHAPTER 5: Basic I/0 Concepts

There is a standard statistical measure of the “goodness of fit” of a data set to a least
squares line. It is called a correlation coefficient. The correlation coefficient is equal
to 1.0 when there is a perfect positive linear relationship between data x and y, and it is
equal to —1.0 when there is a perfect negative linear relationship between data x and y.
The correlation coefficient is 0.0 when there is no linear relationship between x and y at
all. The correlation coefficient is given by the equation

L n(Zxy) — (Zx)(Zy)
VInER) — (Z071[(nZy?) — (Zy)°]

where r is the correlation coefficient and 7 is the number of data points included in the fit.

Write a program to read an arbitrary number of (x, y) data pairs from an input data
file, and to calculate and print out both the least squares fit to the data and the correla-
tion coefficient for the fit. If the correlation coefficient is small (I < 0.3), write out a
warning message to the user.

(5-22)

5-38

Aircraft Turning Radius An object moving in a circular path at a constant tangential
velocity v is shown in Figure 5-16. The radial acceleration required for the object to
move in the circular path was given by the Equation (5-15)

a=— (5-23)

where a is the centripetal acceleration of the object in m/s?, v is the tangential velocity
of the object in m/s, and r is the turning radius in meters. Suppose that the object is an
aircraft, and write a program to answer the following questions about it:

(a) Print a table of the aircraft turning radius as a function of aircraft speed for speeds
between Mach 0.5 and Mach 2.0 in Mach 0.1 steps, assuming that the acceleration
remains 2 g. Be sure to include proper labels on your table.

(b) Print a table of the aircraft turning radius as a function of centripetal acceleration for
accelerations between 2 g and 8 g in 0.5 g steps, assuming a constant speed of Mach
0.85. Be sure to include proper labels on your table.

FIGURE 5-16
An object moving in uniform circular motion due to the centripetal acceleration a.

6

Introduction to Arrays

OBJECTIVES

* Know how to define, initialize, and use arrays.

* Know how to use whole array operations to operate on entire arrays of data in a
single statement.

* Know how to use array sections.

e Learn how to read and write arrays and array sections.

An array is a group of variables or constants, all of the same type, which are referred
to by a single name. The values in the group occupy consecutive locations in the com-
puter’s memory (see Figure 6-1). An individual value within the array is called an
array element; it is identified by the name of the array together with a subscript
pointing to the particular location within the array. For example, the first variable
shown in Figure 6-1 is referred to as a (1), and the fifth variable shown in the figure is
referred to as a (5). The subscript of an array is of type INTEGER. Either constants or
variables may be used for array subscripts.

As we shall see, arrays can be extremely powerful tools. They permit us to apply
the same algorithm over and over again to many different data items with a simple DO
loop. For example, suppose that we need to take the square root of 100 different real
numbers. If the numbers are stored as elements of an array a consisting of 100 real
values, then the code

D0 i =1, 100

a(i) = SQRT(a(i))
END DO

will take the square root of each real number, and store it back into the memory
location that it came from. If we wanted to take the square root of 100 real numbers
without using arrays, we would have to write out

al SQRT(al)
a2 SQRT(a2)

al00 = SQRT(a100)

245

246

CHAPTER 6: Introduction to Arrays

a(l)

a(2)
Computer a(3) g Array a
memory

a(4)

a(b)

FIGURE 6-1
The elements of an array occupy successive locations in a computer’s memory.

as 100 separate statements! Arrays are obviously a much cleaner and shorter way to
handle repeated similar operations.

Arrays are very powerful tools for manipulating data in Fortran. As we shall see,
it is possible to manipulate and perform calculations with individual elements of arrays
one by one, with whole arrays at once, or with various subsets of arrays. We will first
learn how to declare arrays in Fortran programs. Then, we will learn how to use indi-
vidual array elements in Fortran statements, and afterward we will learn to use whole
arrays or array subsets in Fortran statements.

6.1
DECLARING ARRAYS

Before an array can be used, its type and the number of elements it contains must be de-
clared to the compiler in a type declaration statement, so that the compiler will know what
sort of data is to be stored in the array, and how much memory is required to hold it. For
example, a real array voltage containing 16 elements could be declared as follows:!

REAL, DIMENSION(16) :: voltage

The DIMENSION attribute in the type declaration statement declares the size of the
array being defined. The elements in array voltage would be addressed as

! An alternate way to declare an array is to attach the dimension information directly to the array name:

REAL :: voltage(16)

This declaration style is provided for backward compatibility with earlier version of Fortran. It is fully
equivalent to the array declaration shown above.

Introduction to Arrays 247

voltage(l), voltage(2), etc., up to voltage(16). Similarly, an array of fifty
20-character-long variables could be declared as follows:

CHARACTER(Ten = 20), DIMENSION(50) :: Tast_name

Each of the elements in array Tast_name would be a 20-character-long variable, and
the elements would be addressed as Tast_name(1), Tast_name(2), etc.

Arrays may be declared with more than one subscript, so they may be organized
into two or more dimensions. These arrays are convenient for representing data that
is normally organized into multiple dimensions, such as map information. The number
of subscripts declared for a given array is called the rank of the array. Both array
voltage and array Tast_name are rank 1 arrays, since they have only one subscript.
We will see more complex arrays later in Chapter 8.

The number of elements in a given dimension of an array is called the extent
of the array in that dimension. The extent of the first (and only) subscript of array
voltage is 20, and the extent of the first (and only) subscript of array Tast_name u
is 50. The shape of an array is defined as the combination of its rank and the extent of
the array in each dimension. Thus, two arrays have the same shape if they have the
same rank and the same extent in each dimension. Finally, the size of an array is the
total number of elements declared in that array. For simple rank 1 arrays, the size of
the array is the same as the extent of its single subscript. Therefore, the size of array
voltage is 20, and the size of array Tast_name is 50.

Array constants may also be defined. An array constant is an array consisting
entirely of constants. It is defined by placing the constant values between special
delimiters, called array constructors. The starting delimiter of a Fortran array
constructor is (/or [, and the ending delimiter of an array constructor is /) or 1. For
example, each of the two expressions shown below defines an array constant containing
five integer elements:

(/ 1,
[1

2,3, 4,57/)
, 2,3, 4,51

The form of the array constructor using (/ /) is older than the array constructor
using [1, so more existing programs use it. You should recognize both forms of array
constructor. We will use them both throughout the rest of this book, with a preference
for the newer form.

6.2
USING ARRAY ELEMENTS IN FORTRAN STATEMENTS

This section contains some of the practical details involved in using arrays in Fortran
programs.

6.2.1 Array Elements are Just Ordinary Variables

Each element of an array is a variable just like any other variable, and an array element
may be used in any place where an ordinary variable of the same type may be used.

248

CHAPTER 6: Introduction to Arrays

Array elements may be included in arithmetic and logical expressions, and the results
of an expression may be assigned to an array element. For example, assume that arrays
index and temp are declared as:

INTEGER, DIMENSION(10) :: index
REAL, DIMENSION(3) :: temp

Then the following Fortran statements are perfectly valid:

index(1) =5
temp(3) = REAL(index(1)) / 4.
WRITE (*,*) ' index(1) = ', index(1)

Under certain circumstances, entire arrays or subsets of arrays can be used in
expressions and assignment statements. These circumstances will be explained in
Section 6.3.

6.2.2 Initialization of Array Elements

Just as with ordinary variables, the values in an array must be initialized before use. If
an array is not initialized, the contents of the array elements are undefined. In the fol-
lowing Fortran statements, array j is an example of an uninitialized array.

INTEGER, DIMENSION(IO0) :: j
WRITE (*,*) 'j(1) =", j(1)

The array j has been declared by the type declaration statement, but no values have
been placed into it yet. Since the contents of an uninitialized array are unknown and
can vary from computer to computer, the elements of the array should never be used
until they are initialized to known values.

Good Programming Practice
Always initialize the elements in an array before they are used.

The elements in an array may be initialized by one of three techniques:

1. Arrays may be initialized using assignment statements.
2. Arrays may be initialized in type declaration statements at compilation time.
3. Arrays may be initialized using READ statements.

Initializing arrays with assignment statements

Initial values may be assigned to the array using assignment statements, either
element-by-element in a DO loop or all at once with an array constructor. For example,
the following DO loop will initialize the elements of array arrayl to 0.0, 2.0, 3.0, etc.,
one element at a time:

REAL, DIMENSION(10) :: arrayl
DO i =1, 10

Introduction to Arrays 249

arrayl(i) = REAL(1)
END DO

The following assignment statement accomplishes the same function all at once using
an array constructor:

REAL, DIMENSION(10) :: arrayl
arrayl = [1.,2.,3.,4.,5.,6.,7.,8.,9.,10.1
It is also possible to initialize all of the elements of an array to a single value with
a simple assignment statement. For example, the following statement initializes all of
the elements of arrayl to zero:

REAL, DIMENSION(10) :: arrayl
arrayl = 0.

The simple program shown in Figure 6-2 calculates the squares of the numbers in
array number, and then prints out the numbers and their squares. Note that the values
in array number are initialized element-by-element with a DO loop.

FIGURE 6-2
A program to calculate the squares of the integers from 1 to 10, using assignment statements
to initialize the values in array number.

PROGRAM squares
IMPLICIT NONE

INTEGER :: i
INTEGER, DIMENSION(C10) :: number, square

I Initialize number and calculate square.

DO i =1, 10
number (i) = i ! Initialize number
square(i) = number(i)**2 I Calculate square
END DO

I Write out each number and its square.
DO i =1, 10

WRITE (*,100) number(i), square(i)

100 FORMAT ('Number = ',I6,' Square = ',I6)
END DO

END PROGRAM squares

Initializing arrays in type declaration statements

Initial values may be loaded into an array at compilation time by declaring their
values in a type declaration statement. To initialize an array in a type declaration state-
ment, we use an array constructor to declare its initial values in that statement. For
example, the following statement declares a five-element integer array array?2, and
initializes the elements of array2 to 1, 2, 3,4, and 5:

INTEGER, DIMENSION(5) :: array2 =[1, 2, 3, 4, 51

The five-element array constant [1, 2, 3, 4, 5] was used to initialize the five-element
array array?2. In general, the number of elements in the constant must match the

250

CHAPTER 6: Introduction to Arrays

number of elements in the array being initialized. Either too few or too many elements
will result in a compiler error.

This method works well to initialize small arrays, but what do we do if the array
has 100 (or even 1000) elements? Writing out the initial values for a 100-element array
would be very tedious and repetitive. To initialize larger arrays, we can use an implied
DO loop. An implied DO loop has the general form

(argl, arg2, ... , index = istart, iend, incr)

where argl, arg2, etc., are values evaluated each time the loop is executed, and
index, istart, iend, and 7ncr function in exactly the same way as they do for or-
dinary counting DO loops. For example, the array2 declaration above could be written
using an implied DO loop as:

INTEGER, DIMENSION(5) :: array2z = [(i, i=1,5) 1

and a 1000-element array could be initialized to have the values 1, 2, ..., 1000 using an
implied DO loop as follows:

INTEGER, DIMENSION(1000) :: array3 = [(i, i=1,1000) 1

Implied DO loops can be nested or mixed with constants to produce complex pat-
terns. For example, the following statements initialize the elements of array4 to zero
if they are not divisible by 5, and to the element number if they are divisible by 5.

INTEGER, DIMENSION(25) :: array4 = [((0,i=1,4),5*%j, j=1,5) 1

The inner DO loop (0, i=1, 4) executes completely for each step of the outer DO loop, so for
each value of the outer loop index j, we will have four zeros (from the inner loop) followed
by the number 5*j. The resulting pattern of values produced by these nested loops is:

0, 0, 0, 0, 5, 0, 0, 0, 0, 10, O, O, 0, O, 15, ...

Finally, all the elements of an array can be initialized to a single constant value by
simply including the constant in the type declaration statement. In the following exam-
ple, all of the elements of array5 are initialized to 1.0:

REAL, DIMENSION(100) :: arrayb5 = 1.0

The program in Figure 6-3 illustrates the use of type declaration statements to
initialize the values in an array. It calculates the square roots of the numbers in array
value, and then prints out the numbers and their square roots.

FIGURE 6-3
A program to calculate the square roots of the integers from 1 to 10, using a type declaration
statement to initialize the values in array value.

PROGRAM square_roots
IMPLICIT NONE

INTEGER :: i
REAL, DIMENSION(10) :: value = [(i, i=1,10) 1
(continued)

Introduction to Arrays 251

(concluded)
REAL, DIMENSION(10) :: square_root

I Calculate the square roots of the numbers.
DO i =1, 10

square_root(i) = SQRT(value(i))
END DO

I Write out each number and its square root.
DO i =1, 10

WRITE (*,100) value(i), square_root(i)

100 FORMAT ('Value = ',F5.1," Square Root = ',F10.4)
END DO

END PROGRAM square_roots

Initializing arrays with READ statements
Array may also be initialized with READ statements. The use of arrays in I/O state-

ments will be described in detail in Section 6.4.

6.2.3 Changing the Subscript Range of an Array

The elements of an N-element array are normally addressed using the subscripts
1, 2, ..., N. Thus, the elements of array arr declared with the statement

REAL, DIMENSION(5) :: arr

would be addressed as arr(1), arr(2), arr(3), arr(4), and arr(5). In some
problems, however, it is more convenient to address the array elements with other sub-
scripts. For example, the possible grades on an exam might range from 0 to 100. If we
wished to accumulate statistics on the number of people scoring any given grade, it
would be convenient to have a 101-element array whose subscripts ranged from O to
100 instead of 1 to 101. If the subscripts ranged from O to 100, each student’s exam
grade could be used directly as an index into the array.

For such problems, Fortran provides a way to specify the range of numbers that
will be used to address the elements of an array. To specify the subscript range, we
include the starting and ending subscript numbers in the declaration statement, with
the two numbers separated by a colon.

REAL, DIMENSION(lower_bound:upper_bound) :: array
For example, the following three arrays all consist of five elements:

REAL, DIMENSION(5) :: al
REAL, DIMENSION(-2:2) :: bl
REAL, DIMENSION(5:9) :: cl

Array al is addressed with subscripts 1 through 5, array b1l is addressed with sub-
scripts —2 through 2, and array c1 is addressed with subscripts 5 through 9. All three
arrays have the same shape, since they have the same number of dimensions and the
same extent in each dimension.

252

CHAPTER 6: Introduction to Arrays

In general, the number of elements in a given dimension of an array can be found
from the equation

extent = upper_bound — lower_bound + 1 (6-1)

The simple program squares_2 shown in Figure 6-4 calculates the squares of the
numbers in array number, and then prints out the numbers and their squares. The
arrays in this example contain 11 elements, addressed by the subscripts =5, —4, . . .,
0,....4,5.

FIGURE 6-4
A program to calculate the squares of the integers from —5 to 5, using array elements
addressed by subscripts —5 through 5.

PROGRAM squares_2
IMPLICIT NONE

INTEGER :: 1
INTEGER, DIMENSION(-5:5) :: number, square

I Initialize number and calculate square.

DO i =-5,5
number (i) = i I Initialize number
square(i) = number(i)**2 I Calculate square
END DO

! Write out each number and its square.
DO i =-5,5

WRITE (*,100) number(i), square(i)

100 FORMAT ('Number = ',I6," Square = ',16)
END DO

END PROGRAM squares_2
When program squares_2 is executed, the results are

C:\book\fortran\chap6>squares_2

Number = -5 Square = 25
Number = -4 Square = 16
Number = -3 Square = 9
Number = -2 Square = 4
Number = -1 Square = 1
Number = 0 Square = 0
Number = 1 Square = 1
Number = 2 Square = 4
Number = 3 Square = 9
Number = 4 Square = 16
Number = 5 Square = 25

6.2.4 Out-of-Bounds Array Subscripts

Each element of an array is addressed using an integer subscript. The range of integers
that can be used to address array elements depends on the declared extent of the array.

Introduction to Arrays 253

For a real array declared as
REAL, DIMENSION(5) :: a

the integer subscripts 1 through 5 address elements in the array. Any other integers
(less than 1 or greater than 5) could not be used as subscripts, since they do not corre-
spond to allocated memory locations. Such integer subscripts are said to be out of
bounds for the array. But what would happen if we make a mistake and try to access
the out-of-bounds element a (6) in a program?

The answer to this question is very complicated, since it varies from compiler to
compiler, and also on the compilation options selected for the compiler. In some cases, a
running Fortran program will check every subscript used to reference an array to see if it
is in bounds. If an out-of-bounds subscript is detected, the program will issue an
informative error message and stop. Unfortunately, such bounds checking requires a lot
of computer time, and the program will run more slowly. To make programs run faster,
most Fortran compilers make bounds checking optional. If it is turned on, programs run
slower, but they are protected from out-of-bounds references. If it is turned off, programs
will run much faster, but out-of-bounds references will not be checked. If your Fortran
compiler has a bounds checking option, you should always turn it on during debugging to
help detect programming errors. Once the program has been debugged, bounds checking
can be turned off if necessary to increase the execution speed of the final program.

Good Programming Practice

Always turn on the bounds checking option on your Fortran compiler during
program development and debugging to help you catch programming errors
producing out-of-bounds references. The bounds checking option may be turned off
if necessary for greater speed in the final program.

What happens in a program if an out-of-bounds reference occurs and the bounds
checking option is not turned on? Sometimes, the program will abort. Much of the time,
though, the computer will simply go to the location in memory at which the referenced
array element would have been if it had been allocated, and use that memory location (see
Figure 6-5). For example, the array a declared above has five elements in it. If a (6) were
used in a program, the computer would access the first word beyond the end of array a.
Since that memory location will be allocated for a totally different purpose, the program
can fail in subtle and bizarre ways that can be almost impossible to track down. Be careful
with your array subscripts, and always use the bounds checker when you are debugging!

The program shown in Figure 6-6 illustrates the behavior of a Fortran program
containing incorrect array references with and without bounds checking turned on. This
simple program declares a five-element real array a and a five-element real array b. The
array a is initialized with the values 1., 2., 3., 4., and 5., and array b is initialized with
the values 10., 20., 30., 40., and 50. Many Fortran compilers will allocate the memory
for array b immediately after and the memory for array a, as shown in Figure 6-5.2

2 But they are not required to do so. The Fortran standard does not constrict how the compilers choose to
allocate data in memory.

254

CHAPTER 6: Introduction to Arrays

a(l)

a(2)

a(3) - Array a

a(4)

a(b)

Computer »
memory b(1)

b(2)

b(3) - Array b

b(4)

b(5)

FIGURE 6-5

A computer memory showing a five-element array a immediately followed by a five-element
array b. If bounds checking is turned off, some processors may not recognize the end of array
a, and may treat the memory location after the end of a as a(6).

The program in Figure 6-6 uses a DO loop to write out the values in the elements 1
through 6 of array a, despite the fact that array a only has five elements. Therefore, it
will attempt to access the out-of-bounds array element a (6).

FIGURE 6-6
A simple program to illustrate the effect of out-of-bounds array references with and without
bounds checking turned on.

PROGRAM bounds
Purpose:
To illustrate the effect of accessing an out-of-bounds

array element.

|

|

|

|

|

I Record of revisions:
! Date Programmer Description of change
|

|

|

I

11/15/15 S. J. Chapman Original code
IMPLICIT NONE

(continued)

Introduction to Arrays 255

(concluded)

| Declare and initialize the variables used in this program.
INTEGER :: 1 I Loop index

REAL, DIMENSION(5) :: a = (/ 1., 2., 3., 4., 5./)

REAL, DIMENSION(5) :: b = (/10.,20.,30.,40.,50./)

! Write out the values of array a

DO i=1,6

WRITE (*,100) i, a(i)

100 FORMAT ¢ 'a(', I1, ') ="', F6.2)
END DO

END PROGRAM bounds

If this program is compiled with the Intel Visual Fortran compiler on a PC-compatible
computer with bounds checking turned on (the -check option), the result is u

C:\book\fortran\chap6>ifort -check bounds.f90

InteT(R) Visual Fortran Intel(R) 64 Compiler for applications running on
Intel(R) 64, Version 16.0.2.180 Build 20160204

Copyright (C) 1985-2016 Intel Corporation. A1l rights reserved.

Microsoft (R) Incremental Linker Version 12.00.40629.0
Copyright (C) Microsoft Corporation. A1l rights reserved.

-out:bounds.exe
-subsystem:console
bounds.obj

C:\book\fortran\chap6>bounds

a(l) = 1.00
a(2) = 2.00
a(3) = 3.00
a(4) = 4.00
a(5) = 5.00

forrtl: severe (408): fort: (10): Subscript #1 of the array A has value 6
which is greater than the upper bound of 5

Image PC Routine Line Source
bounds.exe 00007FF62EEAB66GE Unknown Unknown Unknown
bounds.exe 00007FF62EEAL1L7A Unknown Unknown Unknown
bounds.exe 00007FF62EEF116E Unknown Unknown Unknown
bounds.exe 00007FF62EEF1A28 Unknown Unknown Unknown
KERNEL32.DLL 00007FFA56B38102 Unknown Unknown Unknown
ntd11.d11 00007FFA594DC5B4 Unknown Unknown Unknown

The program checked each array reference, and aborted when an out-of-bounds ex-
pression was encountered. Note that the error message tells us what is wrong, and even
the line number at which it occurred. If the program is compiled with bounds checking
turned off, the result is

C:\book\fortran\chap6>bounds
a(l) = 1.00

256

CHAPTER 6: Introduction to Arrays

a(2)
a(3)
a(4)
a(s)
a(6)

nnonon
~
o
o

When the program tried to write out a (6), it wrote out the contents of the first memory
location after the end of the array. This location just happened to be the first element
of array b.

6.2.5 The Use of Named Constants with Array Declarations

In many Fortran programs, arrays are used to store large amounts of information. The
amount of information that a program can process depends on the size of the arrays it
contains. If the arrays are relatively small, the program will be small and will not require
much memory to run, but it will only be able to handle a small amount of data. On the
other hand, if the arrays are large, the program will be able to handle a lot of information,
but it will require a lot of memory to run. The array sizes in such a program are fre-
quently changed to make it run better for different problems or on different processors.

It is good practice to always declare the array sizes using named constants. Named con-
stants make it easy to resize the arrays in a Fortran program. In the following code, the sizes
of all arrays can be changed by simply changing the single named constant MAX_SIZE.

INTEGER, PARAMETER :: MAX_SIZE = 1000
REAL :: arrayl(MAX_SIZE)

REAL :: array2(MAX_SIZE)

REAL :: array3(2*MAX_SIZE)

This may seem like a small point, but it is very important to the proper mainte-
nance of large Fortran programs. If all related array sizes in a program are declared
using named constants, and if those same named constants are used in any size tests in
the program, then it will be much simpler to modify the program later. Imagine what it
would be like if you had to locate and change every reference to array sizes within a
50,000 line program! The process could take weeks to complete and debug. By con-
trast, the size of a well-designed program could be modified in five minutes by chang-
ing only one statement in the code.

Good Programming Practice
Always declare the sizes of arrays in a Fortran program using parameters to make
them easy to change.

EXAMPLE
6-1

Finding the Largest and Smallest Values in a Data Set:

To illustrate the use of arrays, we will write a simple program that reads in data values,
and finds the largest and smallest numbers in the data set. The program will then write
out the values, with the word ' LARGEST' printed by the largest value and the word
"SMALLEST' printed by the smallest value in the data set.

Introduction to Arrays 257

SOLUTION

This program must ask the user for the number of values to read, and then read the
input values into an array. Once the values are all read, it must go through the data to
find the largest and smallest values in the data set. Finally, it must print out the values,
with the appropriate annotations beside the largest and smallest values in the data set.

1. State the problem.
We have not yet specified the type of data to be processed. If we are processing
integer data, then the problem may be stated as follows:

Develop a program to read a user-specified number of integer values from the
standard input device, locate the largest and smallest values in the data set, and
write out all of the values with the words ' LARGEST' and ' SMALLEST' printed
by the largest and smallest values in the data set.

2. Define the inputs and outputs. u
There are two types of inputs to this program:
(a) An integer containing the number of integer values to read. This value will
come from the standard input device.
(b) The integer values in the data set. These values will also come from the
standard input device.
The outputs from this program are the values in the data set, with the word ' LARGEST'
printed by the largest value, and the word ' SMALLEST ' printed by the smallest value.

3. Describe the algorithm.
The program can be broken down into four major steps

Get the number of values to read

Read the input values into an array

Find the largest and smallest values in the array

Write out the data with the words 'LARGEST' and 'SMALLEST' at
the appropriate places

The first two major steps of the program are to get the number of values to read in
and to read the values into an input array. We must prompt the user for the number of
values to read. If that number is less than or equal to the size of the input array, then
we should read in the data values. Otherwise, we should warn the user and quit. The
detailed pseudocode for these steps is:

Prompt user for the number of input values nvals
Read in nvals
IF nvals <= max_size then
DO for j =1 to nvals
Read in input values
End of DO
(Further processing here)

ELSE

Tell user that there are too many values for array size
End of IF
END PROGRAM

258 CHAPTER 6: Introduction to Arrays

Next we must locate the largest and smallest values in the data set. We will use vari-
ables ilarge and ismall as pointers to the array elements having the largest and
smallest values. The pseudocode to find the largest and smallest values is:

I Find Tlargest value
temp « input(1)
ilarge « 1
DO for j = 2 to nvals
IF input(j) > temp then
temp « input(j)
ilarge « j
End of IF
End of DO

I Find smallest value
temp « input(1)
ismall « 1
DO for j = 2 to nvals
IF input(j) < temp then
temp « input(j)
ismall « j
End of IF
End of DO

The final step is writing out the values with the largest and smallest numbers labeled:

DO for j =1 to nvals
IF ismall == j then
Write input(j) and 'SMALLEST'
ELSE IF ilarge == j then
Write input(j) and 'LARGEST'
ELSE
Write input(j)
END of IF
End of DO

4. Turn the algorithm into Fortran statements.
The resulting Fortran program is shown in Figure 6-7.

FIGURE 6-7
A program to read in a data set from the standard input device, find the largest and smallest
values, and print the values with the largest and smallest values labeled.

PROGRAM extremes

Purpose:
To find the largest and smallest values in a data set,

and to print out the data set with the Targest and smallest
values Tabeled.

Record of revisions:
Date Programmer Description of change

11/16/15 S. J. Chapman Original code

|
|
|
|
|
|
|
|
|
|
|

(continued)

Introduction to Arrays

(continued)
IMPLICIT NONE

! Data dictionary: declare constants
INTEGER, PARAMETER :: MAX_SIZE = 10

! Data dictionary: declare variable types,

INTEGER, DIMENSION(MAX SIZE) :: input
INTEGER :: ilarge

INTEGER :: ismall

INTEGER :: j

INTEGER :: nvals

INTEGER :: temp

I Get number of values in data set

259

| Max size of data set

definitions, & units

Input values

I Pointer to largest value
I Pointer to smallest value

DO Toop index

I Number of vals in data set
! Temporary variable

WRITE (*,*) 'Enter number of values in data set:'

READ (*,*) nvals

I Is the number <= MAX_SIZE?
size: IF (nvals <= MAX_SIZE) THEN

I Get input values.

in: DO J = 1, nvals
WRITE (*,100) 'Enter value ', j
100 FORMAT (A,I3,': ")
READ (*,*) input(j)

END DO in

I Find the Targest value.
temp = input(1)
ilarge =1
large: DO j = 2, nvals
IF (input(j) > temp) THEN
temp = input(j)
ilarge = j
END IF
END DO Targe

I Find the smallest value.
temp = input(1l)
ismall =1
small: DO j = 2, nvals
IF (input(j) < temp) THEN
temp = input(j)
ismall = j
END IF
END DO small

I Write out 1ist.
WRITE (*,110)
110 FORMAT ('The values are:')
out: DO j =1, nvals
IF (j == ilarge) THEN

WRITE (*,'(I6,2X,A)") input(j),

"LARGEST'
(continued)

260 CHAPTER 6: Introduction to Arrays

(concluded)

ELSE IF (J == ismall) THEN
WRITE (*,'(I16,2X,A)") input(j), 'SMALLEST'
ELSE
WRITE (*,'(I6)") input(j)
END IF
END DO out

ELSE size

! nvals > max_size. Tell user and quit.
WRITE (*,120) nvals, MAX_SIZE
120 FORMAT ('Too many input values: ', 16, ' > ', I6)

END IF size

‘ END PROGRAM extremes

5. Test the program.
To test this program, we will use two data sets, one with 6 values and one with 12
values. Running this program with six values yields the following result:

C:\book\fortran\chap6>extremes
Enter number of values in data set:

6
Enter value 1:
-6
Enter value 2:
5
Enter value 3:
-11
Enter value 4:
16
Enter value 5:
9
Enter value 6:
0
The values are:
-6
5
-11 SMALLEST
16 LARGEST
9
0

The program correctly labeled the largest and smallest values in the data set. Running
this program with 12 values yields the following result:

C:\book\fortran\chap6>extremes

Enter number of values in data set:

12

Too many input values: 12 > 10

Introduction to Arrays 261

The program recognized that there were too many input values, and quit. Thus, the
program gives the correct answers for both of our test data sets.

This program used the named constant MAX_SIZE to declare the size of the array,
and also in all comparisons related to the array. As a result, we could change this pro-
gram to process up to 1000 values by simply changing the value of MAX_SIZE from 10
to 1000.

6.3

USING WHOLE ARRAYS AND ARRAY SUBSETS IN
FORTRAN STATEMENTS

Both whole arrays and array subsets may be used in Fortran statements. When they
are, the operations are performed on all of the specified array elements simultane-
ously. This section teaches us how to use whole arrays and array subsets in Fortran
statements.

6.3.1 Whole Array Operations

Under certain circumstances, whole arrays may be used in arithmetic calculations
as though they were ordinary variables. If two arrays are the same shape, then they
can be used in ordinary arithmetic operations, and the operation will be applied
on an element-by-element basis (Figure 6-8). Consider the example program in
Figure 6-9. Here, arrays a, b, ¢, and d are all four elements long. Each element in
array c is calculated as the sum of the corresponding elements in arrays a and b,
using a DO loop. Array d is calculated as the sum of arrays a and b in a single
assignment statement.

a(l) 1. b(1) 5. d(1) 6.
a(2) 2. b(2) 6. d(2) 8.
a(3) 3. b(3) 7. d(3) 10.
a(4) 4. b(4) 8. d(4) 12.

a + b = d
FIGURE 6-8

When an operation is applied to two arrays of the same shape, the operation is performed on
the arrays on an element-by-element basis.

262

CHAPTER 6: Introduction to Arrays

FIGURE 6-9
A program illustrating both element-by-element addition and whole array addition.

PROGRAM add_arrays
IMPLICIT NONE

INTEGER :: 1

REAL, DIMENSION(4) :: a
REAL, DIMENSION(4) :: b
REAL, DIMENSION(4) :: c, d

! Element by element addition
Do i =1, 4

c(i) = a(i) + b(i)
END DO

! Whole array addition
d=a+b

L
L

I Write out results
WRITE (*,100) 'c', ¢
WRITE (*,100) 'd', d
100 FORMAT (A,' = '",5(F6.1,1X))

END PROGRAM add_arrays

When this program is executed, the results are exactly the same for both calculations:

' 8.0 10.0 12.0
8.0 10.0 12.0

mn =

book\fortran\chap6>add_arrays
6.0
6.0

oo o

Two arrays can be used as operands in an intrinsic operation (addition, etc.) if and
only if they have the same shape. This means that they must have the same number of
dimensions (the same rank), and the same number of elements in each dimension (the
same extent). Two arrays of the same shape are said to be conformable. Note that
although the two arrays must be the same shape, they do not have to have the same
subscript range in each dimension. The following arrays can be added freely even
though the subscript ranges used to address their elements are different.

REAL, DIMENSION(1:4) :: a [1., 2., 3., 4.]
REAL, DIMENSION(5:8) :: b=1L[5., 6., 7., 8.1
REAL, DIMENSION(101:104) :: c

c=a+b

If two arrays are not conformable, then any attempt to perform arithmetic opera-
tions with them will produce a compile-time error.

Scalar values are also conformable with arrays. In that case, the scalar value is
applied equally to every element of the array. For example, after the following piece of
code is executed, array ¢ will contain the values [10., 20., 30., 40.].

REAL, DIMENSION(4) :: a=T[1., 2., 3., 4.1, ¢
REAL :: b =10
c=a*hb

Introduction to Arrays 263

Many Fortran intrinsic functions that are used with scalar values will also accept
arrays as input arguments, and return arrays as results. The returned arrays will contain
the result of applying the function to the input array on an element-by-element basis.
These functions are called elemental intrinsic functions, since they operate on arrays
on an element-by-element basis. Most common functions are elemental, including
ABS, SIN, COS, EXP, LOG, etc. A complete list of elemental functions is contained in
Appendix B. For example, consider an array a defined as

REAL, DIMENSION(4) :: a =T -1., 2., -3., 4.]
Then, the function ABS(a) would return [1., 2., 3., 4.].

6.3.2 Array Subsets

We have already seen that it is possible to use either array elements or entire arrays in
calculations. In addition, it is possible to use subsets of arrays in calculations. A subset
of an array is called an array section. It is specified by replacing an array subscript
with a subscript triplet or vector subscript.

A subscript triplet has the general form

subscript_1 : subscript_2 : stride

where subscript_1 is the first subscript to be included in the array subset,
subscript_2is the last subscript to be included in the array subset, and strideis the
subscript increment through the data set. It works much like an implied DO loop.
A subscript triplet specifies the ordered set of all array subscripts starting with
subscript_1 and ending with subscript_2, advancing at a rate of stride between
values. For example, let’s define an array array as

INTEGER, DIMENSION(10) :: array = [1,2,3,4,5,6,7,8,9,10]

Then the array subset array (1:10:2) would be an array containing only elements
array(1l),array(3),array(5),array(7),and array(9).

Any or all of the components of a subscript triplet may be defaulted. If
subscript_1 is missing from the triplet, it defaults to the subscript of the
first element in the array. If subscript_2 is missing from the triplet, it defaults
to the subscript of the last element in the array. If stride is missing from the
triplet, it defaults to one. All of the following possibilities are examples of legal
triplets:

subscript_1 : subscript_2 : stride
subscript_1 : subscript_2
subscript_1 :

subscript_1 : : stride

: Subscript_2

: subscript_2 : stride

: : Stride

264

CHAPTER 6: Introduction to Arrays

EXAMPLE
6-2

Specifying Array Sections with Subscript Triplets:

Assume the following type declarations statements:

INTEGER :: 1 =3, j =7
REAL, DIMENSION(10) :: a = [1.,-2.,3.,-4.,5.,-6.,7.,-8.,9.,-10.1

Determine the number of elements in and the contents of the array sections specified
by each of the following subscript triplets:

(@) a(:)

) a(i:j)
(¢) a(i:j:1)
(d a(i:j:3)
(e) a(i:)
(f) aC:3)
(g) aC::1)

SOLUTION

(a) a(:) isidentical to the original array: [1., -2., 3., —4., 5., —6., 7., =8.,9., —10.]

(b) a(i:J) isthe array subset starting at element 3 and ending at element 7, with
a default stride of 1: [3., —4., 5., —6., 7.]

(c¢) a(i:j:1) isthe array subset starting at element 3 and ending at element 7,
with a stride of 3: [3., —6.]

(d) a(i:j:J) isthe array subset starting at element 3 and ending at element 7,
with a stride of 7: [3.]

(e) a(i:) isthe array subset starting at element 3 and by default ending at
element 10 (the end of the array), with a default stride of 1: [3., —4., 5., —6.,
7.,-8.,9.,—10.]

() a(:j) is the array subset starting by default at element 1 and ending at
element 7, with a default stride of 1: [1., =2., 3., —4., 5., —6., 7.]

(g) a(::1) isthe array subset starting by default at element 1 and ending by
default at element 10, with a stride of 3: [1., —4., 7., —10.]

Subscript triplets select ordered subsets of array elements for use in calculations. In
contrast, vector subscripts allow arbitrary combinations of array elements to be
selected for use in an operation. A vector subscript is a one-dimensional integer array
specifying the array elements to be used in a calculation. The array elements may be
specified in any order, and more than once. The resulting array will contain one
element for each subscript specified in the vector. For example, consider the following
type declaration statements:

INTEGER, DIMENSION(5) :: vec =[1, 6, 4, 1, 91
REAL, DIMENSION(10) :: a = [1., -2., 3., -4., 5., -6., 7., -8., 9., -10.1

Introduction to Arrays 265

With these definitions, a (vec) would be the array [1., —6., —4., 1., 9.].

If a vector subscript includes any array element more than once, then the resulting
array section is called a many-one array section. Such an array section cannot be
used on the left side of an assignment statement, because it would specify that two or
more different values should be assigned to the same array element at the same time!
For example, consider the following Fortran statements:

INTEGER, DIMENSION(5) :: vec = [1, 2, 11
REAL, DIMENSION(10) :: a = [10.,20.,30.1]
REAL, DIMENSION(2) :: b

b(vec) = a

The assignment statement attempts to assign both the value 10. and the value 30. to
array element b (1), which is impossible.

6.4
INPUT AND OUTPUT

It is possible to perform I/O operations on either individual array elements or entire
arrays. Both types of I/O operations are described in this section.

6.4.1 Input and Output of Array Elements

We previously stated that an array element is a variable just like any other variable, and
that an array element may be used in any place where an ordinary variable of the same
type may be used. Therefore, READ and WRITE statements containing array elements
are just like READ and WRITE statements for any other variables. To write out specific
elements from an array, just name them in the argument list of the WRITE statement.
For example, the following code writes out the first five elements of the real array a.

WRITE (*,100) a(l1), a(2), a(3), a(4), a(h)
100 FORMAT ('a = ', 5F10.2)

6.4.2 The Implied DO Loop

The implied DO loop is also permitted in I/O statements. It allows an argument list to
be written many times as a function of an index variable. Every argument in the argu-
ment list is written once for each value of the index variable in the implied DO loop.
With an implied DO loop, the previous statement becomes:

WRITE (*,100) (a(i), i =1, 5)
100 FORMAT ('a = ', 5F10.2)

The argument list in this case contains only one item: a (7). This list is repeated once
for each value of the index variable i. Since i takes on the values from 1 to 5, the array
elements a(1),a(2),a(3),a(4), and a(5) will be written.

266

CHAPTER 6: Introduction to Arrays

The general form of a WRITE or READ statement with an implied DO loop is:

WRITE (unit,format) (argl, argZ2, ... , index = istart, iend, incr)
READ (unit,format) (argl, arg2, ... , index = istart, iend, incr)

where argl, argZ2, etc., are the values to be written or read. The variable index is
the DO loop index, and istart, 7end, and 7ncr are respectively the starting value,
ending value, and increment of the loop index variable. The index and all of the loop
control parameters should be of type INTEGER.

For a WRITE statement containing an implied DO loop, each argument in
the argument list is written once each time the loop is executed. Therefore, a
statement like

WRITE (*,1000) (i, 2*i, 3*i, i =1, 3)
1000 FORMAT (916)

will write out nine values on a single line:
1 2 3 2 4 6 3 6 9

Now let’s look at a slightly more complicated example using arrays with an
implied DO loop. Figure 6-10 shows a program that calculates the square root and
cube root of a set of numbers, and prints out a table of square and cube roots.
The program computes square roots and cube roots for all numbers between 1 and
MAX_SIZE, where MAX_SIZE is a parameter. What will the output of this program
look like?

FIGURE 6-10
A program that computes the square and cube roots of a set of number, and writes them out
using an implied DO loop.

PROGRAM square_and_cube_roots

Purpose:
To calculate a table of numbers, square roots, and cube roots
using an implied DO Toop to output the table.

Date Programmer Description of change

11/16/15 S. J. Chapman Original code

|
|
|
|
|
! Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare constants

INTEGER, PARAMETER :: MAX_SIZE = 10 I Max values in array
! Data dictionary: declare variable types, definitions, & units
INTEGER :: I Loop index

REAL, DIMENSION(MAX_SIZE) :: square_root ! Array of square roots

|
REAL, DIMENSION(MAX_SIZE) :: value I Array of numbers
|
REAL, DIMENSION(MAX_SIZE) :: cube_root I Array of cube roots

(continued)

Introduction to Arrays 267

(concluded)

I Calculate the square roots & cube roots of the numbers.
DO j = 1, MAX_SIZE

value(j) = real(j)

square_root(j) = sqrt(value(j))

cube_root(j) = value(j)**(1.0/3.0)
END DO

I Write out each number, its square root, and its cube root.
WRITE (*,100)
100 FORMAT (20X, 'Table of Square and Cube Roots',/, &
4X," Number Square Root Cube Root', &
3X,' Number Square Root Cube Root',/, &
4x, ! ", &
3X,! ")
WRITE (*,110) (value(j), square_root(j), cube_root(j), j = 1, MAX_SIZE) u

110 FORMAT (2(4X,F6.0,9X,F6.4,6X,F6.4))
END PROGRAM square_and_cube_roots

The implied DO loop in this example will be executed 10 times, with j taking on
every value between 1 and 10 (the loop increment is defaulted to 1 here). During each
iteration of the loop, the entire argument list will be written out. Therefore, this WRITE
statement will write out 30 values, six per line. The resulting output is

Table of Square and Cube Roots

Number Square Root Cube Root Number Square Root Cube Root
1. 1.0000 1.0000 2. 1.4142 1.2599
3. 1.7321 1.4422 4. 2.0000 1.5874
5. 2.2361 1.7100 6. 2.4495 1.8171
7. 2.6458 1.9129 8. 2.8284 2.0000
9. 3.0000 2.0801 10. 3.1623 2.1544

Nested implied DO loops

Like ordinary DO loops, implied DO loops may also be nested. If they are nested,
the inner loop will execute completely for each step in the outer loop. As a simple
example, consider the following statements

WRITE (*,100) ((i, j, j =1, 3), i =1, 2)
100 FORMAT (I5,1X,I5)

There are two implicit DO loops in this WRITE statement. The index variable of the
inner loop is j, and the index variable of the outer loop is . When the WRITE state-
ment is executed, variable j will take on values 1, 2, and 3 while i is 1, and then 1, 2,
and 3 while 1 is 2. The output from this statement will be

RN
WM WM

268

CHAPTER 6: Introduction to Arrays

Nested implied DO loops are important when working with arrays having two or more
dimensions, as we will see later in Chapter 8.

The difference between I/O with standard DO loops and I/0 with

implied DO loops

Array input and output can be performed either with a standard DO loop contain-
ing I/O statements or with an implied DO loop. However, there are subtle differences
between the two types of loops. To better understand those differences, let’s compare
the same output statement written with both types of loops. We will assume that inte-
ger array arr is initialized as follows

INTEGER, DIMENSION(5) :: arr =101, 2, 3, 4, 51

and compare output using a regular DO loop with output using an implied DO loop. An
output statement using an ordinary DO loop is shown below

DO i =1, 5
WRITE (*,1000) arr(i), 2.*arr(i). 3*arr(i)
1000 FORMAT (616)

END DO

In this loop, the WRITE statement is executed five times. In fact, this loop is equivalent
to the following statements

WRITE (*,1000) arr(l), 2.*arr(1). 3*arr(1)
WRITE (*,1000) arr(2), 2.). 3*arr(2)
WRITE (*,1000) arr(3), 2.*arr(3). 3*arr(3)
WRITE (*,1000) arr(4), 2.*arr(4). 3*arr(4)
WRITE (*,1000) arr(5), 2.). 3*arr(b)

1000 FORMAT (616)

*arr(5

An output statement using an implied DO loop is shown below

WRITE (*,1000) (arr(i), 2.*arr(i). 3*arr(i), i =1, 5)
1000 FORMAT (616)

Here, there is only one WRITE statement, but the WRITE statement has 15 arguments.
In fact, the WRITE statement with the implied DO loop is equivalent to

WRITE (*,1000) arr(1), 2.*arr(1). 3*arr(l), &
arr(2), 2.*arr(2). 3*arr(2), &
arr(3), 2.*arr(3). 3*arr(3), &
arr(4), 2.*arr(4). 3*arr(4), &
arr(5), 2.*arr(5). 3*arr(5)

1000 FORMAT (616)

The main difference between having many WRITE statements with few arguments and
one WRITE statement with many arguments is in the behavior of its associated format.
Remember that each WRITE statement starts at the beginning of the format. Therefore,
each of the five WRITE statements in the standard DO loop will start over at the begin-
ning of the FORMAT statement, and only the first three of the six 16 descriptors will be
used. The output of the standard DO loop will be

Introduction to Arrays 269

1 2 3
2 4 6
36 9
4 8 12
5 10 15

On the other hand, the implied DO loop produces a single WRITE statement with 15
arguments, so the associated format will be used completely 2%2 times. The output of
the implied DO loop will be

The same concept applies to a comparison of READ statements using standard DO loops
with READ statements using implied DO loops. (See Exercise 6-9 at the end of the chapter.) u

6.4.3 Input and Output of Whole Arrays and Array Sections

Entire arrays or array sections may also be read or written with READ and WRITE
statements. If an array name is mentioned without subscripts in a Fortran
I/O statement, then the compiler assumes that every element in the array is to be
read in or written out. If an array section is mentioned in a Fortran I/O statement,
then the compiler assumes that the entire section is to be read in or written out.
Figure 6-11 shows a simple example of using an array and two array sections in I/O
statements.

FIGURE 6-11
An example program illustrating array 1/O.
PROGRAM array_io

Purpose:
To illustrate array I/0.

|
|
|
!
! Record of revisions:

! Date Programmer Description of change
|

|

|

I

11/17/15 S. J. Chapman Original code
IMPLICIT NONE

! Data dictionary: declare variable types & definitions
REAL, DIMENSION(5) :: a = [1.,2.,3.,20.,10.1 ! 5-element test array
INTEGER, DIMENSION(4) :: vec = [4,3,4,5] ! vector subscript

! Output entire array.
WRITE (*,100) a
100 FORMAT (6F8.3)

(continued)

270

CHAPTER 6:

(concluded)

I Qutput array section selected by a triplet.
WRITE (*,100) a(2::2)

I Qutput array section selected by a vector subscript.
WRITE (*,100) a(vec)

END PROGRAM array_io

The output from this program is:

1.000 2.000 3.000 20.000 10.000
2.000 20.000
20.000 3.000 20.000 10.000

Introduction to Arrays

answers to this quiz are found in the back of the book.

1. INTEGER :: itemp(15)
2. LOGICAL :: test(0:255)

3. INTEGER, PARAMETER :: I1 = -20
INTEGER, PARAMETER :: I2 -1
REAL, DIMENSION(I1:I1*I2) :: a

any variable not explicitly typed.

4. REAL:: phase(0:11) = [0., 1., 2., 3., 3.,
3., 3., 3., 2., 1.,
0.

5. REAL, DIMENSION(10) :: phase =

6. INTEGER :: datal(256)
datal = 0
datal(10:256:10) = 1000
WRITE (*,'(10I8)') datal

7. REAL, DIMENSION(21:31) :: arrayl = 10.
REAL, DIMENSION(10) :: array2 = 3.
WRITE (*,'(1X,10I8)') arrayl + array?2

8. INTEGER :: 1, j
INTEGER, DIMENSION(10) :: subl
INTEGER, DIMENSION(0:9) :: sub2

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Sections 6.1 through 6.4. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The

For questions 1 to 3, determine the length of the array specified by each of the
following declaration statements and the valid subscript range for each array.

Determine which of the following Fortran statements are valid. For each valid
statement, specify what will happen in the program. Assume default typing for

(continued)

Introduction to Arrays 271

(concluded)

INTEGER, DIMENSION(100) :: in = [((0,i=1,9), j*10,j=1,10) 1
subl = in(10:100:10)

sub2 = subl / 10

WRITE (*,100) subl * sub2

100 FORMAT (1018)

9. REAL, DIMENSION(-3:0) :: error
error(-3) = 0.00012
error(-2) 0.0152
error(-1) = 0.0
WRITE (*,500) error
500 FORMAT (T6,error = ,/,(3X,16))

10. INTEGER, PARAMETER :: MAX = 10
INTEGER :: i
INTEGER, DIMENSION(MAX) :: ivecl = (/(i,i=1,10)/)
INTEGER, DIMENSION(MAX) :: ivec?2 (/(i,1=10,1,-1)/)
REAL, DIMENSION(MAX) :: datal
datal = real(ivecl)**2
WRITE (*,500) datal(ivec?2)
500 FORMAT ('Output = ',/,5(3X,F7.1))

11. INTEGER, PARAMETER :: NPOINT = 10
REAL, DIMENSIONCNPOINT) :: mydata
DO i = 1, NPOINT
READ (*,*) mydata
END DO

6.5
EXAMPLE PROBLEMS

Now we will examine two example problems that illustrate the use of arrays.

EXAMPLE Sorting Data:
6-3

In many scientific and engineering applications, it is necessary to take a random input

data set and to sort it so that the numbers in the data set are either all in ascending

order (lowest-to-highest) or all in descending order (highest-to-lowest). For example,

suppose that you were a zoologist studying a large population of animals, and that you

wanted to identify the largest 5% of the animals in the population. The most

straightforward way to approach this problem would be to sort the sizes of all of the

animals in the population into ascending order, and take the top 5% of the values.
Sorting data into ascending or descending order seems to be an easy job. After

all, we do it all the time. It is simple matter for us to sort the data (10, 3, 6, 4, 9) into

272

CHAPTER 6: Introduction to Arrays

the order (3, 4, 6, 9, 10). How do we do it? We first scan the input data list (10, 3, 6,
4, 9) to find the smallest value in the list (3), and then scan the remaining input data
(10, 6, 4, 9) to find the next smallest value (4), etc., until the complete list is sorted.

In fact, sorting can be a very difficult job. As the number of values to be sorted
increases, the time required to perform the simple sort described above increases rap-
idly, since we must scan the input data set once for each value sorted. For very large
data sets, this technique just takes too long to be practical. Even worse, how would we
sort the data if there were too many numbers to fit into the main memory of the com-
puter? The development of efficient sorting techniques for large data sets is an active
area of research, and is the subject of whole courses all by itself.

In this example, we will confine ourselves to the simplest possible algorithm to
illustrate the concept of sorting. This simplest algorithm is called the selection sort. It
is just a computer implementation of the mental math described above. The basic algo-
rithm for the selection sort is:

1. Scan the list of numbers to be sorted to locate the smallest value in the list. Place that
value at the front of the list by swapping it with the value currently at the front of the
list. If the value at the front of the list is already the smallest value, then do nothing.

2. Scan the list of numbers from position 2 to the end to locate the next smallest
value in the list. Place that value in position 2 of the list by swapping it with the
value currently at that position. If the value in position 2 is already the next small-
est value, then do nothing.

3. Scan the list of numbers from position 3 to the end to locate the third smallest
value in the list. Place that value in position 3 of the list by swapping it with the
value currently at that position. If the value in position 3 is already the third small-
est value, then do nothing.

4. Repeat this process until the next-to-last position in the list is reached. After the
next-to-last position in the list has been processed, the sort is complete.

Note that if we are sorting N values, this sorting algorithm requires N — 1 scans
through the data to accomplish the sort.

This process is illustrated in Figure 6-12. Since there are five values in the data set to
be sorted, we will make four scans through the data. During the first pass through the
entire data set, the minimum value is 3, so the 3 is swapped with the 10 that was in posi-
tion 1. Pass 2 searches for the minimum value in positions 2 through 5. That minimum is
4, so the 4 is swapped with the 10 in position 2. Pass 3 searches for the minimum value in
positions 3 through 5. That minimum is 6, which is already in position 3, so no swapping
is required. Finally, pass 4 searches for the minimum value in positions 4 through 5. That
minimum is 9, so the 9 is swapped with the 10 in position 4, and the sort is completed.

Programming Pitfalls:

The selection sort algorithm is the easiest sorting algorithm to understand, but it is
computationally inefficient. It should never be applied to sort really large data sets
(say, sets with more than 1000 elements). Over the years, computer scientists have
developed much more efficient sorting algorithms. We will encounter one such
algorithm (the heapsort algorithm) in Exercise 7-35.

Introduction to Arrays 273

10 > 3 3 3 3
3 10 4 4 4

]

Swap Swap No Swap Swap
FIGURE 6-12

An example problem demonstrating the selection sort algorithm.

We will now develop a program to read in a data set from a file, sort it into ascend-
ing order, and display the sorted data set.

SOLUTION

This program must be able to ask the user for the name of the file to be sorted, open
that file, read the input data, sort the data, and write out the sorted data. The design
process for this problem is given below.

1. State the problem.
We have not yet specified the type of data to be sorted. If the data is real, then the
problem may be stated as follows:

Develop a program to read an arbitrary number of real input data values from
a user-supplied file, sort the data into ascending order, and write the sorted data to
the standard output device.

2. Define the inputs and outputs.

There are two types of inputs to this program:
(a) A character string containing the file name of the input data file. This string
will come from the standard input device.
(b) The real data values in the file.
The outputs from this program are the sorted real data values written to the stan-
dard output device.

3. Describe the algorithm.
This program can be broken down into five major steps:

Get the input file name

Open the input file

Read the input data into an array
Sort the data in ascending order
Write the sorted data

274 CHAPTER 6: Introduction to Arrays

The first three major steps of the program are to get the name of the input file, to
open the file, and to read in the data. We must prompt the user for the input file name,
read in the name, and open the file. If the file open is successful, we must read in the
data, keeping track of the number of values that have been read. Since we don’t know
how many data values to expect, a while loop is appropriate for the READ. A flowchart
for these steps is shown in Figure 6-13, and the detailed pseudocode is shown below:

Prompt user for the input file name "filename”
Read the file name "filename"
OPEN file "filename"
IF OPEN is successful THEN
WHILE
Read value into temp
IF read not successful EXIT
nvals « nvals + 1

Ask for filename

¥
READ filename

¥

OPEN file
"filename"

.FALSE.

File OPEN ok?

(! .TRUE.

READ temp

¥

READ fail?

nvals < nvals + 1
a(nvals) « temp

(Further processing)
|

(Exit)
FIGURE 6-13
Flowchart for reading values to sort from an input file.

Introduction to Arrays 275

a(nvals) « temp
End of WHILE

(Insert sorting step here)
(Insert writing step here)

End of IF

Next we have to sort the data. We will need to make nvals-1 passes through the
data, finding the smallest remaining value each time. We will use a pointer to locate
the smallest value in each pass. Once the smallest value is found, it will be swapped to
the top of the list if it is not already there. A flowchart for these steps is shown in
Figure 6-14, and the detailed pseudocode is shown below:

v

i=1
.FALSE. i< nvals-l .TRUE.

i=i+1
y
iptr « i
¥
FALSE. / =i+l 1 .TRUE.
Jj £ nvals
j=i+1 1
|
]
Y
.FALSE.
.TRUE.
temp < a(i)
a(i) «a(iptr)
a(iptr) « temp
]
FIGURE 6-14

Flowchart for sorting values with a selection sort.

276

CHAPTER 6: Introduction to Arrays

DO for i =1 to nvals-1

I Find the minimum value in a(i) through a(nvals)
iptr « 1
DO for j == i+l to nvals

IF a(j) < a(iptr) THEN

iptr « j
END of IF
END of DO

! iptr now points to the min value, so swap a(iptr) with
a(i) if iptr /= 1.
IF i /= iptr THEN
temp « a(i)
a(i) « a(iptr)
a(iptr) « temp
END of IF
END of DO

The final step is writing out the sorted values. No refinement of the pseudocode is
required for that step. The final pseudocode is the combination of the reading, sorting,
and writing steps.

4. Turn the algorithm into Fortran statements.
The resulting Fortran program is shown in Figure 6-15.

FIGURE 6-15
A program to read values from an input data file, and to sort them into ascending order.

PROGRAM sortl

|
I Purpose:

! To read in a real input data set, sort it into ascending order
! using the selection sort algorithm, and to write the sorted

! data to the standard output device.
|

|

|

|

|

Record of revisions:
Date Programmer Description of change

11/17/15 S. J. Chapman Original code
|

IMPLICIT NONE

! Data dictionary: declare constants
INTEGER, PARAMETER :: MAX_SIZE = 10 ! Maximum input data set size

! Data dictionary: declare variable types & definitions

REAL, DIMENSION(MAX_SIZE) :: a ! Data array to sort
CHARACTER(1en=20) :: filename I Input data file name
INTEGER :: 1 I Loop index
INTEGER :: iptr ! Pointer to smallest value
INTEGER :: j I Loop index

|

CHARACTER(1en=80) :: msg Error message

(continued)

Introduction to Arrays

(continued)

INTEGER :: nvals =0 I Number of data values to sort
INTEGER :: status 1 '1/0 status: 0 for success

REAL :: temp ! Temporary variable for swapping

I Get the name of the file containing the input data.

WRITE (*,1000)

1000 FORMAT ('Enter the file name with the data to be sorted: ')
READ (*,'(A20)') filename

I Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=9, FILE=filename, STATUS='OLD', ACTION='READ', &
I0STAT=status, IOMSG=msg)

I Was the OPEN successful?
fileopen: IF (status == 0) THEN I Open successful

I The file was opened successfully, so read the data to sort
I from it, sort the data, and write out the results.
I First read in data.

DO
READ (9, *, IOSTAT=status) temp ! Get value
IF (status /=0) EXIT I Exit on end of data
nvals = nvals + 1 ! Bump count
a(nvals) = temp I Save value in array
END DO

I Now, sort the data.
outer: DO i =1, nvals-1

! Find the minimum value in a(i) through a(nvals)
iptr =i
inner: DO j = i+l1, nvals
minval: IF (a(j) < a(iptr)) THEN
iptr =
END IF minval
END DO inner

! iptr now points to the minimum value, so swap a(iptr) with
Pa(i) if 1 /= iptr.
swap: IF (i /= iptr) THEN

temp = a(i)

a(i) = a(iptr)

ACiptr) = temp
END IF swap

END DO outer

I Now write out the sorted data.
WRITE (*,"(A)") 'The sorted output data values are: '
WRITE (*,'(3X,F10.4)") (a(i), i =1, nvals)

ELSE fileopen

277

(continued)

278

CHAPTER 6: Introduction to Arrays
(concluded)

! Else file open failed. Tell user.
WRITE (*,1050) TRIM(msg)
1050 FORMAT ('File open failed--error = ', A)

END IF fileopen
END PROGRAM sortl

5. Test the program.

To test this program, we will create an input data file and run the program with it.
The data set will contain a mixture of positive and negative numbers as well as at least
one duplicated value to see if the program works properly under those conditions. The
following data set will be placed in file INPUT2:

Running this file values through the program yields the following result:

C:\book\fortran\chap6>sortl

Enter the file name containing the data to be sorted:
input2

The sorted output data values are:

-6.0000
-3.0000

4.
4.
6.6000
2.
3.

The program gives the correct answers for our test data set. Note that it works for both
positive and negative numbers as well as for repeated numbers.

To be certain that our program works properly, we must test it for every possible
type of input data. This program worked properly for the test input data set, but will it
work for all input data sets? Study the code now and see if you can spot any flaws
before continuing to the next paragraph.

The program has a major flaw that must be corrected. If there are more than 10
values in the input data file, this program will attempt to store input data in memory
locations a(11), a(12), etc., that have not been allocated in the program (this is an

Introduction to Arrays 279

.FALSE.
File OPEN ok?
! .TRUE.
/ READ temp /
.TRUE.

READ failed?

nvals «< nvals + 1

v

a(nvals) « temp exceed « .TRUE.

\]
(Further processing)

(Exit)
FIGURE 6-16
Corrected flowchart for reading the values to sort from an input file without causing an array
overflow.

out-of-bounds or array overflow condition). If bounds checking is turned on, the
program will abort when we try to write to a(11). If bounds checking is not turned
on, the results are unpredictable and vary from computer to computer. This program
must be rewritten to prevent it from attempting to write into locations beyond the end
of the allocated array. This can be done by checking to see if the number of values
exceeds max_size before storing each number into array a. The corrected flowchart
for reading in the data is shown in Figure 6-16, and the corrected program is shown in
Figure 6-17.

280

CHAPTER 6: Introduction to Arrays

FIGURE 6-17
A corrected version of the sort program that detects array overflows.

PROGRAM sort?2

Purpose:
To read in a real input data set, sort it into ascending order
using the selection sort algorithm, and to write the sorted
data to the standard output device.

|

|

|

|

|

1

I Record of revisions:
! Date Programmer Description of change
|

|

1

1

|

I

11/15/05 S. J. Chapman Original code
1. 11/16105 S. J. Chapman Modified to protect against
array overflow.
IMPLICIT NONE

| Data dictionary: declare constants
INTEGER, PARAMETER :: MAX_SIZE = 10 ! Maximum input data set size

! Data dictionary: declare variable types & definitions
REAL, DIMENSION(MAX_SIZE) :: a ! Data array to sort
LOGICAL :: exceed = .FALSE. Logical indicating that array

limits are exceeded.
CHARACTER(1en=20) :: filename Input data file name
INTEGER :: 1 Loop index
INTEGER :: j Loop index

CHARACTER(1en=80) :: msg
INTEGER :: nvals =0
INTEGER :: status

REAL :: temp

I Get the name of the file containing the input data.

WRITE (*,1000)

1000 FORMAT ('Enter the file name with the data to be sorted: ')
READ (*,'(A20)') filename

! Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=9, FILE=filename, STATUS='OLD', ACTION='READ', &
I0STAT=status, IOMSG=msg)

Error message
Number of data values to sort
I/0 status: 0 for success

1
|
!
!
INTEGER :: iptr ! Pointer to smallest value
!
|
|
|
| Temporary variable for swapping

! Was the OPEN successful?
fileopen: IF (status == 0) THEN I Open successful

! The file was opened successfully, so read the data to sort
I from it, sort the data, and write out the results.
I First read in data.

DO
READ (9, *, IOSTAT=status) temp I Get value
IF (status /=0) EXIT I Exit on end of data
nvals = nvals + 1 ! Bump count

(continued)

Introduction to Arrays 281

(concluded)
size: IF (nvals <= MAX_SIZE) THEN ! Too many values?
a(nvals) = temp ! No: Save value in array
ELSE
exceed = .TRUE. ! Yes: Array overflow
END IF size
END DO

I Was the array size exceeded? If so, tell user and quit.
toobig: IF (exceed) THEN

WRITE (*,1010) nvals, MAX_SIZE

1010 FORMAT (' Maximum array size exceeded: ', I6, ' > ', 16)
ELSE toobig

I Limit not exceeded: sort the data.
outer: DO i =1, nvals-1

! Find the minimum value in a(i) through a(nvals) u
iptr =i

inner: DO j = i+1, nvals
minval: IF (a(j) < a(iptr)) THEN
iptr =
END IF minval
END DO inner

! iptr now points to the minimum value, so swap a(iptr) with
Pa(i) if 1 /= iptr.
swap: IF (i /= iptr) THEN

temp = a(i)

a(i) = a(iptr)

a(iptr) = temp
END IF swap

END DO outer

I Now write out the sorted data.
WRITE (*,"(CA)") ' The sorted output data values are: '
WRITE (*,'(3X,F10.4)") (a(i), i =1, nvals)

END IF toobig
ELSE fileopen

! ETse file open failed. Tell user.
WRITE (*,1050) TRIM(msg)
1050 FORMAT ('File open failed--error = ', A)

END IF fileopen
END PROGRAM sort?

In the test for array overflow conditions, we have used a logical variable exceed.
If the next value to be read into the array would result on an array overflow, then ex-
ceed is set to true, and the value is not stored. When all values have been read from
the input file, the program checks to see if the array size would have been exceeded. If
S0, it writes out an error message and quits. If not, it reads in and sorts the numbers.

282

CHAPTER 6: Introduction to Arrays

This program also illustrates the proper use of named constants to allow the size
of a program to be changed easily. The size of array a is set by parameter MAX_SIZE,
and the test for array overflow within the code also uses parameter MAX_SIZE. The
maximum sorting capacity of this program could be changed from 10 to 1000
by simply modifying the definition of the named constant MAX_SIZE at the top of
the program.

EXAMPLE
6-4

The Median:

In Chapter 4, we examined two common statistical measures of data: averages (or
means) and standard deviations. Another common statistical measure of data is the
median. The median of a data set is the value such that half of the numbers in the data
set are larger than the value and half of the numbers in the data set are smaller than
the value. If there are an even number of values in the data set, then there cannot be a
value exactly in the middle. In that case, the median is usually defined as the average
of the two elements in the middle. The median value of a data set is often close to the
average value of the data set, but not always. For example, consider the following
data set:

OB~ WM

10

The average or mean of this data set is 22, while the median of this data set is 3!

An easy way to compute the median of a data set is to sort it into ascending order, and
then to select the value in the middle of the data set as the median. If there are an even
number of values in the data set, then average the two middle values to get the median.

Write a program to calculate the mean, median, and standard deviation of an input
data set that is read from a user-specified file.

SOLUTION
This program must be able to read in an arbitrary number of measurements from a file,
and then calculate the mean and standard deviation of those measurements.

1. State the problem.
Calculate the average, median, and standard deviation of a set of measure-
ments that are read from a user-specified input file, and write those values out on
the standard output device.

2. Define the inputs and outputs.
There are two types of inputs to this program:

(a) A character string containing the file name of the input data file. This string
will come from the standard input device.
(b) The real data values in the file.

Introduction to Arrays 283

The outputs from this program are the average, median, and standard deviation of the
input data set. They are written to the standard output device.

3. Describe the algorithm.
This program can be broken down into six major steps:

Get the input file name

Open the input file

Read the input data into an array

Sort the data in ascending order

Calculate the average, mean, and standard deviation
Write average, median, and standard deviation

The detailed pseudocode for the first four steps is similar to that of the previous
example:

Initialize variables.
Prompt user for the input file name "filename”
Read the file name "filename"
OPEN file "filename"
IF OPEN is successful THEN
WHILE
Read value into temp
IF read not successful EXIT
nvals « nvals + 1
IF nvals <= max_size then
a(nvals) « temp
ELSE
exceed « .TRUE.
End of IF
End of WHILE

I Notify user if array size exceeded.
IF array size exceeded then

Write out message to user
ELSE

I Sort the data

DO for i =1 to nvals-1

I Find the minimum value in a(i) through a(nvals)
iptr « 1
DO for j = i+l to nvals
IF a(j) < a(iptr) THEN
iptr « j
END of IF
END of DO (for j = i+l to nvals)

I iptr now points to the min value, so swap A(iptr)
I with a(i) if iptr /= 1.
IF i /= iptr THEN
temp « a(i)
a(i) « a(iptr)
a(iptr) « temp
END of IF
END of DO (for i =1 to nvals-1)

284

CHAPTER 6: Introduction to Arrays

(Add code here)
End of IF (array size exceeded...)

End of IF (open successful...)

The fifth step is to calculate the required average, median, and standard deviation. To
do this, we must first accumulate some statistics on the data (Xx and Xx?), and then
apply the definitions of average, median, and standard deviation given previously. The
pseudocode for this step is:

DO for i =1 to nvals
SUm_X « sum_x + a(i)
SUM_X2 « sum_x2 + a(i)**2
End of DO
IF nvals >= 2 THEN
x_bar « sum_x / real(nvals)
std_dev « sqrt((real(nvals)*sum_x2-
sum_x**2)/(real(nvals)*real(nvals-1)))
IF nvals is an even number THEN
median « (a(nvals/2) + a(nvals/2+1)) / 2.
ELSE
median « a(nvals/2+1)
END of IF
END of IF

We will decide if nvals is an even number by using the modulo function
mod(nvals,2).If nvals is even, this function will return a O; if nvals is odd, it will
return a 1. Finally, we must write out the results.

Write out average, median, standard deviation, and no. of points

4. Turn the algorithm into Fortran statements.
The resulting Fortran program is shown in Figure 6-18.

FIGURE 6-18

A program to read in values from an input data file, and to calculate their mean, median, and
standard deviation.

PROGRAM stats_4

Purpose:

To calculate mean, median, and standard deviation of an input
data set read from a file.

Date Programmer Description of change

11/18/15 S. J. Chapman Original code

|
|
|
|
|
! Record of revisions:
|
|
|
|
I

MPLICIT NONE
! Data dictionary: declare constants

(continued)

Introduction to Arrays 285

(continued)

INTEGER, PARAMETER :: MAX_SIZE = 100 ! Max data size

! Data dictionary: declare variable types & definitions

REAL, DIMENSION(MAX_SIZE) :: a ! Data array to sort

LOGICAL :: exceed = .FALSE. Logical indicating that array
limits are exceeded.

CHARACTER(1en=20) :: filename Input data file name

INTEGER :: 1 Loop index

INTEGER :: iptr Pointer to smallest value
INTEGER :: j Loop index

REAL :: median The median of the input samples

INTEGER :: nvals =0 Number of data values to sort
INTEGER :: status 1/0 status: 0 for success
REAL :: std_dev Standard deviation of input samples

Sum of input values
Sum of input values squared
Temporary variable for swapping

Average of input values

|
|
|
|
|
|
!
CHARACTER(1en=80) :: msg ! Error message
|
|
|
REAL :: sum_x = 0. !
REAL :: sum_x2 = 0. !
REAL :: temp !
REAL :: x_bar !
I Get the name of the file containing the input data.
WRITE (*,1000)
1000 FORMAT ('Enter the file name with the data to be processed: ')
READ (*,'(A20)') filename

I Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=9, FILE=filename, STATUS='0LD', ACTION='READ', &
I0STAT=status, IOMSG=msg)

I Was the OPEN successful?
fileopen: IF (status == 0) THEN I Open successful

I The file was opened successfully, so read the data to sort
I from it, sort the data, and write out the results.
I First read in data.
DO
READ (9, *, IOSTAT=status) temp I Get value
IF (status /=0) EXIT I Exit on end of data
nvals = nvals + 1 I Bump count
size: IF (nvals <= MAX_SIZE) THEN ! Too many values?
a(nvals) = temp I No: Save value in array
ELSE
exceed = .TRUE. ! Yes: Array overflow
END IF size
END DO

! Was the array size exceeded? If so, tell user and quit.
toobig: IF (exceed) THEN

WRITE (*,1010) nvals, MAX_SIZE

1010 FORMAT ('Maximum array size exceeded: ', 10, " > ', 10)
ELSE

I Limit not exceeded: sort the data.

(continued)

286 CHAPTER 6: Introduction to Arrays

(continued)

outer: DO i =1, nvals-1

I Find the minimum value in a(i) through a(nvals)
iptr =i
inner: DO j = i+l, nvals
minval: IF (a(j) < a(iptr)) THEN
iptr =
END IF minval
END DO inner

I iptr now points to the minimum value, so swap A(iptr)
! with a(i) if i /= iptr.
swap: IF (i /= iptr) THEN

temp = a(i)

a(i) = a(iptr)

a(iptr) = temp
END IF swap

END DO outer

! The data is now sorted. Accumulate sums to calculate
I statistics.
sums: DO i = 1, nvals
sum_x = sum_x + a(i)
SUM_X2 = sum_x2 + a(i)**2
END DO sums

I Check to see if we have enough input data.
enough: IF (nvals < 2) THEN

I Insufficient data.
WRITE (*,*) ' At least 2 values must be entered.’

ELSE

I Calculate the mean, median, and standard deviation
x_bar sum_x / real(nvals)
std_dev = sqrt((real(nvals) * sum_x2 - sum_x**2) &
/ (real(nvals) * real(nvals-1)))
even: IF (mod(nvals,2) == 0) THEN
median = (a(nvals/2) + a(nvals/2+1)) / 2.
ELSE
median = a(nvals/2+1)
END IF even

I Tell user.

WRITE (*,*) 'The mean of this data set is: ', x_bar
WRITE (*,*) 'The median of this data set is:', median
WRITE (*,*) 'The standard deviation is: ", std_dev
WRITE (*,*) 'The number of data points is: ', nvals

END IF enough
END IF toobig
ELSE fileopen

(continued)

Introduction to Arrays 287

(concluded)

! Else file open failed. Tell user.
WRITE (*,1050) TRIM(msg)
1050 FORMAT ('File open failed--error = ', A)

END IF fileopen
END PROGRAM stats_4
5. Test the program.
To test this program, we will calculate the answers by hand for a simple data set,

and then compare the answers to the results of the program. If we use five input val-
ues: 5, 3,4, 1, and 9, then the mean and standard deviation would be

i ﬁ: ! (22) =44 4-1)
X = X, = — =4, -
Ni:l ' 5
N N 2
NZX? - (Z%‘)
i=1 i=1
= = 2.966 4-2
g NN = 1) (4-2)
median = 4

If these values are placed in the file INPUT4 and the program is run with that file as
an input, the results are

C:\book\fortran\chap6>stats_4
Enter the file name containing the input data:

input4
The mean of this data set is: 4.400000
The median of this data set is: 4.000000
The standard deviation is: 2.966479
The number of data points is: 5

The program gives the correct answers for our test data set.

Note the use of names on loops and branches in the above program. These names
help us to keep the loops and branches straight. This becomes more and more import-
ant as programs get larger. Even in this simple program, loops and branches are nested
four deep at some points!

6.6
WHEN SHOULD YOU USE AN ARRAY?

We have now learned how to use arrays in our Fortran programs, but we have not yet
learned when to use them. At this point in a typical Fortran course, many students are
tempted to use arrays to solve problems whether they are needed or not, just because
they know how to do so. How can we decide whether or not it makes sense to use an
array in a particular problem?

288

CHAPTER 6: Introduction to Arrays

In general, if much or all of the input data must be in memory at the same time
in order to solve a problem efficiently, then the use of arrays to hold that data is
appropriate for that problem. Otherwise, arrays are not needed. For example, let’s
contrast the statistics programs that we have written in Examples 4-1 and 6-4. Example
4-1 calculated the mean and standard deviation of a data set, while Example 6-4 calcu-
lated the mean, median, and standard deviation of a data set.

Recall that the equations for the mean and standard deviation of a data set are

M=

1 1
=—Yx =—(22) =44 4-1

and

N N 2
NZX? - <2xi>
i=1 i=1

N(N —-1)

= 2.966 4-2)

The sums in Equations (4-1) and (4-2) that are required to find the mean and stan-
dard deviation can easily be formed as data values are read in one by one. There is no
need to wait until all of the data is read before starting to build the sums. Therefore, a
program to calculate the mean and standard deviation of a data set does not need to use
arrays. You could use an array to hold all of the input values before calculating the
mean and standard deviation, but since the array is not necessary, you should not do
so. Example 4-1 works fine, and is built entirely without arrays.

On the other hand, finding the median of a data set requires that the data be sorted
into ascending order. Since sorting requires all data to be in memory, a program that
calculates the median must use an array to hold all of the input data before the calcula-
tions start. Therefore, Example 6-4 uses an array to hold its input data.

What’s wrong with using an array within a program even if it is not needed? There
are two major problems associated with using unnecessary arrays:

1. Unnecessary arrays waste memory. Unnecessary arrays can eat up a lot of memory,
making a program larger than it needs to be. A large program requires more mem-
ory to run it, which makes the computer that it runs on more expensive. In some
cases, the extra size may make it impossible to run on a particular computer at all.

2. Unnecessary arrays restrict program capabilities. To understand this point, let’s con-
sider an example program that calculates the mean and standard deviation of a data
set. If the program is designed with a 1000-element static input array, then it will only
work for data sets with up to 1000 elements. If we encounter a data set with more
than 1000 elements, the program would have to be recompiled and relinked with a
larger array size. On the other hand, a program that calculates the mean and standard
deviation of a data set as the values are input has no upper limit on data set size.

Good Programming Practice
Do not use arrays to solve a problem unless they are actually needed.

Introduction to Arrays 289

6.7
SUMMARY

In this chapter, we presented an introduction to arrays and to their use in Fortran pro-
grams. An array is a group of variables, all of the same type, which are referred to by
a single name. An individual variable within the array is called an array element. Indi-
vidual array elements are addressed by means of one or more (up to 15) subscripts.
Arrays with one subscript (rank 1 arrays) were discussed in this chapter. Arrays with
more than one subscript will be discussed in Chapter 8.

An array is declared using a type declaration statement by naming the array and
specifying the maximum (and, optionally, the minimum) subscript values with the
DIMENSION attribute. The compiler uses the declared subscript ranges to reserve space
in the computer’s memory to hold the array.

As with any variable, an array must be initialized before use. An array may be
initialized at compile time using array constructors in the type declaration statements,
or at runtime using array constructors, DO loops, or Fortran READs.

Individual array elements may be used freely in a Fortran program just like any
other variable. They may appear in assignment statements on either side of the equal
sign. Entire arrays and array sections may also be used in calculations and assignment
statements as long as the arrays are conformable with each other. Arrays are conform-
able if they have the same number of dimensions (rank) and the same extent in each
dimension. A scalar is also conformable with any array. An operation between two
conformable arrays is performed on an element-by-element basis. Scalar values are
also conformable with arrays.

Arrays are especially useful for storing data values that change as a function of
some variable (time, location, etc.). Once the data values are stored in an array,
they can be easily manipulated to derive statistics or other information that may be
desired.

6.7.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with arrays.

1. Before writing a program that uses arrays, you should decide whether an array is
really needed to solve the problem or not. If arrays are not needed, don’t use
them!

2. All array sizes should be declared using named constants. If the sizes are declared
using named constants, and if those same named constants are used in any size
tests within the program, then it will be very easy to modify the maximum capac-
ity of the program at a later time.

3. All arrays should be initialized before use. The results of using an uninitialized
array are unpredictable and vary from processor to processor.

4. The most common problem when programming with arrays is attempting to read
from or write to locations outside the bounds of the array. To detect these
problems, the bounds checking option of your compiler should always be turned

290 CHAPTER 6: Introduction to Arrays

on during program testing and debugging. Because bounds checking slows down
the execution of a program, the bounds checking option may be turned off once
debugging is completed.

6.7.2 Summary of Fortran Statements and Constructs

Type Declaration Statements with Arrays:
type, DIMENSIONC [71:7i2) :: arrayl,
Examples:

REAL, DIMENSION(100) :: array

‘ INTEGER, DIMENSION(-5:5) :: i
Description:

These type declaration statements declare both type and the size of an array.

Implied DO loop structure:

READ (unit,format) (argl, arg?, ... , index = istart, iend, incr)
WRITE (unit, format) (argl, arg2, ... , index = istart, iend, incr)
[(argl, arg2, ... , index = istart, iend, incr) 1

Examples:

WRITE (*,*) (array(i), i =1, 10)
INTEGER, DIMENSION(100) :: values
values = [(i, i=1,100) 1

Description:

The implied D0 loop is used to repeat the values in an argument list a known number of times. The values in
the argument list may be functions of the DO loop index variable. During the first iteration of the D0 loop, the
variable 7ndex is set to the value istart. indexis incremented by 7ncr in each successive loop until its
value exceeds 7end, at which time the loop terminates.

6.7.3 Exercises

6-1. How may arrays be declared?
6-2. What is the difference between an array and an array element?

6-3. Execute the following Fortran program on your computer with both bounds checking
turned on and bounds checking turned off. What happens in each case?

Introduction to Arrays

6-4.

6-5.

291

PROGRAM bounds
IMPLICIT NONE
REAL, DIMENSION(5) :: test = [1., 2., 3., 4., 5. 1
REAL, DIMENSION(5) :: testl
INTEGER :: i
DO i =1, 6
testl(i) = SQRT(test(i))
WRITE (*,100) 'SQRT(',test(i), ') ="', testl(i)
100 FORMAT (A,F6.3,A,F14.4)
END DO
END PROGRAM bounds

Determine the shape and size of the arrays specified by the following declaration state-
ments, and the valid subscript range for each dimension of each array.

(a) CHARACTER(1en=80), DIMENSION(60) :: Tine

(b) INTEGER, PARAMETER :: ISTART = 32
INTEGER, PARAMETER :: ISTOP = 256
INTEGER, DIMENSIONCISTART:ISTOP) :: char

(¢) INTEGER, PARAMETER :: NUM_CLASS =3
INTEGER, PARAMETER :: NUM_STUDENT = 35
LOGICAL, DIMENSION(NUM_STUDENT,NUM_CLASS) :: passfail

Determine which of the following Fortran program fragments are valid. For
each valid statement, specify what will happen in the program. (Assume default
typing for any variables that are not explicitly typed within the program
fragments.)

(a) INTEGER, DIMENSION(100) :: icount, jcount

icount = [(i, i=1, 100) 1
jcount = jcount + 1

(b) REAL, DIMENSION(10) :: value
value(1:10:2) = [5., 4., 3., 2., 1. 1]
value(2:11:2) [10., 9., 8., 7., 6. 1
WRITE (*,100) value
100 FORMAT ('Value = ',/,(F10.2))

(¢) INTEGER, DIMENSION(6) :: a
INTEGER, DIMENSION(6) :: b
a =[1,-3,0,-5,-9,3]
b=10-6,6,0,5,2,-1]
WRITE (*,*) a > b

. What is meant by each of the following array terms? (a) size, (b) shape, (c) extent,

(d) rank, (e) conformable.

. Given an array my_array defined as shown and containing the values shown below,

determine whether each of the following array sections is valid. Specify the shape and
contents of each valid array section.

REAL,DIMENSION(-2:7) :: my_array=[-3 -2 -1 012345 6]

292

6-9.

6-10.

CHAPTER 6: Introduction to Arrays

(a) my_array(-3,3)
(b) my_array(-2:2)
(¢) my_array(1:5:2)

(d) INTEGER, DIMENSION(5) :: 1list = [-2, 1, 2, 4, 2 1
my_array(1ist)

. What will be the output from each of the WRITE statements in the following program?

Why is the output of the two statements different?

PROGRAM test_output

IMPLICIT NONE

INTEGER, DIMENSION(0:7) :: my_data
INTEGER :: 1,]

my_data =[1, 2, 3, 4, 5, 6, 7, 81

Do i =0,1
WRITE (*,100) (my_data(4*i+j), j=0,3)
100 FORMAT (6(1X,I4))
END DO
WRITE (*,100) ((my_data(4*i+j), j=0,3), i=0,1)
END PROGRAM test_output

An input data file INPUT1 contains the following values:

27 17 10 8 6
1 13 -11 12 -21
-10 0 6 14
-16 11 21 26 ~-16
04 99 -99 17 2

Assume that file INPUT1 has been opened on i/o unit 8, and that array values is a
16-element integer array, all of whose elements have been initialized to zero. What will be the
contents of array values after each of the following READ statements has been executed?

(@) DO i =1, 4
READ (8,*) (values(4*(i-1)+j), j =1, 4)
END DO

(b) READ (8,*) ((values(4*(i-1)+j), j =1, 4), i =1, 4)
(¢) READ (8,'(4I6)") ((values(4*(i-1)+j), j =1, 4), i =1, 4)

Polar to Rectangular Conversion A scalar quantity is a quantity that can be repre-
sented by a single number. For example, the temperature at a given location is a scalar.
In contrast, a vector is a quantity that has both a magnitude and a direction associated
with it. For example, the velocity of an automobile is a vector, since it has both a magni-
tude and a direction.

Vectors can be defined either by a magnitude and a direction, or by the components
of the vector projected along the axes of a rectangular coordinate system. The two repre-
sentations are equivalent. For two-dimensional vectors, we can convert back and forth
between the representations using the following equations:

V=V0=V.i +V,j (6-2)
V.= Vcosd (6-3)

Introduction to Arrays

6-11.

293

V., = Vsind (6-4)
V=VVi+V; (6-5)

v,
0 = tan~' — over all four quadrants (6-6)

X

where i and j are the unit vectors in the x and y directions, respectively. The representa-
tion of the vector in terms of magnitude and angle is known as polar coordinates, and
the representation of the vector in terms of components along the axes is know as
rectangular coordinates (Figure 6-19).

Write a program that reads the polar coordinates (magnitude and angle) of a
2D vector into a rank 1 array poTar (polar(1) will contain the magnitude V and
polar(2) will contain the angle 6 in degrees), and converts the vector from polar to
rectangular form, storing the result in a rank 1 array rect. The first element of rect
should contain the x-component of the vector, and the second element should contain the
y-component of the vector. After the conversion, display the contents of array rect.
Test your program by converting the following polar vectors to rectangular form:

(a) 52 —36.87°
(b) 10£45°
(c) 252£233.13°

Rectangular to Polar Conversion Write a program that reads the rectangular
components of a 2D vector into a rank 1 array rect (rect(1) will contain the com-
ponent V, and rect(2) will contain the component V,) and converts the vector from
rectangular to polar form, storing the result in a rank 1 array poTar. The first element of
polar should contain the magnitude of the vector, and the second element should con-
tain the angle of the vector in degrees. After the conversion, display the contents of array
polar. (Hint: Look up function ATAN2D in Appendix B.) Test your program by con-
verting the following rectangular vectors to polar form:

(@) 3i—4j
(b) 5i+ 5j
() =5i+ 12j
YA
x
FIGURE 6-19

Representations of a vector.

294

6-12.

6-13.

6-14.

6-15.

CHAPTER 6: Introduction to Arrays

Assume that values is a 101-element array containing a list of measurements from a
scientific experiment, which has been declared by the statement

REAL, DIMENSION(-50:50) :: values

Write the Fortran statements that would count the number of positive values, negative
values, and zero values in the array, and write out a message summarizing how many
values of each type were found.

Write Fortran statements that would print out every fifth value in the array values
described in Exercise 6-12. The output should take the form

values(-50) = XXX.XXXX
values(-45) = XXX.XXXX

\}éiues(50) = XXX.XXXX

Dot Product A 3D vector can be represented in rectangular coordinates as
V=Vi+Vj+Vk 6-7)

where V, is the component of vector V in the x direction, V, is the component of vector
V in the y direction, and V, is the component of vector V in the z direction. Such a vector
can be stored in a rank 1 array containing three elements, since there are three dimen-
sions in the coordinate system. The same idea applies to an n-dimensional vector. An
n-dimensional vector can be stored in a rank 1 array containing n elements. This is the
reason why rank 1 arrays are sometimes called vectors.

One common mathematical operation between two vectors is the dot product. The
dot product of two vectors Vi =V i+ Vy; j+ Vykand V, = Vi +Vp j+ Vokis
a scalar quantity defined by the equation

VieVo =V Vo + Vy Vi + V1V, (6-8)

Write a Fortran program that will read two vectors V; and V, into two 1D arrays in
computer memory, and then calculate their dot product according to the equation given
above. Test your program by calculating the dot product of vectors V; = 5i — 3j + 2k
and V, =2i + 3j + 4k.

Power Supplied to an Object If an object is being pushed by a force F at a velocity v
(Figure 6-20), then the power supplied to the object by the force is given by the equation

P=Fev (6-9)

where the force F is measured in newtons, the velocity v is measured in meters per sec-
ond, and the power P is measured in watts. Use the Fortran program written in the Exer-
cise 6-14 to calculate the power supplied by a force of F = 4i + 3j — 2k newtons to an
object moving with a velocity of v = 4i — 2j + 1k meters per second.

T

FIGURE 6-20
A force F applied to an object moving with velocity v.

Introduction to Arrays

6-16.

6-17.

6-18.

6-19.

295

Cross Product Another common mathematical operation between two vectors is the
cross product. The cross product of two vectors V,=V,i+ V, j+ V,;k and
V,=Vypi + Vy j+ V, Kkis a vector quantity defined by the equation

VixX Vo= (Vy Vo = VoV + (ViVio = VaVi)j +(Va Vi, — Vi Vik (6-10)

Write a Fortran program that will read two vectors V; and V, into arrays in computer
memory, and then calculate their cross product according to the equation given above.
Test your program by calculating the cross product of vectors V| = 5i — 3j + 2k and
V, =2i+3j+4k.

Velocity of an Orbiting Object The vector angular velocity @ of an object moving with
a velocity v at a distance r from the origin of the coordinate system (Figure 6-21) is
given by the equation

V=rXw (6-11)

where r is the distance in meters, ® is the angular velocity in radians per second, and v
is the velocity in meters per second. If the distance from the center of the earth to an
orbiting satellite is r = 300,000i + 400,000j + 50,000k meters, and the angular velocity
of the satellite is @ = —6 X 1073 + 2 x 1073j — 9 x 10k radians per second, what is the
velocity of the satellite in meters per second? Use the program written in the previous
exercise to calculate the answer.

Program stats_4 in Example 6-4 will behave incorrectly if a user enters an invalid
value in the input data set. For example, if the user enters the characters 1. 0 instead
of 1.0 on a line, then the READ statement will return a nonzero status for that line.
This nonzero status will be misinterpreted as the end of the data set, and only a
portion of the input data will be processed. Modify the program to protect against
invalid values in the input data file. If a bad value is encountered in the input data
file, the program should display the line number containing the bad value, and skip it.
The program should process all of the good values in the file, even those after a
bad value.

In Set Theory, the union of two sets is the list of all elements that appear in either (or
both) of the sets, and the intersection of the two sets is the list of all elements that appear
in both sets only. For example, if one set A consists of the elements

Ae {1 37625}

FIGURE 6-21
Calculating the velocity of an object in orbit.

296

6-20.

CHAPTER 6: Introduction to Arrays

and a second set B consists of the elements
Be {-120589}
then the union of the two sets would be
AUBe{-1012356789}
and the intersection of the two sets would be
ANBe {25}

Write a program that will read in two arrays of integers representing the elements of two
sets from two different user-specified input files, and calculate both the union and the
intersection of the two sets. Use arrays to contain the input sets, and also to build both
the union and the intersection. Note that the input sets may not be sorted in order, so
your algorithm must work regardless of the order in which set elements are entered.

Test your program on two files named inputA.dat and inputB.dat, containing
the following two sets:

File inputA.dat: 0,1,-3,5,-11,6,8,11,17, 15
File inputB.dat: 0,-1,3,7,-6,16,5, 12,21

The location of any point P in a 3D space can be represented by a set of three values
(x, y, 2), where x is the distance along the x axis to the point, y is the distance along the
y axis to the point, and z is the distance along the z axis to the point. Thus, a point can
be represented by a three-element vector containing the values x, y, and z. If two points
P, and P, are represented by the values (xi, y;, z;) and (x5, ¥, 22), then the distance
between the points P, and P, can be calculated from the equation

distance = \/(xl — x2)2 + (- y2)2 + (71 — 12)2 (6-12)

Write a Fortran program to read in two points (x;, y;, z;) and (x,, ¥», 2), and to calculate
the distance between them. Test your program by calculating the distance between the
points (—1, 4, 6) and (1, 5, —2).

7

Introduction to Procedures

OBJECTIVES

e Learn how Fortran procedures help with good program design.

* Know the difference between a subroutine and a function.

* Be able to create and call subroutines.

* Understand and be able to use the INTENT attribute.

e Understand the pass-by-reference scheme for variable passing.

e Understand the differences among explicit-shape dummy arrays, assumed-shape
dummy arrays, and assumed-size dummy arrays.

e Understand why assumed-size dummy arrays should never be used.

* Know how to share data between procedures using modules.

e Understand explicit interfaces, and why it is good to define procedures within
modules.

* Be able to create and invoke user-defined functions.

* Know how to pass Fortran procedures as calling arguments to other procedures.

In Chapter 3, we learned the importance of good program design. The basic technique
that we employed is top-down design. In top-down design, the programmer starts
with a statement of the problem to be solved and the required inputs and outputs. Next,
he or she describes the algorithm to be implemented by the program in broad outline,
and applies decomposition to break the algorithm down into logical subdivisions
called subtasks. Then, the programmer breaks down each subtask until he or she winds
up with many small pieces, each of which does a simple, clearly understandable job.
Finally, the individual pieces are turned into Fortran code.

Although we have followed this design process in our examples, the results have
been somewhat restricted, because we have had to combine the final Fortran code
generated for each subtask into a single large program. There has been no way to code,
verify, and test each subtask independently before combining them into the final
program.

Fortunately, Fortran has a special mechanism designed to make subtasks easy to
develop and debug independently before building the final program. It is possible to

297

298

CHAPTER 7: Introduction to Procedures

code each subtask as a separate program unit' called an external procedure, and
each external procedure can be compiled, tested, and debugged independently all of
the other subtasks (procedures) in the program.?

There are two kinds of external procedures in Fortran: subroutines and function
subprograms (or just functions). Subroutines are procedures that are invoked by
naming them in a separate CALL statement, and that can return multiple results through
calling arguments. Functions subprograms are procedures that are invoked by naming
them in an expression, and whose result is a single value that is used in the evaluation
of the expression. Both type of procedures will be described in this chapter.

Well-designed procedures enormously reduce the effort required on a large pro-
gramming project. Their benefits include:

1. Independent testing of subtasks. Each subtask can be coded and compiled as an
independent unit. The subtask can be tested separately to ensure that it performs
properly by itself before combining it into the larger program. This step is known
as unit testing. It eliminates a major source of problems before the final program
is even built.

2. Reusable code. In many cases, the same basic subtask is needed in many parts of
a program. For example, it may be necessary to sort a list of values into ascending
order many different times within a program, or even in other programs. It is
possible to design, code, test, and debug a single procedure to do the sorting, and
then to reuse that procedure whenever sorting is required. This reusable code has
two major advantages: It reduces the total programming effort required, and it
simplifies debugging, since the sorting function only needs to be debugged once.

3. Isolation from unintended side effects. Subprograms communicate with the
main programs that invoke them through a list of variables called an argument
list. The only variables in the main program that can be changed by the procedure
are those in the argument list. This is very important, since accidental program-
ming mistakes can only affect the variables in the procedure in which the mistake
occurred.

Once a large program is written and released, it has to be maintained. Program
maintenance involves fixing bugs and modifying the program to handle new and
unforeseen circumstances. The programmer who modifies a program during mainte-
nance is often not the person who originally wrote it. In poorly written programs, it is
common for the programmer modifying the program to make a change in one region of
the code, and to have that change cause unintended side effects in a totally different part
of the program. This happens because variable names are reused in different portions of
the program. When the programmer changes the values left behind in some of the vari-
ables, those values are accidentally picked up and used in other portions of the code.

! A program unit is a separately compiled portion of a Fortran program. Main programs, subroutines, and
function subprograms are all program units.

2 Fortran also supports internal procedures, which are procedures entirely contained within another pro-
gram unit. Internal procedures will be described in Chapter 9. Unless otherwise indicated, the references in
this chapter to procedures, subroutines, and functions refer to external procedures, external subroutines,
and external functions.

Introduction to Procedures 299

The use of well-designed procedures minimizes this problem by data hiding. All
of the variables in the procedure except for those in the argument list are not visible to
the main program, and therefore mistakes or changes in those variables cannot acci-
dentally cause unintended side effects in the other parts of the program.

Good Programming Practice

Break large program tasks into procedures whenever practical to achieve the
important benefits of independent component testing, reusability, and isolation
from undesired side effects.

B

We will now examine the two different types of Fortran procedures: subroutines
and functions.

7.1
SUBROUTINES

A subroutine is a Fortran procedure that is invoked by naming it in a CALL statement,
and that receives its input values and returns its results through an argument list. The
general form of a subroutine is

SUBROUTINE subroutine_name (argument_list)
(Declaration section)
(Execution section)
RETURN
END SUBROUTINE [subroutine_namel
The SUBROUTINE statement marks the beginning of a subroutine. It specifies the name
of the subroutine and the argument list associated with it. The subroutine name must
follow standard Fortran conventions: It may be up to 63 characters long and contain
both alphabetic characters and digits, but the first character must be alphabetic. The
argument list contains a list of the variables and/or arrays that are being passed from
the calling program to the subroutine. These variables are called dummy arguments,
since the subroutine does not actually allocate any memory for them. They are just
placeholders for actual arguments that will be passed from the calling program unit
when the subroutine is invoked.

Note that like any Fortran program, a subroutine must have a declaration section
and an execution section. When a program calls the subroutine, the execution of the
calling program is suspended, and the execution section of the subroutine is run. When
a RETURN or END SUBROUTINE statement is reached in the subroutine, the calling pro-
gram starts running again at the line following the subroutine call.

Each subroutine is an independent program unit, beginning with a SUBROUTINE
statement and terminated by an END SUBROUTINE statement. It is compiled separately

300

CHAPTER 7: Introduction to Procedures

from the main program and from any other procedures. Because each program unit in
a program is compiled separately, local variable names and statement labels may be
reused in different routines without causing an error.

Any executable program unit may call a subroutine, including another subroutine.
(However, a subroutine may not call itself unless it is declared to be recursive; recur-
sion will be explained in Chapter 13.) To call a subroutine, the calling program uses a
CALL statement. The form of a CALL statement is

CALL subroutine_name (argument_1list)

where the order and type of the actual arguments in the argument list must match the
order and type of the dummy arguments declared in the subroutine.

A simple example subroutine is shown in Figure 7-1. This subroutine calculates
the hypotenuse of a right triangle from the lengths of the other two sides.

FIGURE 7-1

A simple subroutine to calculate the hypotenuse of a right triangle.

SUBROUTINE calc_hypotenuse (side_1, side_2, hypotenuse)
Purpose:

To calculate the hypotenuse of a right triangle from the two
other sides.

Date Programmer Description of change

11/22/15 S. J. Chapman Original code

|
|
|
|
|
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare calling parameter types & definitions

REAL, INTENT(CIN) :: side_l ! Length of side 1
REAL, INTENT(IN) :: side_2 I Length of side 2
REAL, INTENT(OUT) :: hypotenuse I Length of hypotenuse

! Data dictionary: declare local variable types & definitions
REAL :: temp I Temporary variable

I Calculate hypotenuse
temp = side_1**2 + side_2**2
hypotenuse = SQRT (temp)

END SUBROUTINE calc_hypotenuse

This subroutine has three arguments in its dummy argument list. Arguments
side_1 and side_2 are placeholders for real values containing the lengths of sides 1
and 2 of the triangle. These dummy arguments are used to pass data to the subroutine
but are not changed inside the subroutine, so they are declared to be input values with
the "INTENTCIN)" attribute. Dummy argument hypotenuse is a placeholder for a
real variable that will receive the length of the hypotenuse of the triangle. The value of

Introduction to Procedures 301

hypotenuse is set in the subroutine, so it is declared to be an output variable with the
"INTENT(OUT)" attribute.

The variable temp is actually defined within the subroutine. It is used in the
subroutine, but it is not accessible to any calling program. Variables that are used
within a subroutine and that are not accessible by calling programs are called local
variables.

Finally, the RETURN statement in the subroutine is optional. Execution automatically
returns to the calling program when the END SUBROUTINE statement is reached.
A RETURN statement is only necessary when we wish to return to the calling program
before the end of the subroutine is reached. As a result, the RETURN statement is
rarely used.

To test a subroutine, it is necessary to write a program called a test driver pro-
gram. The test driver program is a small program that calls the subroutine with a
sample data set for the specific purpose of testing it. A test driver program for subrou-
tine calc_hypotenuse is shown in Figure 7-2:

FIGURE 7-2
A test driver program for subroutine calc_hypotenuse.

PROGRAM test_calc_hypotenuse

Purpose:
Program to test the operation of subroutine calc_hypotenuse.

|
|
|
|
I Record of revisions:

! Date Programmer Description of change
|

|

|

I

11/22/15 S. J. Chapman Original code
IMPLICIT NONE

! Data dictionary: declare variable types & definitions

REAL :: sl I Length of side 1
REAL :: s2 ! Length of side 2
REAL :: hypot I Hypotenuse

I Get the Tengths of the two sides.

WRITE (*,*) 'Program to test subroutine calc_hypotenuse: '
WRITE (*,*) 'Enter the length of side 1: '

READ (*,*) sl

WRITE (*,*) 'Enter the length of side 2: '

READ (*,*) s2

I Call calc_hypotenuse.
CALL calc_hypotenuse (sl1, s2, hypot)

I Write out hypotenuse.
WRITE (*,1000) hypot
1000 FORMAT ('The length of the hypotenuse is: ', F10.4)

END PROGRAM test_calc_hypotenuse

302

CHAPTER 7: Introduction to Procedures

This program calls subroutine calc_hypotenuse with an actual argument list of
variables s1, s2, and hypot. Therefore, wherever the dummy argument side_1
appears in the subroutine, variable s1 is really used instead. Similarly, the hypotenuse
is really written into variable hypot.

7.1.1 Example Problem—Sorting

Let us now reexamine the sorting problem of Example 6-3, using subroutines where
appropriate.

EXAMPLE
7-1

Sorting Data:

Develop a program to read in a data set from a file, sort it into ascending order, and
display the sorted data set. Use subroutines where appropriate.

SOLUTION

The program in Example 6-3 read an arbitrary number of real input data values from a
user-supplied file, sorted the data into ascending order, and wrote the sorted data to the
standard output device. The sorting process would make a good candidate for a sub-
routine, since only the array a and its length nvals are in common between the sorting
process and the rest of the program. The rewritten program using a sorting subroutine
is shown in Figure 7-3:

FIGURE 7-3
Program to sort real data values into ascending order using a Sort subroutine.

PROGRAM sort3

Purpose:
To read in a real input data set, sort it into ascending order
using the selection sort algorithm, and to write the sorted
data to the standard output device. This program calls subroutine
"sort" to do the actual sorting.

Record of revisions:
Date Programmer Description of change

11/22/15 S. J. Chapman Original code

!
!
!
!
!
!
!
!
!
!
!
!
I

MPLICIT NONE

! Data dictionary: declare constants
INTEGER, PARAMETER :: MAX_SIZE = 10 ! Max input data size

! Data dictionary: declare variable types & definitions

(continued)

Introduction to Procedures 303

(continued)

REAL, DIMENSION(MAX_SIZE) :: a
LOGICAL :: exceed = .FALSE.

! Data array to sort
! Logical indicating that array
! Timits are exceeded.
CHARACTER(1en=20) :: filename ! Input data file name
INTEGER :: i I Loop index
CHARACTER(1en=80) :: msg I Error message
INTEGER :: nvals =0 I Number of data values to sort
INTEGER :: status 1 1/0 status: 0 for success
REAL :: temp I Temporary variable for reading

I Get the name of the file containing the input data.

WRITE (*,*) '"Enter the file name with the data to be sorted: '
READ (*,1000) filename

1000 FORMAT (A20)

! Open input data file. Status is OLD because the input data must
I already exist.

OPEN (UNIT=9, FILE=filename, STATUS='OLD', ACTION='READ', &

I0STAT=status, IOMSG=msg)
I Was the OPEN successful?
fileopen: IF (status == 0) THEN I Open successful

! The file was opened successfully, so read the data to sort
I from it, sort the data, and write out the results.
I First read in data.

DO
READ (9, *, IOSTAT=status) temp I Get value
IF (status /=0) EXIT I Exit on end of data
nvals = nvals + 1 I Bump count
size: IF (nvals <= MAX_SIZE) THEN ! Too many values?
a(nvals) = temp ! No: Save value in array
ELSE
exceed = .TRUE. I Yes: Array overflow
END IF size
END DO

! Was the array size exceeded? If so, tell user and quit.
toobig: IF (exceed) THEN

WRITE (*,1010) nvals, MAX_SIZE

1010 FORMAT (' Maximum array size exceeded: ', I6, ' > ', 16)
ELSE

I Limit not exceeded: sort the data.
CALL sort (a, nvals)

I Now write out the sorted data.
WRITE (*,"(A)") ' The sorted output data values are: '
WRITE (*,'(3X,F10.4)") (a(i), i =1, nvals)

END IF toobig

(continued)

304 CHAPTER 7: Introduction to Procedures

(concluded)
ELSE fileopen

! Else file open failed. Tell user.
WRITE (*,1050) TRIM(msg)
1050 FORMAT ('File open failed--error ="', A)

END IF fileopen

END PROGRAM sort3

| kkkkkkkkhkkhkhkkhkhkhkhhkhkhhhkhkkhkhkhkhkhkhkhkhhkkhkkhkhhkhhkhhhhkhkkhkhkhkhkhkkhhhkkhkhkhkhkhkhkhhkhhhikx
I xkkkkkkkkkkhkhkhhkhkhhhkhhhkhhhkhhhkhrhhdrhhhrhkhrhhdrkhkdrhkrrhkix

SUBROUTINE sort (arr, n)

1

! Purpose:

! To sort real array "arr" into ascending order using a selection
! sort.

|

I

MPLICIT NONE

! Data dictionary: declare calling parameter types & definitions
INTEGER, INTENT(CIN) :: n ! Number of values
REAL, DIMENSION(n), INTENTCINOUT) :: arr ! Array to be sorted

! Data dictionary: declare local variable types & definitions
INTEGER :: i ! Loop index

INTEGER :: iptr ! Pointer to smallest value
INTEGER :: j ! Loop index

REAL :: temp ! Temp variable for swaps

! Sort the array
outer: DO i =1, n-1

! Find the minimum value in arr(I) through arr(N)
iptr = i
inner: DO j = i+l, n
minval: IF (arr(j) < arr(iptr)) THEN
iptr =
END IF minval
END DO inner

! iptr now points to the minimum value, so swap arr(iptr)
! with arr(i) if i [= iptr.
swap: IF (i [= iptr) THEN

temp = arr(i)
arr(i) = arr(iptr)
arr(iptr) = temp

END IF swap

END DO outer

END SUBROUTINE sort

Introduction to Procedures 305

This new program can be tested just as the original program was, with identical
results. If the following data set is placed in file input2:

then the results of the test run will be:

C:\book\fortran\chap7>sort3
Enter the file name containing the data to be sorted:
input2
The sorted output data values are:
-6.0000
-3.0000
.0000
.0000
.0000

The program gives the correct answers for our test data set, as before.

Subroutine sort performs the same function as the sorting code in the original
example, but now sort is an independent subroutine that we can reuse unchanged
whenever we need to sort any array of real numbers.

Note that the array was declared in the sort subroutine as

REAL, DIMENSION(n), INTENTCINOUT) :: arr ! Array to be sorted

The statement tells the Fortran compiler that dummy argument arr is an array whose
length is n, where n is also a calling argument. The dummy argument arr is only a
placeholder for whatever array is passed as an argument when the subroutine is called.
The actual size of the array will be the size of the array that is passed from the calling
program.

Also, note that n was declared to be an input parameter before it was used to de-
fine arr. Most compilers will require n to be declared first, so that its meaning is
known before it is used in the array declaration. If the order of the declarations were
reversed, most compilers will generate an error saying that n is undefined when arr is
declared.

Finally, note that the dummy argument arr was used both to pass the data to sub-
routine sort and to return the sorted data to the calling program. Since it is used for
both input and output, it is declared with the INTENT(INOUT) attribute.

306

CHAPTER 7: Introduction to Procedures

7.1.2 The INTENT Attribute

Dummy subroutine arguments can have an INTENT attribute associated with them.
The INTENT attribute is associated with the type declaration statement that declares
each dummy argument. The attribute can take one of three forms:

INTENTCIN) Dummy argument is used only to pass
input data to the subroutine.
INTENT(OUT) Dummy argument is used only to return
results to the calling program.
INTENTCINOUT) Dummy argument is used both to pass
or input data to the subroutine and to return
INTENTC(IN OUT) results to the calling program.

The purpose of the INTENT attribute is to tell the compiler how the programmer
intends each dummy argument to be used. Some arguments may be intended only to
provide input data to the subroutine, and some may be intended only to return results
from the subroutine. Finally, some may be intended to both provide data and return
results. The appropriate INTENT attribute should always be declared for each
argument.’

Once the compiler knows what we intend to do with each dummy argument, it can
use that information to help catch programming errors at compile time. For example,
suppose that a subroutine accidentally modifies an input argument. Changing that
input argument will cause the value of the corresponding variable in the calling pro-
gram to be changed, and the changed value will be used in all subsequent processing.
This type of programming error can be very hard to locate, since it is caused by the
interaction between procedures.

A simple example is shown below. Here subroutine subl calculates an output
value, but also accidentally modifies its input value.

SUBROUTINE subl(input,output)
IMPLICIT NONE

REAL, INTENT(CIN) :: input
REAL, INTENT(OUT) :: output

output = 2. * input
input = -1. ! This Tine is an error!
END SUBROUTINE subl

By declaring our intent for each dummy argument, the compiler can spot this error for
us at compilation time. When this subroutine is compiled with the Intel Fortran com-
piler, the results are

3 The intent of a dummy argument may also be declared in a separate INTENT statement of the form

INTENTCIN) :: argl, arg2, ...

Introduction to Procedures 307

C: \book\fortran\chap7>ifort subl.f90

Intel(R) Visual Fortran Intel(R) 64 Compiler for applications running on
Intel(R) 64, Version 16.0.2.180 Build 20160204

Copyright (C) 1985-2016 Intel Corporation. A1l rights reserved.

sub1.f90(7): error #6780: A dummy argument with the INTENT(IN) attribute
shall not be defined nor become undefined. [INPUTI

input = -1.

A

compilation aborted for subl.f90 (code 1)

Similarly, a variable declared with INTENT(OUT) must be defined within the sub-
routine, or the compiler will produce an error.

The INTENT attribute is only valid for dummy procedure arguments. It is an error
to declare the intent of local variables in a subroutine, or of variables in a main
program.

As we will see later, declaring the intent of each dummy argument will also help
us spot errors that occur in the calling sequence between procedures. You should

always declare the intent of every dummy argument in every procedure. -
7

Always declare the intent of every dummy argument in every procedure.

&J@ Good Programming Practice

7.1.3 Variable Passing in Fortran: The Pass-By-Reference Scheme

Fortran programs communicate with their subroutines using a pass-by-reference
scheme. When a subroutine call occurs, the main program passes a pointer to the loca-
tion in memory of each argument in the actual argument list. The subroutine looks at
the memory locations pointed to by the calling program to get the values of the dummy
arguments it needs. This process is illustrated in Figure 7-4.

The figure shows a main program test calling a subroutine subl. There are three
actual arguments being passed to the subroutine, a real variable a, a four-element real
array b, and an integer variable next. These variables occupy memory addresses 001,
002-005, and 006 respectively in some computer. Three dummy arguments are de-
clared in subl: a real variable x, a real array y, and an integer variable i. When the
main program calls subl, what is passed to the subroutine are the pointers to the
memory locations containing the calling arguments: 001, 002, and 006. Whenever
variable x is referred to in the subroutine, the contents of memory location 001 are
accessed, etc. This parameter passing scheme is called pass-by-reference, since only
pointers to the values are passed to the subroutine, not the actual values themselves.

There are some possible pitfalls associated with the pass-by-reference scheme.
The programmer must ensure that the values in the calling argument list match the
subroutine’s calling parameters in number, type, and order. If there is a mismatch, the
Fortran program will not be able to recognize that fact, and it will misuse the parame-
ters without informing you of the problem. This is the most common error made by

308

PROGRAM test
REAL :: a, b(4)

PROGRAM test INTEGER :: next

END PROGRAM test

REAL, INTENT(OUT)

SUBROUTINE subl REAL, INTENTCIN)
INTEGER :: 1

END SUBROUTINE subl
(a)

FIGURE 7-4

éALL subl (a, b, next)

SUBROUTINE subl (x,

-; y(*)

CHAPTER 7: Introduction to Procedures

Main 5
Memory address program SUDES;Zjne
name
|
|
|
001 a X

|
|

002 b(1) | y(1)
y, i) !
et X I

003 b(2) | y(2)
|
|

004 b(3) | y(3)
|
|

005 b(4) | y(4)
|
|

006 next ! i

|
|
007 |
|

(b)

The pass-by-reference memory scheme. Note that only pointers to the memory addresses of the actual arguments

are passed to the subroutine.

programmers when using Fortran subroutines. For example, consider the program

shown in Figure 7-5:

FIGURE 7-5

Example illustrating the effects of a type mismatch when calling a subroutine.

PROGRAM bad_call
!

! Purpose:

! To illustrate misinterpreted calling arguments.

|

IMPLICIT NONE

REAL :: x = 1.

CALL bad_argument (x)
END PROGRAM bac_call

SUBROUTINE bad_argument (i)
IMPLICIT NONE

INTEGER :: i

WRITE (*,*) 'i =", 1

END SUBROUTINE bad_argument

I Declare real variable x.
I Call subroutine.

I Declare argument as integer.
I Write out 1.

The argument in the call to subroutine bad_argument is real, but the correspond-
ing dummy argument is type integer. Fortran will pass the address of the real variable x

Introduction to Procedures 309

to the subroutine, which will then treat it as an integer. The results are quite bad. When
the program is compiled with the Intel Fortran compiler, we get:

C:\book\fortran\chap7>bad_call
I = 1065353216

Another serious problem can occur if a variable is placed in the calling argu-
ment list in a position at which an array is expected. The subroutine cannot tell the
difference between a variable and an array, so it will treat the variable and the vari-
ables following it in memory as though they were all part of one big array! This
behavior can produce a world of problems. A subroutine containing a variable
named X in its calling sequence could wind up modifying another variable y that
wasn’t even passed to the subroutine, just because y happens to be allocated after x
in the computer’s memory. Problems like that can be extremely difficult to find and
debug.

In Section 7.3, we will learn how to get a Fortran compiler to automatically check
the number, type, intent, and order of each argument in each subroutine call, so that the
compiler can catch these errors for us at compilation time.

Programming Pitfalls

Make sure that the values in the argument list of a subroutine call match the subrou-
tine’s declared parameters in number, type, and order. Very bad results may occur if
you do not ensure that the arguments match properly.

7.1.4 Passing Arrays to Subroutines

A calling argument is passed to a subroutine by passing a pointer to the memory loca-
tion of the argument. If the argument happens to be an array, then the pointer points to
the first value in the array. However, the subroutine needs to know both the location
and the size of the array to ensure that it stays within the boundaries of the array, and
in order to perform array operations. How can we supply this information to the
subroutine?

There are three possible approaches to specifying the length of a dummy array in
a subroutine. One approach is to pass the bounds of each dimension of the array to the
subroutine as arguments in the subroutine call, and to declare the corresponding
dummy array to be that length. The dummy array is thus an explicit-shape dummy
array, since each of its bounds is explicitly specified. If this is done, the subroutine
will know the shape of each dummy array when it is executed. Since the shape of the
array is known, the bounds checkers on most Fortran compilers will be able to detect
and report out-of-bounds memory references. For example, the following code de-
clares two arrays datal and data?2 to be of extent n, and then processes nvals values
in the arrays. If an out-of-bounds reference occurs in this subroutine, it can be detected
and reported.

310

CHAPTER 7: Introduction to Procedures

SUBROUTINE process (datal, data2, n, nvals)

INTEGER, INTENT(IN) :: n, nvals

REAL, INTENT(IN), DIMENSION(n) :: datal ! Explicit shape
REAL, INTENT(OUT), DIMENSION(n) :: data2 ! Explicit shape

DO i =1, nvals

data2(i) = 3. * datal(i)
END DO
END SUBROUTINE process

When explicit-shape dummy arrays are used, the size and shape of each dummy
array is known to the compiler. Since the size and shape of each array is known, it is
possible to use array operations and array sections with the dummy arrays. The follow-
ing subroutine uses array sections; it will work because the dummy arrays are explicit-
shape arrays.

SUBROUTINE process2 (datal, data2, n, nvals)

INTEGER, INTENTCIN) :: nvals

REAL, INTENTCIN), DIMENSION(n) :: datal ! Explicit shape
REAL, INTENT(OUT), DIMENSION(n) :: data2 ! Explicit shape

data2(l:nvals) = 3. * datal(l:nvals)
END SUBROUTINE process?2

A second approach is to declare all dummy arrays in a subroutine as
assumed-shape dummy arrays and to create an explicit interface to the subroutine.
This approach will be explained in Section 7.3.

The third (and oldest) approach is to declare the length of each dummy array
with an asterisk as an assumed-size dummy array. In this case, the compiler
knows nothing about the length of the actual array passed to the subroutine. Bounds
checking, whole array operations, and array sections will not work for assumed-size
dummy arrays, because the compiler does not know the actual size and shape of the
array. For example, the following code declares two assumed-size dummy arrays
datal and data2, and then processes nvals values in the arrays.

SUBROUTINE process3 (datal, data2, nvals)

REAL, INTENTCIN), DIMENSION(*) :: datal ! Assumed size
REAL, INTENT(OUT), DIMENSION(*) :: data2 ! Assumed size
INTEGER, INTENTCIN) :: nvals

DO i =1, nvals

data2(i) = 3. * datal(i)
END DO
END SUBROUTINE process3

Arrays datal and data2 must be at least nvals values long. If they are not, the
Fortran code will either abort with an error at runtime or overwrite other locations in
memory. Subroutines written like this are hard to debug, since the bounds checking
option of most compilers will not work for unknown-length arrays. They also cannot
use whole array operations or array sections.

Assumed-size dummy arrays are a holdover from earlier versions of Fortran. They
should never be used in any new programs.

Introduction to Procedures 311

Good Programming Practice
Use explicit-shape or assumed-shape dummy arrays in all new procedures. This

permits whole array operations to be used within the procedure. It also allows for
easier debugging, since out-of-bounds references can be detected. Assumed-size
dummy arrays should never be used. They are undesirable, and are likely to be
eliminated from a future version of the Fortran language.

EXAMPLE Bounds Checking in Subroutines:
7-2
Write a simple Fortran program containing a subroutine that oversteps the limits of an
array in its argument list. Compile and execute the program both with bounds checking
turned off and with bounds checking turned on.

SOLUTION
The program in Figure 7-6 allocates a 5-element array a. It initializes all the elements
of a to zero, and then calls subroutine subl. Subroutine subl modifies six elements

of array a, despite the fact that a has only five elements.

FIGURE 7-6
A program illustrating the effect of exceeding the boundaries of an array in a subroutine.

PROGRAM array?2

Purpose:
To illustrate the effect of accessing an out-of-bounds
array element.

Date Programmer Description of change

11/22/15 S. J. Chapman Original code

|
|
|
|
|
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! DecTare the and initialize the variables used in this program.
INTEGER :: i I Loop index

REAL, DIMENSION(5) :: a = 0. ! Array

I Call subroutine subl.
CALL subl(a, 5, 6)

! Write out the values of array a

DO i=1,6

WRITE (*,100) i, a(i)

100 FORMAT ¢ 'A(C", I1, ') ="', F6.2)
END DO

(continued)

312 CHAPTER 7: Introduction to Procedures

(concluded)

| kkkkkkkhkhkkkhkkhkkhkhkhhkhhhhhkkhkhkhkhkhkkhkhkhkhhkhhhhhhhkhkkhkhhkhkkhkhkhhkhhhkhkrkhkhkhkhhkhhtxx
[EFxxxkkkkkkkkhkhhhhrrrrrhhhhkhkhkhhhhhhrrxrrrkhhkhhhhhhhhhdrrxrrrrhkkkrk

END PROGRAM array?2

SUBROUTINE subl (a, ndim, n)
IMPLICIT NONE

INTEGER, INTENTCIN) :: ndim I size of array
REAL, INTENT(OUT), DIMENSION(ndim) :: a ! Dummy argument
INTEGER, INTENTCIN) :: n | # elements to process
|

INTEGER :: i I Loop index
DO i =1, n

a(i) =i
END DO

END SUBROUTINE subl

When this program is compiled with the Intel Fortran compiler with bounds checking
turned off, the result is

C:\book\fortran\chap7>array2

a(l) = 1.00
a(2) = 2.00
a(3) = 3.00
a(4) = 4.00
a(5) = 5.00
a(6) = 6.00

In this case, the subroutine has written beyond the end of array a, into memory that was
allocated for some other purpose. If this memory were allocated to another variable,
then the contents of that variable would have been changed without the user knowing
that anything can happen. This can produce a very subtle and hard to find bug!

If the program is recompiled with the Intel Fortran compiler with bounds checking
turned on, the result is

C:\book\fortran\chap7>array2
forrt1: severe (408): fort: (10): Subscript #1 of the array A has value 6
which is greater than the upper bound of 5

Image PC Routine Line Source

array?2.exe 00007FF60DA3B81E Unknown Unknown Unknown
array2.exe 00007FF60DA31383 Unknown Unknown Unknown
array?2.exe 00007FF60DA31085 Unknown Unknown Unknown
array?2.exe 00007FF60DA8132E Unknown Unknown Unknown
array2.exe 00007FF60DA81BE8 Unknown Unknown Unknown
KERNEL32.DLL 00007FFA56B38102 Unknown Unknown Unknown
ntd11.d11 00007FFA594DC5B4 Unknown Unknown Unknown

Here the program detected the out-of-bounds reference and shut down after telling the
user where the problem occurred.

Introduction to Procedures 313

7.1.5 Passing Character Variables to Subroutines

When a character variable is used as a dummy subroutine argument, the length of the
character variable is declared with an asterisk. Since no memory is actually allocated
for dummy arguments, it is not necessary to know the length of the character argument
when the subroutine is compiled. A typical dummy character argument is shown
below:

SUBROUTINE sample (string)
CHARACTER(1en=*), INTENT(IN) :: string

When the subroutine is called, the length of the dummy character argument will
be the length of the actual argument passed from the calling program. If we need to
know the length of the character string passed to the subroutine during execution, we
can use the intrinsic function LEN() to determine it. For example, the following sim-
ple subroutine displays the length of any character argument passed to it.

SUBROUTINE sample (string)
CHARACTER(Ten=*), INTENT(IN) :: string 7
WRITE (*,'(A,I3)') 'Length of variable = ', LEN(string)

END SUBROUTINE sample

7.1.6 Error Handling in Subroutines

What happens if a program calls a subroutine with insufficient or invalid data for
proper processing? For example, suppose that we are writing a subroutine that sub-
tracts two input variables and takes the square root of the result. What should we do if
the difference of the two variables is a negative number?

SUBROUTINE process (a, b, result)
IMPLICIT NONE

REAL, INTENTCIN) :: a, b

REAL, INTENT(OUT) :: result

REAL :: temp

temp =a - b

result = SQRT (temp)

END SUBROUTINE process

For example, suppose that a is 1 and b is 2. If we just process the values in the subrou-
tine, a runtime error will occur when we attempt to take the square root of a negative
number, and the program will abort. This is clearly not an acceptable result.

An alternative version of the subroutine is shown below. In this version, we test
for a negative number, and if one is present, we print out an informative error message
and stop.

SUBROUTINE process (a, b, result)
IMPLICIT NONE

REAL, INTENT(IN) :: a, b

REAL, INTENT(OUT) :: result

314

CHAPTER 7: Introduction to Procedures

REAL :: temp

temp =a - b

IF (temp >= 0.) THEN
result = SQRT (temp)

ELSE
WRITE (*,*) 'Square root of negative value in subroutine "process"!'
STOP

END IF

END SUBROUTINE process

While better than the previous example, this design is also bad. If temp is ever nega-
tive, the program will just stop without ever returning from subroutine process. If
this happens, the user will lose all of the data and processing that has occurred up to
that point in the program.

A much better way to design the subroutine is to detect the possible error condi-
tion, and to report it to the calling program by setting a value into an error flag. The
calling program can then take appropriate actions about the error. For example, it can
be designed to recover from the error, if possible. If not, it can at least write out an
informative error message, save the partial results calculated so far, and then shut
down gracefully.

In the example shown below, a O returned in the error flag means successful com-
pletion, and a 1 means that the square-root-of-a-negative-number error occurred.

SUBROUTINE process (a, b, result, error)
IMPLICIT NONE
REAL, INTENT(CIN) :: a, b
REAL, INTENT(OUT) :: result
INTEGER, INTENT(OUT) :: error
REAL :: temp
temp =a - b
IF (temp >= 0.) THEN
result = SQRT (temp)

error = 0
ELSE

result =0

error =1
END IF

END SUBROUTINE process

Programming Pitfalls

Never include STOP statements in any of your subroutines. If you do, you might
create a working program, and release it to users, only to find that it mysteriously
halts from time to time on certain unusual data sets.

Good Programming Practice

If there are possible error conditions within a subroutine, you should test for them,
and set an error flag to be returned to the calling program. The calling program should
test for the error conditions after a subroutine call, and take appropriate actions.

Introduction to Procedures 315

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 7.1. If you have trouble with the quiz, reread the section, ask
your instructor, or discuss the material with a fellow student. The answers to this
quiz are found in the back of the book.

For questions 1 through 3, determine whether the subroutine calls are correct or
not. If they are in error, specify what is wrong with them.

1. PROGRAM testl
REAL, DIMENSION(120) :: a
REAL :: average, sd
INTEGER :: n

éALL ave_sd (a, 120, n, average, sd)

END PROGRAM testl

SUBROUTINE ave_sd(array, nvals, n, average, sd)
REAL, INTENT(IN) :: nvals, n

REAL, INTENT(IN), DIMENSION(nvals) :: array
REAL, INTENT(OUT) :: average, sd

END SUBROUTINE ave_sd

2. PROGRAM test?2
CHARACTER(Ten=12) :: strl, str2
strl = "ABCDEFGHIJ'
CALL swap_str (strl, str2)
WRITE (*,*) strl, str2
END PROGRAM test?2
SUBROUTINE swap_str (stringl, string2)
CHARACTER(Ten=*),INTENT(IN) :: stringl
CHARACTER(Ten=*),INTENT(OUT) :: string2
INTEGER :: i, Tength
Tength = LEN(stringl)
DO i = 1, Tength

string2(length-i+l:1ength-i+1) = stringl(i:i)

END DO
END SUBROUTINE swap_str

3. PROGRAM test3
INTEGER, DIMENSION(25) :: idata
REAL :: sum

CALL sub3 (idata, sum)

END PROGRAM test3

SUBROUTINE sub3(iarray, sum)

INTEGER, INTENTCIN), DIMENSION(*) :: iarray
REAL, INTENT(OUT) :: sum

INTEGER :: i

sum = 0.

(continued)

316 CHAPTER 7: Introduction to Procedures

(concluded)
DO i =1, 30
sum = sum + iarray(i)
END DO

END SUBROUTINE sub3

7.1.7 Examples

EXAMPLE Statistics Subroutines:
7-3
Develop a set of reusable subroutines capable of determining the statistical properties
of a data set of real numbers in an array. The set of subroutines should include:

1. A subroutine to determine the maximum value in a data set, and the sample num-
ber containing that value.

2. A subroutine to determine the minimum value in a data set, and the sample num-
ber containing that value.

3. A subroutine to determine the average (mean) and standard deviation of the data set.

4. A subroutine to determine the median of the data set.

SOLUTION
We will be generating four different subroutines, each of which works on a common
input data set consisting of an array of real numbers.

1. State the problem.

The problem is clearly stated above. We will write four different subroutines: rmax
to find the maximum value and the location of that value in a real array, rmin to find the
minimum value and the location of that value in a real array, ave_sd to find the average
and standard deviation of a real array, and median to find the median of a real array.

2. Define the inputs and outputs.
The input to each subroutine will be array of values, plus the number of values in
the array. The outputs will be as follows:

(a) The output of subroutine rmax will be a real variable containing the maxi-
mum value in the input array, and an integer variable containing the offset in
the array at which the maximum value occurred.

(b) The output of subroutine rmin will be a real variable containing the minimum
value in the input array, and an integer variable containing the offset in the
array at which the minimum value occurred.

(¢) The output of subroutine ave_sd will be two real variables containing the
average and standard deviation of the input array.

(d) The output of subroutine median will be a real variable containing the
median value of the input array.

Introduction to Procedures 317

3. Describe the algorithm.
The pseudocode for the rmax routine is:

I Initialize "real_max" to the first value in the array
I and "imax" to 1.

real_max « a(l)

imax « 1

I Find the maximum value in a(1) through a(n)
DO for i =2 ton
IF a(i) > real_max THEN
real_max « a(i)

imax « i
END of IF
END of DO

The pseudocode for the rmin routine is:

I Initialize "real_min" to the first value in the array
I and "imin" to 1.

real_min « a(l)
imin « 1 7

I Find the maximum value in a(1) through a(n)
DO for i =2 ton
IF a(i) < real_min THEN
real_min « a(i)

imin « i
END of IF
END of DO

The pseudocode for the ave_sd routine is essentially the same as that in Example
6-4. It will not be repeated here. For the median calculation, we will be able to take
advantage of the sort subroutine that we have already written. (Here is an example of
reusable code saving us time and effort.) The pseudocode for the medi an subroutine is:

CALL sort (n, a)
IF n is an even number THEN
med «— (a(n/2) + a(n/2+1)) / 2.
ELSE
med « a(n/2+1)
END of IF

4. Turn the algorithm into Fortran statements.
The resulting Fortran subroutines are shown in Figure 7-7.

FIGURE 7-7
The subroutines rmin, rmax, ave_sd, and median.

SUBROUTINE rmax (a, n, real_max, imax)

! Purpose:

! To find the maximum value in an array, and the location
! of that value in the array.

(continued)

318

CHAPTER 7: Introduction to Procedures

(continued)

|

IMPLICIT NONE
| Data dictionary: declare calling parameter types & definitions

INTEGER, INTENT(IN) :: n ! No. of vals in array a.
REAL, INTENT(IN), DIMENSION(n) :: a ! Input data.

REAL, INTENT(OUT) :: real_max I Maximum value in a.
INTEGER, INTENT(OUT) :: imax I Location of max value.

! Data dictionary: declare local variable types & definitions
INTEGER :: i I Index variable

I Initialize the maximum value to first value in array.
real_max = a(l)
imax = 1

I Find the maximum value.
DO i =2, n
IF (a(i) > real_max) THEN
real_max = a(i)
imax = i
END IF
END DO

END SUBROUTINE rmax

| kkkhhkhkkkhhkhkhkhhhhhhhhkhkhkhhhkhhkhkhhkkhhhhkrhhhhhhkhkhkhhrkrkhhkhhhhhrrhkhkhhkhhrxx
| kkkkkkkkhkkkhkkhkhkhhhkhhhhhkhkhkhkhkhkhkhkhkhhkhkhhkhhhhhhhkhkhkhkhkkkhkkkkkhkhkkhkhkhkhhkhkhikkx

SUBROUTINE rmin (a, n, real_min, imin)

|
! Purpose:

! To find the minimum value in an array, and the Tlocation
! of that value in the array.
|

I

MPLICIT NONE

! Data dictionary: declare calling parameter types & definitions

INTEGER, INTENT(CIN) :: n I No. of vals in array a.
REAL, INTENT(IN), DIMENSION(n) :: a ! Input data.
REAL, INTENT(OUT) :: real_min I Minimum value in a.

|

INTEGER, INTENT(OUT) :: imin Location of min value.

| Data dictionary: declare local variable types & definitions
INTEGER :: 1 I Index variable

I Initialize the minimum value to first value in array.
real_min = a(1)
imin =1

! Find the minimum value.
DOI =2,n
IF (a(i) < real_min) THEN
real_min = a(i)
imin = 1

(continued)

Introduction to Procedures 319

(continued)

END IF
END DO

END SUBROUTINE rmin

[Fxxxkkkkkkkkhhhhhhrrrrrhhhkhhhhhhdhrrxxrrrhhhhhhhhdddrrxrrrrkhrkrk
| kkkkkhkhkhkhkhkhhkhkhkhhhhhkhkhkhkhkhkhhkkhhhkhkhkkhkhhhkhkkhhhhhkkhhhhkhkrxrhkhkhhkkhkhhkrxxxk

SUBROUTINE ave_sd (a, n, ave, std_dev, error)
|

! Purpose:
! To calculate the average and standard deviation of an array.
|

IMPLICIT NONE

! Data dictionary: declare calling parameter types & definitions

INTEGER, INTENT(CIN) :: n I No. of vals in array a.
REAL, INTENTCIN), DIMENSION(n) :: a ! Input data.

REAL, INTENT(OUT) :: ave ! Average of a.

REAL, INTENT(OUT) :: std_dev ! Standard deviation.
INTEGER, INTENT(OUT) :: error I Flag: 0 — no error

! 1 — sd invalid
! 2 — ave & sd invalid

! Data dictionary: declare local variable types & definitions

INTEGER :: 1 I Loop index
REAL :: sum_x I Sum of input values
REAL :: sum_x2 I Sum of input values squared

I Initialize the sums to zero.
sum_x = 0.
sum_x2 = 0.

I Accumulate sums.
DO I =1, n
sum_x = sum_x + a(i)
sum_x2 = sum_x2 + a(i)**2
END DO

I Check to see if we have enough input data.
IF (n >= 2) THEN ! we have enough data

I Calculate the mean and standard deviation

ave = sum_x / REAL(n)

std_dev = SQRT((REAL(n) * sum_x2 - sum_x**2) &
/ (REAL(n) * REAL(n - 1)))

error = 0

ELSE IF (n==1) THEN ! no valid std_dev

ave = sum_x
std_dev = 0. I std_dev invalid
error =1

(continued)

320 CHAPTER 7: Introduction to Procedures

(concluded)

ELSE
ave = 0. I ave invalid
std_dev = 0. I std_dev invalid
error = 2

END IF

END SUBROUTINE ave_sd

[Fxxkkkkkkkkkhkhhhhrrrrrhkhhhkhhkhhhhhhrrxrrrkhhkhhhhhhhhbbrrxrrrrkkkkrk
| kkkhkhkhkkhkhkhkhkhkhhhhhhhhkhkhhhhkhhhhhhhhhhhhhhhhkhhhhhrrhhhhhhkrrhkkhhkhkhrxx

SUBROUTINE median (a, n, med)
|

! Purpose:

! To calculate the median value of an array.
|

IMPLICIT NONE

| Data dictionary: declare calling parameter types & definitions

INTEGER, INTENT(CIN) :: n I No. of vals in array a.
REAL, INTENT(IN), DIMENSION(n) :: a ! Input data.
REAL, INTENT(OUT) :: med ! Median value of a.

I Sort the data into ascending order.
CALL sort (a, n)

| Get median.
IF (MOD(n,2) == 0) THEN
med = (a(n/2) + a(n/2+1)) / 2.
ELSE
med = a(n/2+1)
END IF
END SUBROUTINE median

5. Test the resulting Fortran programs.
To test these subroutines, it is necessary to write a driver program to read the input
data, call the subroutines, and write out the results. This test is left as an exercise to the
student (see Exercise 7-13 at the end of the chapter).

7.2
SHARING DATA USING MODULES

We have seen that programs exchange data with the subroutines they call through an
argument list. Each item in the argument list of the program’s CALL statement must be
matched by a dummy argument in the argument list of the subroutine being invoked.
A pointer to the location of each argument is passed from the calling program to the
subroutine for use in accessing the arguments.

Introduction to Procedures 321

In addition to the argument list, Fortran programs, subroutines, and functions
can also exchange data through modules. A module is a separately-compiled pro-
gram unit that contains the definitions and initial values of the data that we wish to
share between program units.* If the module’s name is included in a USE statement
within a program unit, then the data values declared in the module may be used
within that program unit. Each program unit that uses a module will have access to
the same data values, so modules provide a way to share data between program
units.

A module begins with a MODULE statement, which assigns a name to the mod-
ule. The name may be up to 63 characters long, and must follow the standard For-
tran naming conventions. The module ends with an END MODULE statement, which
may optionally include the module’s name. The declarations of the data to be shared
are placed between these two statements. An example module is shown in
Figure 7-8.

FIGURE 7-8
A simple module used to share data among program units.

MODULE shared_data
!

I Purpose:
! To declare data to share between two routines.

IMPLICIT NONE

SAVE
INTEGER, PARAMETER :: num_vals =5 I Max number of values in array
REAL, DIMENSION(num_vals) :: values ! Data values

END MODULE shared_data

The SAVE statement guarantees that all data values declared in the module will be pre-
served between references in different procedures. It should always be included in any
module that declares sharable data. SAVE statements will be discussed in detail in
Chapter 9.

To use the values in this module, a program unit must declare the module name in
a USE statement. The form of a USE statement is

USE module_name

USE statements must appear before any other statements in a program unit (except for
the PROGRAM or SUBROUTINE statement, and except for comments, which may appear
anywhere). The process of accessing information in a module with a USE statement is
known as USE association.

An example that uses module shared_data to share data between a main pro-
gram and a subroutine is shown in Figure 7-9.

4 Modules also have other functions, as we shall see in Section 7.3 and in Chapter 13.

322

CHAPTER 7: Introduction to Procedures

FIGURE 7-9
An example program using a module to share data between a main program and a subroutine.

PROGRAM test_module
!
! Purpose:

! To iTlustrate sharing data via a module.
|

[JSE shared_data ! Make data in module "test” visible
IMPLICIT NONE

REAL, PARAMETER :: PI = 3.141592 ! Pj
values = PI * [1., 2., 3., 4., 5. 1

CALL subl I Call subroutine
END PROGRAM test_module

| kkkkkkkhkhhhkhkhkhhhhhhhkhkhkhkhhkhkhkhkhhhkhhhrhhhhhhhhhkhkhkhkhkhhhkhhhrhhhkhhhhkhkhkkkkkkkkkk
[EFxkkkkkkkkkkkkhhhhhrrrrrkhhhhhkhhhhhhhdrrrrrrhhhhhhhhhhdrrrrrrrhkkkhhhhhirx

SUBROUTINE subl
!

! Purpose:
! To illustrate sharing data via a module.
|

l]SE shared_data ! Make data in module "test” visible
IMPLICIT NONE

WRITE (*,*) values

END SUBROUTINE subl

The contents of module shared_data are being shared between the main program
and subroutine subl. Any other subroutines or functions within the program could
also have access to the data by including the appropriate USE statements.

Note that the array values is defined in the module, and used in both program
test_module and subroutine subl. However, the array values does not have a type
declaration in either the program or the subroutine; the definition is inherited through
USE association. In fact, it is an error to declare a variable within a procedure that has
the same name as one inherited through USE association.

Programming Pitfalls
Do not declare local variables with the same name as variables inherited through USE
association. This redefinition of a variable name will produce a compilation error.

Modules are especially useful for sharing large volumes of data among many pro-
gram units, and for sharing data among a group of related procedures while keeping it
invisible from the invoking program unit.

Introduction to Procedures 323

Good Programming Practice

You may use modules to pass large amounts of data between procedures within a
program. If you do so, always include the SAVE statement within the module to
ensure that the contents of the module remain unchanged between uses. To access
the data in a particular program unit, include a USE statement as the first noncom-
ment statement after the PROGRAM, SUBROUTINE, or FUNCTION statement within
the program unit.

EXAMPLE
7-4

Random Number Generator:

It is always impossible to make perfect measurements in the real world. There will
always be some measurement noise associated with each measurement. This fact is an
important consideration in the design of systems to control the operation of such real-
world devices as airplanes, refineries, etc. A good engineering design must take these
measurement errors into account, so that the noise in the measurements will not lead
to unstable behavior (no plane crashes or refinery explosions!).

Most engineering designs are tested by running simulations of the operation of
the system before it is ever built. These simulations involve creating mathematical
models of the behavior of the system, and feeding the models a realistic string of in-
put data. If the models respond correctly to the simulated input data, then we can have
reasonable confidence that the real-world system will respond correctly to the re-
al-world input data.

The simulated input data supplied to the models must be corrupted by a simulated
measurement noise, which is just a string of random numbers added to the ideal input
data. The simulated noise is usually produced by a random number generator.

A random number generator is a procedure that will return a different and appar-
ently random number each time it is called. Since the numbers are in fact generated by
a deterministic algorithm, they only appear to be random.> However, if the algorithm
used to generate them is complex enough, the numbers will be random enough to use
in the simulation.

One simple random number generator algorithm is shown below.® It relies on the
unpredictability of the modulo function when applied to large numbers. Consider the
following equation:

n;y1 = mod(8121n; + 28411,134456) (7-1)

Assume that n,is a nonnegative integer. Then because of the modulo function, n,
will be a number between O and 134,455 inclusive. Next, n,, can be fed into the
equation to produce a number 7, , that is also between 0 and 134,455. This process
can be repeated forever to produce a series of numbers in the range [0, 134,455].

3 For this reason, some people refer to these procedures as pseudorandom number generators.
6 This algorithm is adapted from the discussion found in Chapter 7 of Numerical Recipes: The Art of Sci-
entific Programming, by Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1986.

324

CHAPTER 7: Introduction to Procedures

If we didn’t know the numbers 8121, 28,411, and 134,456 in advance, it would
be impossible to guess the order in which the values of n would be produced.
Furthermore, it turns out that there is an equal (or uniform) probability that
any given number will appear in the sequence. Because of these properties,
Equation (7-1) can serve as the basis for a simple random number generator with a
uniform distribution.

We will now use Equation (7-1) to design a random number generator whose out-
put is a real number in the range [0.0, 1.0).”

SOLUTION
We will write a subroutine that generates one random number in the range 0 < ran < 1.0
each time that it is called. The random number will be based on the equation

n;

ran; = ———— (7-2)
134,456

where 7, is a number in the range 0 to 134,455 produced by Equation (7-1).

The particular sequence produced by Equations (7-1) and (7-2) will depend on the
initial value of n, (called the seed) of the sequence. We must provide a way for the user
to specify n, so that the sequence may be varied from run to run.

1. State the problem.

Write a subroutine random(that will generate and return a single number ran
with a uniform probability distribution in the range 0 < ran < 1.0, based on the
sequence specified by Equations (7-1) and (7-2). The initial value of the seed n_ will
be specified by a call to a subroutine called seed.

2. Define the inputs and outputs.

There are two subroutines in this problem: seed and randomQ. The input to sub-
routine seed is an integer to serve as the starting point of the sequence. There is no
output from this subroutine. There is no input to subroutine random0, and the output
from the subroutine is a single real value in the range [0.0, 1.0).

3. Describe the algorithm.
The pseudocode for subroutine random0O is very simple:

SUBROUTINE random0 (ran)

n « MOD (8121 * n + 28411, 134456)
ran « REAL(n) / 134456.

END SUBROUTINE randomO

where the value of n is saved between calls to the subroutine. The pseudocode for
subroutine seed is also trivial:

SUBROUTINE seed (iseed)
n « ABS (iseed)
END SUBROUTINE seed

7 The notation [0.0,1.0) implies that the range of the random numbers is between 0.0 and 1.0, including the
number 0.0, but excluding the number 1.0.

Introduction to Procedures 325

The absolute value function is used so that the user can enter any integer as the
starting point. The user will not have to know in advance that only positive inte-
gers are legal seeds.

The variable n will be placed in a module so that it may be accessed by both
subroutines. In addition, we will initialize n to a reasonable value so that we get
good results even if subroutine seed is not called to set the seed before the first
call to random0.

4. Turn the algorithm into Fortran statements.
The resulting Fortran subroutines are shown in Figure 7-10.

FIGURE 7-10
Subroutines to generate a random number sequence, and to set the seed of the sequence.

MODULE ran001
!

i Purpose:

! To declare data shared between subs random0 and seed.

|

I Record of revisions:
! Date Programmer Description of change

| =——== =—=e=m=—=——e=

! 11/23/15 S. J. Chapman Original code

!

IMPLICIT NONE

SAVE

INTEGER :: n = 9876
END MODULE ran001

[Fxxxkkkkkkkkhhhhhhrrrrrhkhhhhhhhhhhhrrxxrrhhhhkhhhhhhhbrrxrrrrhhkkrk
| hkkhkhkhkhkhkhkhkhkhhhhhhhhkhkhkhkhhkhrkhhhhhhhhhhhhhhkhkhhhhrrhkhhhhhkrrhkkhhkhhrxx

SUBROUTINE random0 (ran)

Purpose:
Subroutine to generate a pseudorandom number with a uniform
distribution in the range 0. <= ran < 1.0.

Record of revisions:

|
|
|
|
|
|
|
|
|

Date Programmer Description of change
11/23/15 S. J. Chapman Original code
|
USE ran001 I Shared seed

IMPLICIT NONE

! Data dictionary: declare calling parameter types & definitions
REAL, INTENT(OUT) :: ran I Random number

I Calculate next number
n = MOD (8121 * n + 28411, 134456)

I Generate random value from this number
(continued)

326

CHAPTER 7: Introduction to Procedures

(concluded)
ran = REAL(n) / 134456.
END SUBROUTINE randomQ

1 3k sk sk st st st sfe sk she sk sk skt sk st st sk sk sk sk skeosteosie st st sk s sk sk skt st st sk sk sk sk sk sttt st sk sk skoskokokokokokokosk
3k sk sk st st st sfe sk she sk sk skt sk st st sk sk sk sk skt st st sk sk sk sk skt st st sk sk s sk sk skttt sk sk skoskokoskokokokokosk

SUBROUTINE seed (iseed)
|

Purpose:
To set the seed for random number generator random0.

|
|
!
I Record of revisions:
|
|
|

Date Programmer Description of change
11/23/15 S. J. Chapman Original code
!
USE ran001 ! Shared seed

IMPLICIT NONE

! Data dictionary: declare calling parameter types & definitions
INTEGER, INTENT(IN) :: iseed ! Value to initialize sequence

I Set seed
n = ABS (iseed)

END SUBROUTINE seed

5. Test the resulting Fortran programs.

If the numbers generated by these routines are truly uniformly distributed random
numbers in the range 0 < ran < 1.0, then the average of many numbers should be close to
0.5. To test the results, we will write a test program that prints out the first 10 values pro-
duced by random0 to see if they are indeed in the range 0 < ran < 1.0. Then, the program
will average five consecutive 1000-sample intervals to see how close the averages come to
0.5. The test code to call subroutines seed and randomO is shown in Figure 7-11:

FIGURE 7-11
Test driver program for subroutines Seed and randomo.

PROGRAM test_random0O
|

! Purpose:
! Subroutine test the random number generator randomO.
|

Record of revisions:

|

! Date Programmer Description of change
| ==== ===

! 11/23/15 S. J. Chapman Original code

|

IMPLICIT NONE

! Data dictionary: declare variable types & definitions
(continued)

Introduction to Procedures 327

(concluded)
REAL :: ave Average of random numbers
INTEGER :: 1 DO Toop index

INTEGER :: iseed
INTEGER :: iseq

Seed for random number sequence
DO Toop index

REAL :: ran A random number
REAL :: sum Sum of random numbers
I Get seed.

WRITE (*,*) 'Enter seed: '
READ (*,*) iseed

I Set seed.
CALL SEED (iseed)

I Print out 10 random numbers.
WRITE (*,*) '10 random numbers: '
DO i =1, 10
CALL random0 (ran)
WRITE (*,'(3X,F16.6)') ran
END DO
I Average 5 consecutive 1000-value sequences.
WRITE (*,*) 'Averages of 5 consecutive 1000-sample sequences:' 7
DO iseq =1, 5
sum = 0.
DO i = 1, 1000
CALL random0 (ran)
sum = sum + ran
END DO
ave = sum / 1000.
WRITE (*,'(3X,F16.6)') ave
END DO

END PROGRAM test_random0

The results of compiling and running the test program are shown below:

C:\book\fortran\chap7>test_random0
Enter seed:
12
10 random numbers:
.936091
.203204
.431167
.719105
.064103
.789775
.974839
.881686
.384951
.400086
Averages of 5 consecutive 1000-sample sequences:
.504282
.512665
.496927
.491514
.498117

328

CHAPTER 7: Introduction to Procedures

The numbers do appear to be between 0.0 and 1.0, and the averages of long sets of
these numbers are nearly 0.5, so these subroutines appear to be functioning correctly.
You should try them again using different seeds to see if they behave consistently.

Fortran includes an intrinsic subroutine RANDOM_NUMBER to generate sequences
of random numbers. That subroutine will typically produce more nearly random re-
sults than the simple subroutine developed in this example. The full details of how to
use subroutine RANDOM_NUMBER are found in Appendix B.

7.3
MODULE PROCEDURES

In addition to data, modules may also contain complete subroutines and functions,
which are known as module procedures. These procedures are compiled as a part of
the module, and are made available to a program unit by including a USE statement
containing the module name in the program unit. Procedures that are included within
a module must follow any data objects declared in the module, and must be preceded
by a CONTAINS statement. The CONTAINS statement tells the compiler that the follow-
ing statements are included procedures.

A simple example of a module procedure is shown below. Subroutine subl is
contained within module my_subs.

MODULE my_subs
IMPLICIT NONE

(Declare shared data here)

CONTAINS
SUBROUTINE subl (a, b, ¢, x, error)
IMPLICIT NONE
REAL, DIMENSION(3), INTENTCIN) :: a
REAL, INTENTCIN) :: b, ¢
REAL, INTENT(OUT) :: x
LOGICAL, INTENT(OUT) :: error

END SUBROUTINE subl
END MODULE my_subs

Subroutine subl is made available for use in a calling program unit if the statement
“USE my_subs” is included as the first noncomment statement within the program
unit. The subroutine can be called with a standard CALL statement as shown below:

PROGRAM main_prog
USE my_subs
IMPLICIT NONE

CALI._'éubl (a, b, ¢, x, error)

END.§§OGRAM main_prog

Introduction to Procedures 329

7.3.1 Using Modules to Create Explicit Interfaces

Why would we bother to include a procedure in a module? We already know that it is
possible to separately compile a subroutine and to call it from another program unit,
so why go through the extra steps of including the subroutine in a module, compiling
the module, declaring the module in a USE statement, and then calling the subroutine?

The answer is that when a procedure is compiled within a module and the module
is used by a calling program, all of the details of the procedure’s interface are made
available to the compiler. When the calling program is compiled, the compiler can
automatically check the number of arguments in the procedure call, the type of each
argument, whether or not each argument is an array, and the INTENT of each argument.
In short, the compiler can catch most of the common errors that a programmer might
make when using procedures!

A procedure compiled within a module and accessed by USE association is said to
have an explicit interface, since all of the details about every argument in the proce-
dure are explicitly known to the Fortran compiler whenever the procedure is used, and
the compiler checks the interface to ensure that it is being used properly.

In contrast, procedures not in a module are said to have an implicit interface.
A Fortran compiler has no information about these procedures when it is compiling
a program unit that invokes them, so it just assumes that the programmer got the
number, type, intent, etc., of the arguments right. If the programmer actually got the
calling sequence wrong, then the program will fail in strange and hard-to-find ways.

To illustrate this point, let’s reexamine the program in Figure 7-5. In that program,
there is an implicit interface between program bad_ca11 and subroutine bad_argument.
A real value is passed to the subroutine when an integer argument is expected and the num-
ber is misinterpreted by the subroutine. As we see from that example, the Fortran compiler
did not catch the error in the calling arguments.

Figure 7-12 shows the program rewritten to include the subroutine within a module.

FIGURE 7-12
Example illustrating the effects of a type mismatch when calling a subroutine included within
a module.

MODULE my_subs
CONTAINS
SUBROUTINE bad_argument (i)
IMPLICIT NONE
INTEGER, INTENTCIN) :: i ! Declare argument as integer.
WRITE (*,*) " I =", 1 I Write out 1.
END SUBROUTINE
END MODULE my_subs

I xkkkkkkkkhkkhhhkhrkhkhrkhkhhhkhrkhkhhhhhrhhhhrhhhdrkhhdrhkhrhhhrhkdrhkrxrk
| kkkhhkkkkhhkhkhkhhhhhhkhhkhkhkhkhhkhkrkkhhkhkhhhhhhhhhhkhkhhhrkrhhkhhhhhrrhkhhhkhhkrrxxx

PROGRAM bad_call2
!

(continued)

330

CHAPTER 7: Introduction to Procedures

(concluded)

! Purpose:

! To illustrate misinterpreted calling arguments.
|

USE my_subs

IMPLICIT NONE

REAL :: x = 1. ! Declare real variable x.
CALL bad_argument (x) I Call subroutine.

END PROGRAM bad_call2

When this program is compiled, the Fortran compiler will catch the argument
mismatch for us.

C:\book\fortran\chap7>ifort bad_cal12.f90

Intel(R) Visual Fortran Intel(R) 64 Compiler for applications running on
Intel(R) 64, Version 16.0.2.180 Build 20160204

Copyright (C) 1985-2016 Intel Corporation. A1l rights reserved.
bad_cal12.f90(21): error #6633: The type of the actual argument differs
from the type of the dummy argument. [X]

CALL bad_argument (x) I Call subroutine.

compilation aborted for bad_call2.f90 (code 1)

There is also another way to allow a Fortran compiler to explicitly check proce-
dure interfaces—the INTERFACE block. We will learn more about it in Chapter 13.

Good Programming Practice

Use either assumed-shape arrays or explicit-shape arrays as dummy array arguments in
procedures. If assumed-shape arrays are used, an explicit interface is required. Whole
array operations, array sections, and array intrinsic functions may be used with the dummy
array arguments in either case. Never use assumed-size arrays in any new program.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Sections 7.2 through 7.3. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

1. How can we share data between two or more procedures without passing it
through a calling interface? Why would we want to do this?

2. Why should you gather up the procedures in a program and place them into
a module?

For questions 3 and 4, determine whether there are any errors in these programs.
If possible, tell what the output from each program will be.

(continued)

Introduction to Procedures 331

(concluded)

3. MODULE mydata
IMPLICIT NONE
REAL, SAVE, DIMENSION(8) :: a
REAL, SAVE :: b
END MODULE mydata

PROGRAM testl

USE mydata

IMPLICIT NONE
a=1~0[1.,2.,3.,4.,5.,6.,7.,8. 1
b = 37.

CALL sub?

END PROGRAM testl

SUBROUTINE subl

USE mydata

IMPLICIT NONE

WRITE (*,*) 'a(b) = ', a(5h)
END SUBROUTINE subl

4. MODULE mysubs

CONTAINS
SUBROUTINE sub2(x,y)
REAL, INTENTCIN) :: x
REAL, INTENT(OUT) :: y
y =3. * x - 1.
END SUBROUTINE sub?

END MODULE

PROGRAM test2

USE mysubs
IMPLICIT NONE

REAL :: a = 5.
CALL sub2 (a, -3.)
END PROGRAM test?

7.4
FORTRAN FUNCTIONS

A Fortran function is a procedure whose result is a single number, logical value,
character string, or array. The result of a function is a single value or single array that
can be combined with variables and constants to form Fortran expressions. These
expressions may appear on the right side of an assignment statement in the calling
program. There are two different types of functions: intrinsic functions and user-
defined functions (or function subprograms).

332

CHAPTER 7: Introduction to Procedures

Intrinsic functions are those functions built into the Fortran language, such as
SIN(X), LOG(X), etc. Some of these functions were described in Chapter 2; all of
them are detailed in Appendix B. User-defined functions or function subprograms are
functions defined by individual programmers to meet a specific need not addressed by
the standard intrinsic functions. They are used just like intrinsic functions in expres-
sions. The general form of a user-defined Fortran function is:

FUNCTION name (argument_1ist)
(Declaration section must declare type of name)
ilé;(ecution section)

name = expr
RETURN
END FUNCTION [namel

The function must begin with a FUNCTION statement and end with an END
FUNCTION statement. The name of the function may be up to 63 alphabetic,
numeric, and underscore characters long, but the first letter must be alphabetic. The
name must be specified in the FUNCTION statement, and is optional on the END
FUNCTION statement.

A function is invoked by naming it in an expression. When a function is invoked,
execution begins at the top of the function, and ends when either a RETURN statement
or the END FUNCTION statement is reached. Because execution ends at the END
FUNCTION statement anyway, the RETURN statement is not actually required in most
functions, and is rarely used. When the function returns, the returned value is used to
continue evaluating the Fortran expression that it was named in.

The name of the function must appear on the left side of a least one assignment
statement in the function. The value assigned to name when the function returns to the
invoking program unit will be the value of the function.

The argument list of the function may be blank if the function can perform all of
its calculations with no input arguments. The parentheses around the argument list are
required even if the list is blank.

Since a function returns a value, it is necessary to assign a type to the function. If
IMPLICIT NONE is used, the type of the function must be declared both in the function
procedure and in the calling programs. If IMPLICIT NONE is not used, the default type
of the function will follow the standard rules of Fortran unless they are overridden by
a type declaration statement. The type declaration of a user-defined Fortran function
can take one of two equivalent forms:

INTEGER FUNCTION my_function (1, Jj)

or
FUNCTION my_function (1, j)
INTEGER :: my_function

An example of a user-defined function is shown in Figure 7-13. Function quadf
evaluates a quadratic expression with user-specified coefficients at a user-specified
value Xx.

Introduction to Procedures 333

FIGURE 7-13
A function to evaluate a quadratic polynomial of the form f(x) = ax® + bx + c.

REAL FUNCTION quadf (x, a, b, ¢)
|
Purpose:

To evaluate a quadratic polynomial of the form
quadf = a * x**2 + b * x + ¢

|

|

|

!

I Record of revisions:

! Date Programmer Description of change
|

|

|

I

11/23/15 S. J. Chapman Original code
IMPLICIT NONE
! Data dictionary: declare calling parameter types & definitions
REAL, INTENTCIN) :: x ! Value to evaluate expression for
REAL, INTENTCIN) :: a I Coefficient of X**2 term
REAL, INTENT(IN) :: b I Coefficient of X term
REAL, INTENTCIN) :: c I Coefficient of constant term 7
! Evaluate expression.

quadf = a * x**2 + b * x + ¢
END FUNCTION quadf

This function produces a result of type real. Note that the INTENT attribute is not used
with the declaration of the function name quadf, since it must always be used for out-
put only. A simple test program using the function is shown in Figure 7-14.

FIGURE 7-14
A test driver program for function quadf.

PROGRAM test_quadf
|

! Purpose:
! Program to test function quadf.
|

IMPLICIT NONE

! Data dictionary: declare variable types & definitions
REAL :: quadf ! Declare function
REAL :: a, b, ¢, x ! Declare local variables

I Get input data.

WRITE (*,*) 'Enter quadratic coefficients a, b, and c: '
READ (*,*) a, b, c

WRITE (*,*) 'Enter location at which to evaluate equation: '
READ (*,*) x

I Write out result.
WRITE (*,100) 'quadf(', x, ') = ', quadf(x,a,b,c)
100 FORMAT (A,F10.4,A,F12.4)

END PROGRAM test_quadf

334

CHAPTER 7: Introduction to Procedures

Notice that function quadf is declared as type real both in the function itself and in the
test program. In this example, function quadf was used in the argument list of a
WRITE statement. It could also have been used in assignment statements or wherever a
Fortran expression is permissible.

Good Programming Practice
Be sure to declare the type of any user-defined functions both in the function itself
and in any routines that call the function.

7.4.1 Unintended Side Effects in Functions

Input values are passed to a function through its argument list. Functions use the same
argument-passing scheme as subroutines. A function receives pointers to the locations
of its arguments, and it can deliberately or accidentally modify the contents of those
memory locations. Therefore, it is possible for a function subprogram to modify its
own input arguments. If any of the function’s dummy arguments appear on the left side
of an assignment statement within the function, then the values of the input variables
corresponding to those arguments will be changed. A function that modifies the values
in its argument list is said to have side effects.

By definition, a function should produce a single output value using one or more
input values, and it should have no side effects. The function should never modify its
own input arguments. If a programmer needs to produce more than one output value
from a procedure, then the procedure should be written as a subroutine and not as a
function. To ensure that a function’s arguments are not accidentally modified, they
should always be declared with the INTENT (IN) attribute.

Good Programming Practice

A well-designed Fortran function should produce a single output value from one or
more input values. It should never modify its own input arguments. To ensure that a
function does not accidentally modify its input arguments, always declare the argu-
ments with the INTENT (IN) attribute.

7.4.2 Using Functions with Deliberate Side Effects

Programmers who regularly work with C++ and some other languages are used to
writing functions that work with a different calling convention. These functions
accept input data through arguments and return output data through other arguments,
just like a subroutine. In this design, the function return value is a status indicating
the success or failure of the operation performed by the function. By convention, zero
is usually returned from the function for a successful operation, and nonzero values
are returned to indicate various error codes. People with this background often design
their Fortran functions the same way. They deliberately write functions with side

Introduction to Procedures 335

effects to return the data, and with the function returns indicating the status of the
operation.

This is a perfectly acceptable programming style, but it is good practice to be con-
sistent in writing functions. If you use this programming style, use it consistently.

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 7.4. If you have trouble with the quiz, reread the section,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.

Write a user-defined function to perform the following calculations:

x—1
L f(x)=x+1

2. The hyperbolic tangent function tanh(x) = %
e +e

3. The factorial functionn! =m)(n—1)...3) (2) (1)

4. Write a logical function that has two input arguments, x and y. The function
should return a true value if x* + y* > 1, and a false value otherwise.

For questions 5 to 7, determine whether there are any errors in these
functions. If so, show how to correct them.

5. REAL FUNCTION average (x, n)
IMPLICIT NONE
INTEGER, INTENTCIN) :: n
REAL, DIMENSION(n), INTENTCIN) :: x

INTEGER :: J
REAL :: sum
DO j =1, n
sum = sum + x(j)
END DO

average = sum / n
END FUNCTION average

6. FUNCTION fun_2 (a, b, c)
IMPLICIT NONE
REAL, INTENT(CIN) :: a, b, c
a=3. *a
fun_2 = a**2 - b + ¢
END FUNCTION fun_2

7. LOGICAL FUNCTION badval (x, y)
IMPLICIT NONE
REAL, INTENTCIN) :: x, y
badval = x > y
END FUNCTION badval
__|

336

CHAPTER 7: Introduction to Procedures

EXAMPLE
7-5

The sinc function:

The sinc function is defined by the equation:
sin x

(7-3)

sinc(x) =

This function occurs in many different types of engineering analysis problems. For
example, the sinc function describes the frequency spectrum of a rectangular time
pulse. A plot of the function sinc(x) versus x is shown in Figure 7-15. Write a user-
defined Fortran function to calculate the sinc function.

SOLUTION
The sinc function looks easy to implement, but there is a calculation problem when
x = 0. The value of sinc(0) = 1, since

sinc(0) = lim [Sin(x)]
x—0 X

Unfortunately, a computer program would blow up on the division-by-zero. We must
include a logical IF construct in the function to handle the special case where x is
nearly 0.

1. State the problem.
Write a Fortran function that calculates sinc(x).

2. Define the inputs and outputs.
The input to the function is the real argument x. The function is of type real, and
its output is the value of sinc(x).

Plot of sinc(x) vs x
1.0
0.8 /\
0.6 -

04

sinc (x)

02

0 \/\/\ /\/\/

_02 L

-0.4 \ \ \ \ \ \ \ |
-8 -6 —4 -2 0 2 4 6 8

FIGURE 7-15
Plot of sinc(x) versus x.

Introduction to Procedures 337

3. Describe the algorithm.
The pseudocode for this function is

IF |x| > epsilon THEN
sinc « SIN(x) / x
ELSE
sinc « 1.
END IF

where epsilon is chosen to ensure that the division does not cause divide-by-zero
errors. For most computers, a good choice for epsilon might be 1.0E-30.

4. Turn the algorithm into Fortran statements.
The resulting Fortran subroutines are shown in Figure 7-16.

FIGURE 7-16
The Fortran function sinc(x).

FUNCTION sinc (x)
Purpose:

To calculate the sinc function
sinc(x) = sin(x) / x

Date Programmer Description of change

11/23/15 S. J. Chapman Original code

|
|
|
|
|
! Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare calling parameter types & definitions
REAL, INTENTCIN) :: x ! Value for which to evaluate sinc
REAL :: sinc I Qutput value sinc(x)

! Data dictionary: declare Tocal constants
REAL, PARAMETER :: EPSILON = 1.0E-30 ! the smallest value for which
I to calculate SIN(x)/x

I Check to see of ABS(x) > EPSILON.
IF (ABS(x) > EPSILON) THEN
sinc = SIN(x) / x
ELSE
sinc = 1.
END IF

END FUNCTION sinc

5. Test the resulting Fortran program.

To test this function, it is necessary to write a driver program to read an input
value, call the function, and write out the results. We will calculate several values of
sinc(x) on a hand calculator and compare them with the results of the test program.
Note that we must verify the function of the program for input values both greater than
and less than epsilon.

A test driver program is shown in Figure 7-17:

338

CHAPTER 7: Introduction to Procedures

FIGURE 7-17

A test driver program for the function sinc(x).
PROGRAM test_sinc

!

I Purpose:

! To test the sinc function sinc(x)
|

IMPLICIT NONE

! Data dictionary: declare function types
REAL :: sinc I sinc function

! Data dictionary: declare variable types & definitions
REAL :: x I Input value to evaluate

I Get value to evaluate
WRITE (*,*) '"Enter x: '
READ (*,*) x

I Write answer.
WRITE (*,'(A,F8.5)") 'sinc(x) ="', sinc(x)

END PROGRAM test_sinc

Hand calculations yield the following values for sinc(x):

X sinc(x)
0 1.00000
107% 1.00000
VA

> 0.63662

P 0.00000

The results from the test program for these input values are:

C:\book\fortran\chap7>test_sinc
Enter x:

0

sinc(x) = 1.0000

C:\book\fortran\chap7>test_sinc
Enter x:

1.E-29

sinc(x) = 1.0000

C:\book\fortran\chap7>test_sinc
Enter x:

1.570796

sinc(x) = 0.63662

C:\book\fortran\chap7>test_sinc
Enter x:

3.141593

sinc(x) = 0.0000

The function appears to be working correctly.

Introduction to Procedures 339

7.5
PASSING PROCEDURES AS ARGUMENTS TO OTHER PROCEDURES

When a procedure is invoked, the actual argument list is passed to the procedure as a
series of pointers to specific memory locations. How the memory at each location is
interpreted depends on the type and size of the dummy arguments declared in the
procedure.

This pass-by-reference approach can be extended to permit us to pass a pointer to
a procedure instead of a memory location. Both functions and subroutines can be
passed as calling arguments. For simplicity, we will first discuss passing user-defined
functions to procedures, and afterward discuss passing subroutines to procedures.

7.5.1 Passing User-Defined Functions as Arguments

If a user-defined function is named as an actual argument in a procedure call, then a
pointer to that function is passed to the procedure. If the corresponding formal argu-
ment in the procedure is used as a function, then when the procedure is executed, the
function in the calling argument list will be used in place of the dummy function name
in the procedure. Consider the following example:

PROGRAM :: test
REAL, EXTERNAL :: fun_1, fun_2
REAL :: x, y, output

CALL evaluate (fun_l, x, y, output)
CALL evaluate (fun_2, x, y, output)

END PROGRAM test

SUBROUTINE evaluate (fun, a, b, result)
REAL, EXTERNAL :: fun

REAL, INTENTCIN) :: a, b

REAL, INTENT(OUT) :: result

result = b * fun(a)

END SUBROUTINE evaluate

Assume that fun_1 and fun_2 are two user-supplied functions. Then a pointer to
function fun_1 is passed to subroutine evaluate on the first occasion that it is called,
and function fun_1 is used in place of the dummy formal argument fun in the
subroutine. A pointer to function fun_2 is passed to subroutine evaluate the second
time that it is called, and function fun_2 is used in place of the dummy formal
argument fun in the subroutine.

User-supplied functions may only be passed as calling arguments if they are
declared to be external in the calling and the called procedures. When a name in an
argument list is declared to be external, this tells the compiler that a separately-
compiled function is being passed in the argument list instead of a variable. A function
may be declared to be external either with an EXTERNAL attribute or in an EXTERNAL

340

CHAPTER 7: Introduction to Procedures
statement. The EXTERNAL attribute is included in a type declaration statement, just
like any other attribute. An example is

REAL, EXTERNAL :: fun_1, fun_2
The EXTERNAL statement is a specification statement of the form
EXTERNAL fun_1, fun_2

Either of the above forms state that fun_1, fun_2, etc., are names of procedures that
are defined outside of the current routine. If used, the EXTERNAL statement must ap-
pear in the declaration section, before the first executable statement.’

EXAMPLE
7-6

Passing Functions to Procedures in an Argument List:

The function ave_value in Figure 7-18 determines the average amplitude of a func-
tion between user-specified limits first_value and Tast_value by sampling the
function at n evenly-spaced points, and calculating the average amplitude between
those points. The function to be evaluated is passed to function ave_value as the
dummy argument func.

FIGURE 7-18
Function ave_val ue calculates the average amplitude of a function between two points

first_valueand Tast_value. The function is passed to function ave_value as a
calling argument.

REAL FUNCTION ave_value (func, first_value, last_value, n)

Purpose:
To calculate the average value of function "func" over the
range [first_value, Tast_valuel by taking n evenly-spaced
samples over the range, and averaging the results. Function
"func" is passed to this routine via a dummy argument.

Record of revisions:
Date Programmer Description of change

11/24/15 S. J. Chapman Original code

!
!
!
!
!
!
!
!
!
!
!
!
I

MPLICIT NONE

! Data dictionary: declare calling parameter types & definitions

REAL, EXTERNAL :: func ! Function to be evaluated
REAL, INTENT(CIN) :: first_value I First value in range

REAL, INTENTCIN) :: Tast_value I Last value in rnage
INTEGER, INTENTCIN) :: n ! Number of samples to average

(continued)

8 There is also another way to pass functions to procedures using function pointers. Function pointers will
be described in Chapter 15.

Introduction to Procedures 341

(concluded)

| Data dictionary: declare local variable types & definitions
REAL :: delta I Step size between samples
INTEGER :: i I Index variable

REAL :: sum I Sum of values to average

I Get step size.
delta = (last_value - first_value) / REAL(n-1)

! Accumulate sum.

sum = 0.
DO i =1, n

sum = sum + func (REAL(i-1) * delta)
END DO

I Get average.
ave_value = sum / REAL(n)

END FUNCTION ave_value

A test driver program to test function ave_value is shown in Figure 7-19. In that
program, function ave_vaTlue is called with the user-defined function my_function
as a calling argument. Note that my_function is declared as EXTERNAL in the test
driver program test_ave_value. The function my_function is averaged over 101
samples in the interval [0,1], and the results are printed out.

FIGURE 7-19
Test driver program for function ave_value, illustrating how to pass a user-defined function
as a calling argument.

PROGRAM test_ave_value
|

Purpose:
To test function ave_value by calling it with a user-defined
function my_func.

Record of revisions:
Date Programmer Description of change

11/24/15 S. J. Chapman Original code

|
|
|
|
|
|
|
|

!
IMPLICIT NONE

! Data dictionary: declare function types
REAL :: ave_value I Average value of function
REAL, EXTERNAL :: my_function ! Function to evaluate

| Data dictionary: declare local variable types & definitions
REAL :: ave I Average of my_function

I Call function with func=my_function.

ave = ave_value (my_function, 0., 1., 101)

WRITE (*,1000) 'my_function', ave

1000 FORMAT ('The average value of ',A,' between 0. and 1. is ', &
F16.6,'.")

END PROGRAM test_ave_value
(continued)

342

EXAMPLE
7-7

CHAPTER 7: Introduction to Procedures

(concluded)

REAL FUNCTION my_function(x)
IMPLICIT NONE

REAL, INTENTCIN) :: x
my_function = 3. * x

END FUNCTION my_function

When program test_ave_vaTlue is executed, the results are

C:\book\fortran\chap7>test_ave_value
The average value of my_function between 0. and 1. is 1.500000.

Since for this case my_function is a straight line between (0,0) and (1,3), it is obvi-
ous that the average value was correctly calculated as 1.5.

7.5.2 Passing Subroutines as Arguments

Subroutines may also be passed to procedures as calling arguments. If a subroutine is
to be passed as a calling argument, it must be declared in an EXTERNAL statement. The
corresponding dummy argument should appear in a CALL statement in the procedure.

Passing Subroutines to Procedures in an Argument List:

The function subs_as_arguments in Figure 7-20 accepts two input arguments x and
¥, and passes them to a subroutine for calculations. The name of the subroutine to ex-
ecute is also passed as a command line argument.

FIGURE 7-20
Subroutine subs_as_arguments calls a subroutine to perform an operation on values X
and y. The name of the subroutine to execute is also passed as a command line argument.

SUBROUTINE subs_as_arguments(x, y, sub, result)
|
! Purpose:

! To test passing subroutine names as arguments.
|

IMPLICIT NONE
| Data dictionary: declare calling parameter types & definitions

EXTERNAL :: sub ! Dummy subroutine name
REAL, INTENTCIN) :: x I First value

REAL, INTENTCIN) :: y I Last value

REAL, INTENT(OUT) :: result I Result

CALL sub(x, y, result)
END SUBROUTINE subs_as_arguments

A test driver program to test subroutine test_subs_as_arguments is shown
in Figure 7-21. In that program, subroutine subs_as_arguments is called twice

Introduction to Procedures 343

with the user-defined subroutines prod and sum passed as calling arguments.
Note that the dummy argument sub is declared as EXTERNAL in subroutine subs_
as_arguments, and that the actual subroutines prod and sum are declared external
in the main program.

FIGURE 7-21

Test driver program for subroutine Subs_as_arguments, illustrating how to pass a user-
defined subroutine as a calling argument.

PROGRAM test_subs_as_arguments
|

! Purpose:
! To test passing subroutine names as arguments.
|

IMPLICIT NONE

! Data dictionary: declare calling parameter types & definitions
EXTERNAL :: sum, prod ! Name of subroutines to call

REAL :: x I First value
REAL :: y I Last value 7
REAL :: result I Result

I Get the x and y values
WRITE (*,*) 'Enter x:'
READ (*,*) x

WRITE (*,*) '"Enter y:'
READ (*,*) y

! Calculate product
CALL subs_as_arguments(x, y, prod, result)
WRITE (*,*) 'The product is ', result

I Calculate product and sum
CALL subs_as_arguments(x, y, sum, result)
WRITE (*,*) 'The sum is ', result

END PROGRAM test_subs_as_arguments

| kkkkkkkhkhkhkhkkhkhhhhhhhhhkhkhkhhkhkkhhhhhhhrhhhhhhhhhhhkrhkhhhhhhkrhkhhkhhkhkhkhkhkhkkxxx
[ERxkkkkkkkkkkhhhhhdrdrrrhhhhhhhhhhhrrrrrhhhhhhhhhhhhrrrrrhhkkkkkhhhhix

SUBROUTINE prod (x, y, result)
!

! Purpose:

I To calculate product of two real numbers.
|

IMPLICIT NONE

! Data dictionary: declare calling parameter types & definitions

REAL, INTENTCIN) :: x I First value
REAL, INTENTCIN) :: vy I Last value
REAL, INTENT(OUT) :: result I Result

I Calculate value.

(continued)

344

CHAPTER 7: Introduction to Procedures

(concluded)

result = x *y
END SUBROUTINE prod

| kkkkkkkkhhkhkhkkhkhkhhhhhhkhkhkhkhkhkhkhkhkhhhkhhhrhhhhhhkhkhkhhhkrxhkhhhkhhhkrhkhhkhhkhkhkhkkkxxx
[ERxkxkkkkkkkkhhhhhhrrrrrhhhhhhhhhhhrrrrrrhhhhkhhhhhhhdrrxrrrhhkkkkkhhhiix

SUBROUTINE sum (x, y, result)
!

! Purpose:
! To calculate sum of two real numbers.
|

IMPLICIT NONE
! Data dictionary: declare calling parameter types & definitions

REAL, INTENTCIN) :: x I First value
REAL, INTENTCIN) :: vy I Last value
REAL, INTENT(OUT) :: result I Result

I Calculate value.
result = x +y

END SUBROUTINE sum

When program test_subs_as_arguments is executed, the results are

C:\book\fortran\chap7>test_subs_as_arguments
Enter x:
4
Enter y:
5
The product is 20.00000
The sum is 9.000000

Here subroutine subs_as_arguments is being executed twice, once with subroutine
prod and once with subroutine sum.

7.6
SUMMARY

In this chapter, we presented an introduction to Fortran procedures. Procedures are
independently compiled program units with their own declaration sections, execution
sections, and termination sections. They are extremely important to the design, coding,
and maintenance of large programs. Procedures permit the independent testing of sub-
tasks as a project is being built, allow time savings through reusable code, and improve
reliability through variable hiding.

There are two types of procedures: subroutines and functions. Subroutines are
procedures whose results include one or more values. A subroutine is defined using a
SUBROUTINE statement, and is executed using a CALL statement. Input data is passed
to a subroutine and results are returned from the subroutine through argument lists on
the SUBROUTINE statement and CALL statement. When a subroutine is called, pointers
are passed to the subroutine pointing to the locations of each argument in the argument
list. The subroutine reads from and writes to those locations.

Introduction to Procedures 345

The use of each argument in a subroutine’s argument list can be controlled by
specifying an INTENT attribute in the argument’s type declaration statement. Each
argument can be specified as either input only (IN), output only (OUT), or both input
and output (INOUT). The Fortran compiler checks to see that each argument is used
properly, and so can catch many programming errors at compile time.

Data can also be passed to subroutines through modules. A module is a separately
compiled program unit that can contain data declarations, procedures, or both. The
data and procedures declared in the module are available to any procedure that includes
the module with a USE statement. Thus, two procedures can share data by placing the
data and a module, and having both procedures USE the module.

If procedures are placed in a module and that module is used in a program, then
the procedures have an explicit interface. The compiler will automatically check to
ensure that number, type, and use of all arguments in each procedure call match the
argument list specified for the procedure. This feature can catch many common errors.

Fortran functions are procedures whose results are a single number, logical value,
character string, or array. There are two types of Fortran functions: intrinsic (built-in)
functions and user-defined functions. Some intrinsic functions were discussed in
Chapter 2, and all intrinsic functions are included in Appendix C. User-defined functions
are declared using the FUNCTION statement and are executed by naming the function as
a part of a Fortran expression. Data may be passed to a user-defined function through
calling arguments or via modules. A properly-designed Fortran function should not
change its input arguments. It should only change the single output value.

It is possible to pass a function or subroutine to a procedure via a calling argument,
provided that the function or subroutine is declared EXTERNAL in the calling program.

7.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with subroutines and functions.

1. Break large program tasks into smaller, more understandable procedures when-
ever possible.

2. Always specify the INTENT of every dummy argument in every procedure to help
catch programming errors.

3. Make sure that the actual argument list in each procedure invocation matches the
dummy argument list in number, type, intent, and order. Placing procedures in a
module and then accessing the procedures by USE association will create an
explicit interface, which will allow the compiler to automatically check that the
argument lists are correct.

4. Test for possible error conditions within a subroutine, and set an error flag to be
returned to the calling program unit. The calling program unit should test for error
conditions after the subroutine call, and take appropriate actions if an error occurs.

5. Always use either explicit-shape dummy arrays or assumed-shape dummy arrays for
dummy array arguments. Never use assumed-size dummy arrays in any new program.

6. Modules may be used to pass large amounts of data between procedures within a
program. The data values may be declared only once in the module, and
all procedures needing access to that data use that module. Be sure to include a

346

CHAPTER 7: Introduction to Procedures

SAVE statement in the module to guarantee that the data is preserved between
accesses by different procedures.

. Collect the procedures that you use in a program and place them in a module.

When they are a module, the Fortran compiler will automatically verify the calling
argument list each time that they are used.

. Be sure to declare the type of any function both in the function itself and in any

program units that invoke the function.

. A well-designed Fortran function should produce a single output value from one

or more input values. It should never modify its own input arguments. To ensure
that a function does not accidentally modify its input arguments, always declare

the arguments with the INTENT(IN) attribute.’

7.6.2 Summary of Fortran Statements and Structures

CALL statement:

CALL subname(argl, arg?, ...)
Example:

CALL sort (number, datal)
Description:
This statement transfers execution from the current program unit to the subroutine, passing pointers to the
calling arguments. The subroutine executes until either a RETURN or an END SUBROUTINE statement is en-
countered, and then execution will continue in the calling program unit at the next executable statement
following the CALL statement.

CONTAINS statement:
CONTAINS
Examples:
MODULE test
CONTAINS
SUBROUTINE subl(x, y)
END SUBROUTINE subl
END MODULE test
Description:

The CONTAINS statement specifies that the following statements are separate procedure(s) within a module.
The CONTAINS statement and the module procedures following it must appear after any type and data defi-
nitions within the module.

° However, certain programmers use a different style in which function return results as arguments and
the function return is a status. If you program in that style, this Good Programming Practice does not

apply to you.

Introduction to Procedures 347

END statements:

END FUNCTION [namel
END MODULE [namel
END SUBROUTINE [namel
Example:
END FUNCTION my_function
END MODULE my_mod
END SUBROUTINE my_sub
Description:
These statements end user-defined Fortran functions, modules, and subroutines, respectively. The name of
the function, module, or subroutine may optionally be included, but it is not required.

type, EXTERNAL :: namel, name2,
Example:
REAL, EXTERNAL :: my_function

Description:
This attribute declares that a particular name is an externally defined function. It is equivalent to naming the
function in an EXTERNAL statement.

EXTERNAL statement:
EXTERNAL namel, name?2,

Example:

EXTERNAL my_function
Description:
This statement declares that a particular name is an externally defined procedure. Either it or the EXTERNAL
attribute must be used in the calling program unit and in the called procedure if the procedure specified in
the EXTERNAL statement is to be passed as an actual argument.

EXTERNAL Attribute: |

348

CHAPTER 7: Introduction to Procedures

FUNCTION statement:
[typel FUNCTION name(argl, arg2, ...)
Examples:
INTEGER FUNCTION max_value (num, iarray)
FUNCTION gamma(x)
Description:

This statement declares a user-defined Fortran function. The type of the function may be declared in the
FUNCTION statement, or it may be declared in a separate type declaration statement. The function is exe-
cuted by naming it in an expression in the calling program. The dummy arguments are placeholders for the
calling arguments passed when the function is executed. If a function has no arguments, then it must be
declared with an empty pair of parentheses [name()].

INTENT Attribute:

type, INTENT(intent_type) :: namel, nameZl,
Example:

REAL, INTENT(CIN) :: value

INTEGER, INTENT(OUT) :: count
Description:

This attribute declares the intended use of a particular dummy procedure argument. Possible values of
intent_type are IN, OUT, and INOUT. The INTENT attribute allows the Fortran compiler to know the
intended use of the argument and to check that it is used in the way intended. This attribute may only
appear on dummy arguments in procedures.

INTENT statement:

INTENT(7ntent_type) :: namel, namel,
Example:

INTENTCIN) :: a, b

INTENT(OUT) :: result
Description:

This statement declares the intended use of a particular dummy procedure argument. Possible values of
intent_typeare IN, UT, and INOUT. The INTENT statement allows the Fortran compiler to know the in-
tended use of the argument, and to check that it is used in the way intended. Only dummy arguments may
appear in INTENT statements. Do not use this statement; use the INTENT attribute instead.

Introduction to Procedures

349

MODULE statement:

MODULE name
Example:

MODULE my_data_and_subs
Description:

This statement declares a module. The module may contain data, procedures, or both. The data and proce-
dures are made available for use in a program unit by declaring the module name in a USE statement (USE
association).

RETURN statement:

RETURN
Example:

RETURN
Description:

When this statement is executed in a procedure, control returns to the program unit that invoked the proce-
dure. This statement is optional at the end of a subroutine or function, since execution will automatically
return to the calling routine whenever an END SUBROUTINE or END FUNCTION statement is reached.

SUBROUTINE statement:

SUBROUTINE name (argl, arg2, ...)
Example:

SUBROUTINE sort (num, datal)
Description:

This statement declares a Fortran subroutine. The subroutine is executed with a CALL statement. The
dummy arguments are placeholders for the calling arguments passed when the subroutine is executed.

USE statement:

USE modulel, moduleZ2,
Example:

USE my_data
Description:
This statement makes the contents of one or more modules available for use in a program unit. USE
statements must be the first noncomment statements within the program unit after the PROGRAM,
SUBROUTINE, or FUNCTION statement.

|-

350

CHAPTER 7: Introduction to Procedures

7.6.3 Exercises

7-1.
7-2.

7-3.

7-5.

7-6.

7-7.

7-8.

7-9.

What is the difference between a subroutine and a function?

When a subroutine is called, how is data passed from the calling program to the subrou-
tine, and how are the results of the subroutine returned to the calling program?

What are the advantages and disadvantages of the pass-by-reference scheme used in
Fortran?

. What are the advantages and disadvantages of using explicit-shape dummy arrays in

procedures? What are the advantages and disadvantages of using assumed-shape dummy
arrays? Why should assumed-size dummy arrays never be used?

Suppose that a 15-element array a is passed to a subroutine as a calling argument. What
will happen if the subroutine attempts to write to element a(16)?

Suppose that a real value is passed to a subroutine in an argument that is declared to be
an integer in the subroutine. Is there any way for the subroutine to tell that the argument
type is mismatched? What happens on your computer when the following code is
executed?

PROGRAM main
IMPLICIT NONE
REAL :: X

x = -5.

CALL subl (x)
END PROGRAM main

SUBROUTINE subl (i)
IMPLICIT NONE

INTEGER, INTENTCIN) :: i
WRITE (*,*) " I =", 1
END SUBROUTINE subl

How could the program in Exercise 7-6 be modified to ensure that the Fortran compiler
catches the argument mismatch between the actual argument in the main program and
the dummy argument in subroutine subl1?

What is the purpose of the INTENT attribute? Where can it be used? Why should it be
used?

Determine whether the following subroutine calls are correct or not. If they are in error,
specify what is wrong with them.

(a) PROGRAM sum_sqrt
IMPLICIT NONE
INTEGER, PARAMETER :: LENGTH = 20
INTEGER :: result
REAL :: test(LENGTH) = &
t1.,2.,3.,4.,5.,6.,7,8.,09.,10., &
11.,12.,13.,14.,15.,16.,17.,18.,19.,20. 1

éALL test_sub (LENGTH, test, result)

ENﬁ PROGRAM sum_sqrt
SUBROUTINE test_sub (Tength, array, res)

Introduction to Procedures 351

7-10.

7-11.

7-12.

7-13.

IMPLICIT NONE
INTEGER, INTENT(IN) :: Tength
REAL, INTENT(OUT) :: res
INTEGER, DIEMNSION(Tlength), INTENTCIN) :: array
INTEGER, INTENTCINOUT) :: i
DO i =1, length
res = res + SQRT(array(i))
END DO
END SUBROUTINE test_sub

(b) PROGRAM test
IMPLICIT NONE
CHARACTER(1en=8) :: str = "1AbHz05Z'
CHARACTER :: Targest
CALL max_char (str, Targest)
WRITE (*,100) str, largest
100 FORMAT (' The Targest character in ', A, ' is ', A)
END PROGRAM test

SUBROUTINE max_char(string, big)

IMPLICIT NONE
CHARACTER(1en=10), INTENT(IN) :: string 7
CHARACTER, INTENT(OUT) :: big

INTEGER :: i
big = string(l:1)
DO i =2, 10
IF (string(i:i) > big) THEN
big = string(i:i)
END IF
END DO
END SUBROUTINE max_char

Is the following program correct or incorrect? If it is incorrect, what is wrong with it? If
it is correct, what values will be printed out by the following program?

MODULE my_constants

IMPLICIT NONE

REAL, PARAMETER :: PI = 3.141593 I Pi

REAL, PARAMETER :: G = 9.81 I Accel. due to gravity
END MODULE my_constants

PROGRAM main

IMPLICIT NONE

USE my_constants

WRITE (*,*) 'SIN(2*PI) = ' SIN(2.*PI)
G =17.

END PROGRAM main

Modify the selection sort subroutine developed in this chapter so that it sorts real values
in descending order.

Write a subroutine ucase that accepts a character string, and converts any lowercase let-
ter in the string to uppercase without affecting any nonalphabetic characters in the string.

Write a driver program to test the statistical subroutines developed in Example 7-3. Be
sure to test the routines with a variety of input data sets. Did you discover any problems
with the subroutines?

352

7-14.

7-15.

7-16.

7-117.

7-18.

7-19.

7-20.

CHAPTER 7: Introduction to Procedures

Write a subroutine that uses subroutine random0 to generate a random number in the
range [—1.0,1.0).

Dice Simulation It is often useful to be able to simulate the throw of a fair die. Write a
Fortran function dice() that simulates the throw of a fair die by returning some ran-
dom integer between 1 and 6 every time that it is called. (Hint: Call random0O to gener-
ate a random number. Divide the possible values out of random0 into six equal intervals
and return the number of the interval that a given random number falls into.)

Road Traffic Density Subroutine random0 produces a number with a uniform proba-
bility distribution in the range [0.0, 1.0). This subroutine is suitable for simulating ran-
dom events if each outcome has an equal probability of occurring. However, in many
events, the probability of occurrence is not equal for every event, and a uniform proba-
bility distribution is not suitable for simulating such events.

For example, when traffic engineers studied the number of cars passing a given lo-
cation in a time interval of length #, they discovered that the probability of k cars passing
during the interval is given by the equation

_ " _
Pk 1) = ¢ = for120,0> 0,and k=0, 1,2.... (7-4)

This probability distribution is known as the Poisson distribution; it occurs in many
applications in science and engineering. For example, the number of calls k to a
telephone switchboard in time interval ¢, the number of bacteria & in a specified volume
t of liquid, and the number of failures k of a complicated system in time interval 7 all
have Poisson distributions.

Write a function to evaluate the Poisson distribution for any %, ¢, and A. Test your
function by calculating the probability of 0, 1, 2, ..., 5 cars passing a particular point on
a highway in 1 minute, given that A is 1.6 per minute for that highway.

What are two purposes of a module? What are the special advantages of placing proce-
dures within modules?

Write three Fortran functions to calculate the hyperbolic sine, cosine, and tangent functions:

e —e e +e” e —e”

inh(x) = © % cosh(x) = “ % tanh(x) = 5

sinh(x)) cosh(x) 5 anh(x) gy
Use your functions to calculate the hyperbolic sines, cosines, and tangents of the follow-
ing values: -2, —1.5, —1.0, —0.5, —0.25, 0.0, 0.25, 0.5, 1.0, 1.5, and 2.0. Sketch the

shapes of the hyperbolic sine, cosine, and tangent functions.

Cross Product Write a function to calculate the cross product of two vectors V, and V.
Vi XV, = (VyV, = VipVoDi+ (Vi Vo = VaVi)j + (Va Vi — VoVyk

where Vi, =V i+ V j+V kandV,=V_ i+ Vy2 J + V_k. Note that this function will
return a real array as its result. Use the function to calculate the cross product of the two

vectors V, =[-2,4,0.5] and V, = [0.5, 3, 2].

Sort with Carry It is often useful to sort an array arrl into ascending order, while
simultaneously carrying along a second array arr2. In such a sort, each time an element of

Introduction to Procedures 353

array arrl is exchanged with another element of arr1, the corresponding elements of array
arr2 are also swapped. When the sort is over, the elements of array arrl are in ascending
order, while the elements of array arr2 that were associated with particular elements of array
arrl are still associated with them. For example, suppose we have the following two arrays:

Element arrl arr2
1. 6. 1.
2. 1. 0.
3. 2. 10.

After sorting array arrl while carrying along array arr2, the contents of the two
arrays will be:

Element arrl arr2
1. 1. 0.
2. 2. 10.
3. 6. 1.

Write a subroutine to sort one real array into ascending order while carrying along a
second one. Test the subroutine with the following two 9-element arrays:

REAL, DIMENSION(9) :: &

a=1~>1.,11., -6., 17.,-23., 0., 5., 1., -1. 1]
REAL, DIMENSION(9) :: &

b=1r3l.,101., 36., -17., 0., 10., -8., -1., -1. 1

7-21. Minima and Maxima of a Function Write a subroutine that attempts to locate the max-
imum and minimum values of an arbitrary function f{x) over a certain range. The func-
tion being evaluated should be passed to the subroutine as a calling argument. The
subroutine should have the following input arguments:

first_value — The first value of x to search

last_value — The last value of x to search

num_steps — The number of steps to include in the search
func — The name of the function to search

The subroutine should have the following output arguments:

Xmin — The value of x at which the minimum was found
min_value — The minimum value of f{x) found

Xmax — The value of x at which the maximum was found
max_value — The maximum value f{x) found

7-22. Write a test driver program for the subroutine generated in the previous problem. The
test driver program should pass to the subroutine the user-defined function
fx)=x - 5x* 4+ 5x + 2, and search for the minimum and maximum in 200 steps
over the range — 1 < x < 3. It should print out the resulting minimum and maximum
values.

7-23. Derivative of a Function The derivative of a continuous function f{x) is defined by the
equation

L) = tim LEHAD 2SO (7-5)
dx Ax—0 Ax

354

7-24.

7-25.

CHAPTER 7: Introduction to Procedures

In a sampled function, this definition becomes

f, (Xi) — f('xl + l) f(-xz) (7—6)
Ax

where Ax =x;,, — x;. Assume that a vector vect contains nsamp samples of a

function taken at a spacing of dx per sample. Write a subroutine that will calculate

the derivative of this vector from Equation (7-6). The subroutine should check

to make sure that dx is greater than zero to prevent divide-by-zero errors in the
subroutine.

To check you subroutine, you should generate a data set whose derivative is known,

and compare the result of the subroutine with the known correct answer. A good

choice for a test function is sin x. From elementary calculus, we know that

2 inx) =
dx S x) = COS x.

Generate an input vector containing 100 values of the function sin x starting at x = 0, and
using a step size Ax of 0.05. Take the derivative of the vector with your subroutine, and
then compare the resulting answers to the known correct answer. How close did your
routine come to calculating the correct value for the derivative?

Derivative in the Presence of Noise We will now explore the effects of input noise on
the quality of a numerical derivative (Figure 7-22). First, generate an input vector con-
taining 100 values of the function sin x starting at x = 0, and using a step size Ax of
0.03, just as you did in the previous problem. Next, use subroutine randomo0 to gener-
ate a small amount of random noise with a maximum amplitude of +0.02, and add that
random noise to the samples in your input vector. Note that the peak amplitude of the
noise is only 2% of the peak amplitude of your signal, since the maximum value of sin x
is 1. Now take the derivative of the function using the derivative subroutine that you
developed in the last problem. How close to the theoretical value of the derivative did
you come?

Two’s Complement Arithmetic As we learned in Chapter 1, an 8-bit integer in two’s
complement format can represent all the numbers between —128 and +127,
including 0. The sidebar in Chapter 1 also showed us how to add and subtract binary
numbers in two’s complement format. Assume that a two’s complement binary
number is supplied in an eight-character variable containing Os and 1s, and perform
the following instructions:

(a) Write a subroutine or function that adds 2 two’s complement binary numbers stored
in character variables, and returns the result in a third character variable.

(b) Write a subroutine or function that subtracts 2 two’s complement binary numbers
stored in character variables, and returns the result in a third character variable.

(¢) Write a subroutine or function that converts a two’s complement binary number
stored in a character variable into a decimal integer stored in an INTEGER variable,
and returns the result.

(d) Write a subroutine or function that converts a decimal integer stored in an INTEGER
variable into a two’s complement binary number stored in a character variable, and
returns the result.

Introduction to Procedures 355

Plot of sin(x) without added noise

Amplitude
o

Amplitude

S T T T T Y T T (O I O I

FIGURE 7-22
(a) A plot of sin x as a function of x with no noise added to the data. (b) A plot of sin x as a
function of x with a 2% peak amplitude uniform random noise added to the data.

(e) Write a program that uses the four procedures created above to implement a two’s
complement calculator, in which the user can enter numbers in either decimal or
binary form, and perform addition and subtraction on them. The results of any
operation should be displayed in both decimal and binary form.

7-26. Linear Least Squares Fit Develop a subroutine that will calculate slope m and intercept b
of the least-squares line that best fits an input data set. The input data points (x, y) will
be passed to the subroutine in two input arrays, X and Y. The equations describing the
slope and intercept of the least-squares line are

y=mx+b (5-5)

356

CHAPTER 7:

(Zxy) — (Zx)y
m = Te 2 e
(Zx7) — (Zx)x

and
b=y—mx

where
2x is the sum of the x values

¥x? is the sum of the squares of the x values

Introduction to Procedures

Xxy is the sum of the products of the corresponding x and y values

X is the mean (average) of the x values

y is the mean (average) of the y values

(5-6)

(5-7)

Test your routine using a test driver program and the following 20-point input data set:

Sample data to test least squares fit routine

No. x y No. x y
1 -4.91 —8.18 11 -0.94 0.21
2 -3.84 —7.49 12 0.59 1.73
3 —2.41 -7.11 13 0.69 3.96
4 —2.62 —6.15 14 3.04 4.26
5 -3.78 —5.62 15 1.01 5.75
6 -0.52 -3.30 16 3.60 6.67
7 -1.83 -2.05 17 4.53 7.70
8 -2.01 -2.83 18 5.13 7.31
9 0.28 —1.16 19 4.43 9.05
10 1.08 0.52 20 4.12 10.95

7-27. Correlation Coefficient of Least Squares Fit Develop a subroutine that will calculate
both the slope m and intercept b of the least-squares line that best fits an input data set,
and also the correlation coefficient of the fit. The input data points (x, y) will be passed
to the subroutine in two input arrays, X and Y. The equations describing the slope and
intercept of the least-squares line are given in the previous problem, and the equation for

the correlation coefficient is

n(Zxy) — (Zx)(Zy)

T VIS — @Al - ()]

where
2.x is the sum of the x values

2y is the sum of the y values

(7-7)

Introduction to Procedures 357

7-28.

7-29.

7-30.

7-31

¥x? is the sum of the squares of the x values
¥y” is the sum of the squares of the y values
Xxy is the sum of the products of the corresponding x and y values

n is the number of points included in the fit

Test your routine using a test driver program and the 20-point input data set given in the
previous problem.

The Birthday Problem The Birthday Problem is: if there is a group of n people in a
room, what is the probability that two or more of them have the same birthday? It is
possible to determine the answer to this question by simulation. Write a function that
calculates the probability that two or more of n people will have the same birthday,
where 7 is a calling argument. (Hint: To do this, the function should create an array of
size n and generate n birthdays in the range 1 to 365 randomly. It should then check to
see if any of the n birthdays are identical. The function should perform this experiment
at least 10,000 times and calculate the fraction of those times in which two or more peo-
ple had the same birthday.) Write a main program that calculates and prints out the
probability that two or more of n people will have the same birthday for n =2, 3, ..., 40.

Elapsed Time Measurement When testing the operation of procedures, it is very use-
ful to have a set of elapsed time subroutines. By starting a timer running before a proce-
dure executes, and then checking the time after the execution is completed, we can see
how fast or slow the procedure is. In this manner, a programmer can identify the
time-consuming portions of his or her program and rewrite them if necessary to make
them faster.

Write a pair of subroutines named set_timer and eTapsed_time to calculate
the elapsed time in seconds between the last time that subroutine set_timer was
called and the time that subroutine elapsed_time is being called. When subroutine
set_timer is called, it should get the current time and store it into a variable in a mod-
ule. When subroutine elapsed_time is called, it should get the current time and then
calculate the difference between the current time and the stored time in the module. The
elapsed time in seconds between the two calls should be returned to the calling program
unit in an argument of subroutine eTapsed_time. (Note: The intrinsic subroutine to
read the current time is called DATE_AND_TIME; see Appendix B.)

Use subroutine random0 to generate a set of three arrays of random numbers. The
three arrays should be 100, 1000, and 10,000 elements long. Then, use your elapsed
time subroutines to determine the time that it takes subroutine sort to sort each array.
How does the elapsed time to sort increase as a function of the number of elements
being sorted? (Hint: On a fast computer, you will need to sort each array many times
and calculate the average sorting time in order to overcome the quantization error of the
system clock.)

Evaluating Infinite Series The value of the exponential function can be calculated by
evaluating the following infinite series:

=)= (7-8)

358

7-32.

7-33.

7-34.

CHAPTER 7: Introduction to Procedures

Write a Fortran function that calculates using the first 12 terms of the infinite series.
Compare the result of your function with the result of the intrinsic function EXP (x) for
x=-10,-5.,-1.,,0, 1., 5., 10, and 15.

Use subroutine randomO to generate an array containing 10,000 random numbers
between 0.0 and 1.0. Then, use the statistics subroutines developed in this chapter to
calculate the average and standard deviation of values in the array. The theoretical average
of a uniform random distribution in the range [0,1) is 0.5, and the theoretical standard
deviation of the uniform random distribution is 1/v/2. How close does the random array
generated by randomO come to behaving like the theoretical distribution?

Gaussian (Normal) Distribution Subroutine randomO returns a uniformly-distributed
random variable in the range [0,1), which means that there is an equal probability of any
given number in the range occurring on a given call to the subroutine. Another type of
random distribution is the Gaussian distribution, in which the random value takes on the
classic bell-shaped curve shown in Figure 7-23. A Gaussian distribution with an average
of 0.0 and a standard deviation of 1.0 is called a standardized normal distribution, and
the probability of any given value occurring in the standardized normal distribution is
given by the equation

e—lez (7-9)

1
p(x) - \/2;

It is possible to generate a random variable with a standardized normal distribution
starting from a random variable with a uniform distribution in the range [—1,1) as
follows:

1. Select two uniform random variables x, and x, from the range [—1,1) such that
x% + x% < 1.To do this, generate two uniform random variables in the range [—1,1),

and see if the sum of their squares happens to be less than 1. If so, use them. If not,
try again.

2. Then each of the values y, and y, in the equations below will be a normally distrib-

uted random variable.
—2log,r
Y= X (7-10)
r
—2log,r
Yo = fxz (7-11)

r=x 4+ (7-12)

where

Write a subroutine that returns a normally-distributed random value each time that it is
called. Test your subroutine by getting 1000 random values and calculating the standard
deviation. How close to 1.0 was the result?

Gravitational Force The gravitational force F between two bodies of masses m; and
m, is given by the equation

Introduction to Procedures 359

Normal distribution

0.4

0.3

0.2

0.1

Probability of occurrence

FIGURE 7-23
A Normal probability distribution.

7-35.

Gmlmz

2
r

F= (7-13)
where G is the gravitation constant (6.672 x 10~!' N m?/kg?), m; and m, are the masses
of the bodies in kilograms, and r is the distance between the two bodies. Write a function
to calculate the gravitation force between two bodies given their masses and the distance
between them. Test your function by determining the force on a 1000-kg satellite in orbit
38,000 km above the Earth. (The mass of the Earth is 5.98 x 10?* kg.)

Heapsort The selection sort subroutine that is introduced in this chapter is by no means
the only type of sorting algorithms available. One alternate possibility is the heapsort
algorithm, the description of which is beyond the scope of this book. However, an imple-
mentation of the heapsort algorithm is included in file heapsort. f90, which is avail-
able among the Chapter 7 files at the book’s website.

If you have not done so previously, write a set of elapsed time subroutines for your
computer, as described in Exercise 7-29. Generate an array containing 10,000 random
values. Use the elapsed time subroutines to compare the time required to sort these
10,000 values using the selection sort and the heapsort algorithms. Which algorithm is
faster? (Note: Be sure that you are sorting the same array each time. The best way to do
this is to make a copy of the original array before sorting, and then sort the two arrays
with the different subroutines.)

360

8

Additional Features of Arrays

OBJECTIVES

e Know how to declare and use 2D or rank 2 arrays.

e Know how to declare and use multidimensional or rank n arrays.

¢ Know how and when to use the WHERE construct.

¢ Know how and when to use the FORALL construct.

e Understand how to allocate, use, and deallocate allocatable arrays.

In Chapter 6, we learned how to use simple 1D (rank 1) arrays. This chapter picks up
where Chapter 6 left off, covering advanced topics such as multidimensional arrays,
array functions, and allocatable arrays.

8.1
2D OR RANK 2 ARRAYS

The arrays that we have worked with so far in Chapter 6 are 1D arrays or rank 1 arrays
(also known as vectors). These arrays can be visualized as a series of values laid out in a
column, with a single subscript used to select the individual array elements (Figure 8-1a).
Such arrays are useful to describe data that is a function of one independent variable,
such as a series of temperature measurements made at fixed intervals of time.

Some types of data are functions of more than one independent variable. For
example, we might wish to measure the temperature at five different locations at four
different times. In this case, our 20 measurements could logically be grouped into five
different columns of four measurements each, with a separate column for each location
(Figure 8-1b). Fortran has a mechanism especially designed to hold this sort of data—a
2D or rank 2 array (also called a matrix).

Rank 2 arrays are arrays whose elements are addressed with two subscripts, and
any particular element in the array is selected by simultaneously choosing values for
both of them. For example, Figure 8-2a shows a set of four generators whose power
output has been measured at six different times. Figure 8-2b shows an array consisting
of the six different power measurements for each of the four different generators.

Additional Features of Arrays 361

Row 1 =—> Row 1 =—>
Row 2 =—> Row 2 =—>
Row 3 —> Row 3 —>
Row 4 —> Row 4 —>

I

Col 5
c Col 3 Col 4
Co11 Col2
al(irow) a2(irow,icol)
(a) (b)
One-dimensional array Two-dimensional array

FIGURE 8-1
Representations of 1- and 2D arrays.

In this example, each row specifies a measurement time, and each column specifies a
generator number. The array element containing the power supplied by generator 3 at
time 4 would be power (4, 3);its value is 41.1 MW.

8.1.1 Declaring Rank 2 Arrays

The type and size of a rank 2 array must be declared to the compiler using a type
declaration statement. Some example array declarations are shown below:

1. REAL, DIMENSION(3,6) :: sum
This type statement declares a real array consisting of 3 rows and 6 columns, for
a total of 18 elements. The legal values of the first subscript are 1 to 3, and the

Time 1| 20.0| 40.3 | 42.0| 20.4

Time2 | 19.8 | 40.1|41.5|26.9

P\(r) =20.0, 19.8, 20.1, 20.0, 20.0, 19.9 MW
Time3 | 20.1|40.0| 41.3| 38.4

Pror Py(t) = 40.3, 40.1, 40.0, 39.5, 39.9, 40.0 MW Time4 | 20.0139.5141.1142.0

Pa() = 42.0,41.5,41.3, 41.1, 39.8, 41.0 MW Time5 | 20.0139.9139.8|12.2

Time6 | 19.9|40.0 | 41.0| 6.0

P,(t) =20.4,26.9, 38.4,42.0, 12.2, 6.0 MW

Q000

G,) G, o
(a) Power measurements from 4 different generators at 6 different times. (b) Two-dimensional matrix of power measurements.

FIGURE 8-2

(a) A power generating station consisting of four different generators. The power output of each generator is

measured at six different times. () 2D matrix of power measurements.

362

CHAPTER 8: Additional Features of Arrays

legal values of the second subscript are 1 to 6. Any other subscript values are
out of bounds.

2. INTEGER, DIMENSION(0:100,0:20) :: hist
This type statement declares an integer array consisting of 101 rows and 21 col-
umns, for a total of 2121 elements. The legal values of the first subscript are 0 to
100, and the legal values of the second subscript are 0 to 20. Any other subscript
values are out of bounds.

3. CHARACTER(1en=6), DIMENSION(-3:3,10) :: counts
This type statement declares an array consisting of 7 rows and 10 columns, for a
total of 70 elements. Its type is CHARACTER, with each array element capable of
holding six characters. The legal values of the first subscript are —3 to 3, and the
legal values of the second subscript are 1 to 10. Any other subscript values are out
of bounds.

8.1.2 Rank 2 Array Storage

We have already learned that a rank 1 array of length N occupies N successive loca-
tions in the computer’s memory. Similarly, a rank 2 array of size M by N occupies
M x N successive locations in the computer’s memory. How are the elements of the
array arranged in the computer’s memory? Fortran always allocates array elements in
column major order. That is, Fortran allocates the first column in memory, then the
second one, and then the third one, etc., until all columns have been allocated.
Figure 8-3 illustrates this memory allocation scheme for a 3 X 2 array a. As we can
see from the picture, the array element a(2,2) is really the fifth location reserved in

Row 1= a(1,1) | a(1,2)

Row 2=—>| a3(2,1) | a(2,2)
a(l,1)

Row 3—>| 3(3,1) | a(3,2) a(2,1)

[1 Notional a3,

arrangement

Co1 1 col? in computer a(1,2)
memory

a(2,2)

a(3,2)

FIGURE 8-3
Notional memory allocation fora 3 X 2 rank 2 array a.

Additional Features of Arrays 363

memory. The order of memory allocation will become important when we discuss
data initialization and I/O statements later in this section.!

8.1.3 Initializing Rank 2 Arrays

Rank 2 arrays may be initialized with assignment statements, in type declaration state-
ments, or Fortran READ statements.

Initializing rank 2 arrays with assignment statements

Initial values may be assigned to an array on an element-by-element basis using
assignment statements in a nested DO loop or all at once with an array constructor. For
example, suppose we have a 4 X 3 integer array istat that we wish to initialize with
the values shown in Figure 8-4.

This array could be initialized at run time on an element-by-element basis with DO
loops, as shown below:

INTEGER, DIMENSION(4,3) :: istat
D0 i=1, 4
D0 j=1,3
istat(i,j) =
END DO
END DO

The array could also be initialized in a single statement with an array constructor.
However, this is not as simple as it might seem. The notional data pattern in memory
that would initialize the array is shown in Figure 8-4b. It consists of four 1s, followed
by four 2s, followed by four 3s. The array constructor that would produce this pattern
in memory is

ri,1,1,1,2,2,2,2,3,3,3,3 1
so it would seem that the array could be initialized with the assignment statement
istat = [1,1,1,1,2,2,2,2,3,3,3,3 1

Unfortunately, this assignment statement will not work. The array constructor produces
a1 X 12 array, while array istat is a 4 X 3 array. Although they both have the same
number of elements, the two arrays are not conformable because they have different
shapes, and so cannot be used in the same operation. This assignment statement will
produce a compile-time error on a Fortran compiler.

! The Fortran standard does not actually require that the elements of an array occupy successive locations
in memory. It only requires that they appear to be successive when addressed with appropriate subscripts
or when used in operations such as I/O statements. To keep this distinction clear, we will refer to the
notional order of the elements in memory, with the understanding that the actual order implemented by the
processor could be anything. (As a practical matter, though, every Fortran compiler that the author has ever
seen allocates the elements of an array in successive memory locations.) The allocation of array elements
in memory was deliberately not constrained by the standard to make it easier to implement Fortran on
massively parallel computers, where different memory models might be appropriate.

364

CHAPTER 8: Additional Features of Arrays

1 2 3
1 2 3 1
1
1 2 3
1
1 2 3 1
INTEGER, DIMENSION(4,3) :: istat . 2
Notional
(@) arrangement 2
in computer 2
memory
2
3
3
3
3

FIGURE 8-4
(a) Initial values for integer array istat.
(b) Notional layout of values in memory for array istat.

(b)

Array constructors always produce rank 1 arrays. So how can we overcome this
limitation to use array constructors to initialize rank 2 arrays? Fortran provides a spe-
cial intrinsic function, called RESHAPE, which changes the shape of an array without
changing the number of elements in it. The form of the RESHAPE function is

output = RESHAPE (arrayl, array2)

where arrayl contains the data to reshape, and array?2 is a rank 1 array describing
the new shape. The number of elements in array?2 is the number of dimensions in the
output array, and the value of each element in array?2 is the extent of each dimension.
The number of elements in arrayl must be the same as the number of elements in the
shape specified in arrayZ2, or the RESHAPE function will fail. The assignment state-
ment to initialize array istat becomes:

istat = RESHAPE ([1,1,1,1,2,2,2,2,3,3,3,3 1, [4,31)

The RESHAPE function converts the 1 X 12 array constructor into a 4 X 3 array that can
be assigned to istat.

Note that when RESHAPE changes the shape of an array, it maps the elements from
the old shape to the new shape in column major order. Thus, the first element in the
array constructor becomes istat(1,1), the second one becomes istat(2,1), etc.

Additional Features of Arrays 365

Good Programming Practice
Use the RESHAPE function to change the shape an array. This is especially useful
when used with an array constructor to create array constants of any desired shape.

Initializing rank 2 arrays with type declaration statements

Initial values may also be loaded into the array at compilation time using type
declaration statements. When a type declaration statement is used to initialize a rank 2
array, the data values are loaded into the array in the order in which memory is notion-
ally allocated by the Fortran compiler. Since arrays are allocated in column order, the
values listed in the type declaration statement must be in column order. That is, all of
the elements in column 1 must be listed in the statement first, and then all of the ele-
ments in column 2, etc. Array istat contains four rows and three columns, so to ini-
tialize the array with a type declaration statement the four values of column 1 must be
listed first, then the four values for column 2, and finally the four values for column 3.

The values used to initialize the array must have the same shape as the array, so
the RESHAPE function must be used as well. Therefore, array istat could be initial-
ized at compilation time with the following statement:

INTEGER, DIMENSION(4,3) :: istat(4,3) = &
RESHAPE ¢ [1,1,1,1,2,2,2,2,3,3,3,3 1, [4,31)

Initializing rank 2 arrays with READ statements

Arrays may be initialized with Fortran READ statements. If an array name appears
without subscripts in the argument list of a READ statement, the program will attempt
to read values for all of the elements in the array and the values will be assigned to the
array elements in the order in which they are notionally stored in the computer’s mem-
ory. Therefore, if file INITIAL.DAT contains the values

11112 2 2 2 3333
then the following code will initialize array istat to have the values shown in Figure 8-4.

INTEGER, DIMENSION(4,3) :: istat
OPEN (7, FILE="initial.dat', STATUS='OLD', ACTION='READ')
READ (7,*) istat

Implied DO loops may be used in READ statements to change the order in which
array elements are initialized or to initialize only a portion of an array. For example, if
file INITIAL1.DAT contains the values

1 2312312 3123

then the following code will initialize array istat to have the values shown in Figure 8-4.

INTEGER :: 1, §

INTEGER, DIMENSION(4,3) :: istat

OPEN (7, FILE="initiall.dat"', STATUS='OLD', ACTION='READ")
READ (7,%) ((istat(i,j), j=1,3), i=1,4)

366

CHAPTER 8: Additional Features of Arrays
The values would have been read from file INITIAL1.DAT in a different order than in

the previous example, but the implied DO loops would ensure that the proper input
values went into the proper array elements.

8.1.4 Example Problem

EXAMPLE Electric Power Generation:

8-1

Figure 8-2 shows a series of electrical output power measurements at six different times
for four different generators at the Acme Electric Power generating station. Write a
program to read these values from a disk file, and to calculate the average power sup-
plied by each generator over the measurement period and the total power supplied by
all of the generators at each time in the measurement period.

SOLUTION

1. State the problem.

Calculate the average power supplied by each generator in the station over the
measurement period and the total instantaneous power supplied by the generating
station at each time within the measurement period. Write those values out on the
standard output device.

2. Define the inputs and outputs.
There are two types of inputs to this program:

(a) A character string containing the file name of the input data file. This string
will come from the standard input device.

(b) The 24 real data values in the file, representing the power supplied by each of
the 4 generators at each of 6 different times. The data in the input file must be
organized so that the six values associated with generator G, appear first,
followed by the six values associated with generator G,, etc.

The outputs from this program are the average power supplied by each generator in the
station over the measurement period and the total instantaneous power supplied by the
generating station at each time within the measurement period.

3. Describe the algorithm.
This program can be broken down into six major steps

Get the input file name

Open the input file

Read the input data into an array

Calculate the total instantaneous output power at each time
Calculate the average output power of each generator

Write the output values

(continued)

Additional Features of Arrays 367

(concluded)

The detailed pseudocode for the problem is given below:

Prompt user for the input file name “filename”
Read file name “filename”
OPEN file “filename”
IF OPEN is successful THEN
Read array power

I Calculate the instantaneous output power of the station
DO for itime =1 to 6
DO for igen =1 to 4
power_sum(itime) < power(itime,igen) + power_sum(itime)
END of DO
END of DO

I Calculate the average output power of each generator
DO for igen =1 to 4
DO for itime =1 to 6
power_ave(igen) « power(itime,igen) + power_ave(igen)
END of DO
power_ave(igen) « power_ave(igen) / 6
END of DO

I Write out the total instantaneous power at each time
Write out power_sum for itime =1 to 6

I Write out the average output power of each generator
Write out power_ave for igen =1 to 4

End of IF

4. Turn the algorithm into Fortran statements.
The resulting Fortran program is shown in Figure 8-5.

FIGURE 8-5

Program to calculate the instantaneous power produced by a generating station and the average
power produced by each generator within the station.

PROGRAM generate

Purpose:
To calculate total instantaneous power supplied by a generating
station at each instant of time, and to calculate the average
power supplied by each generator over the period of measurement.

Record of revisions:
Date Programmer Description of change

11/23/15 S. J. Chapman Original code

|
|
|
|
|
|
|
|
|
|
|

(continued)

368

CHAPTER 8: Additional Features of Arrays

(continued)

IMPLICIT NONE

! Data dictionary: declare constants

INTEGER, PARAMETER :: MAX_GEN = 4 I Max number of generators
INTEGER, PARAMETER :: MAX_TIME = 6 I Max number of times

| Data dictionary: declare variable types, definitions, & units
CHARACTER(1en=20) :: filename ! Input data file name
INTEGER :: igen ! Loop index: generators
INTEGER :: itime I Loop index: time
CHARACTER(1en=80) :: msg ! Error message

REAL, DIMENSION(MAX_TIME,MAX_GEN) :: power

I Pwr of each gen at each time (MW)
REAL, DIMENSION(MAX_GEN) :: power_ave ! Ave power of each gen (MW)
REAL, DIMENSION(MAX_TIME) :: power_sum ! Total power at each time (MW)

INTEGER :: status 1 ' 1/0 status: 0 = success
I Initialize sums to zero.

power_ave = 0.

power_sum = 0.

! Get the name of the file containing the input data.

WRITE (*,1000)

1000 FORMAT ('Enter the file name containing the input data: ')
READ (*,'(A20)') filename

I Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=9, FILE=filename, STATUS='0LD', ACTION='READ', &
I0STAT=status, IOMSG=msg)

I Was the OPEN successful?
fileopen: IF (status == 0) THEN

I The file was opened successfully, so read the data to process.
READ (9, *, IOSTAT=status) power

! Calculate the instantaneous output power of the station at
! each time.
suml: DO itime = 1, MAX_TIME
sum2: DO igen = 1, MAX_GEN
power_sum(itime) = power(itime,igen) + power_sum(itime)
END DO sum2
END DO suml

I Calculate the average output power of each generator over the
! time being measured.
avel: DO igen = 1, MAX_GEN
ave2: DO itime = 1, MAX_TIME
power_ave(igen) = power(itime,igen) + power_ave(igen)
END DO ave2

(continued)

Additional Features of Arrays 369

(concluded)

power_ave(igen) = power_ave(igen) | REAL(MAX_TIME)
END DO avel

I Tell user.
outl: DO itime = 1, MAX_TIME
WRITE (*,1010) itime, power_sum(itime)
1010 FORMAT ('The instantaneous power at time ', I1, ' is ', &
F7.2, " MW.")
END DO outl

out2: DO igen = 1, MAX_GEN
WRITE (*,1020) igen, power_ave(igen)
1020 FORMAT ('The average power of generator ', I1, ' is ', &
F7.2, " MW.")
END DO out2

ELSE fileopen
! Else file open failed. Tell user.
WRITE (*,1030) msg
1030 FORMAT ('File open failed: ', A)

END IF fileopen

END PROGRAM generate

5. Test the program.
To test this program, we will place the data from Figure 8-2 into a file called
gendat. The contents of file gendat are shown below:

20.0 19.8 20.1 20.0 20.0 19
40.3 40.1 40.0 39.5 39.9 40.
42.0 41.5 41.3 41.1 39.8 41
20.4 26.9 38.4 42.0 12.2 6

Note that each row of the file corresponds to a specific generator, and each column
corresponds to a specific time. Next, we will calculate the answers by hand for one
generator and one time, and compare the results with those from the program. At time
3, the total instantaneous power being supplied by all of the generators is

Pror = 20.1 MW + 40.0 MW + 41.3 MW + 38.4 MW = 139.8 MW
The average power for Generator 1

20.1 + 19.8 + 20.1 + 20.0 + 20.0 + 19.9
Pgiave = 6 = 19.98 MW

The output from the program is

C:\book\fortran\chap8>generate

Enter the file name containing the input data:
gendat

The instantaneous power at time 1 is 122.70 MW.

370

The
The
The
The
The
The
The
The
The

instantaneous
instantaneous
instantaneous
instantaneous
instantaneous
average power
average power
average power
average power

power at time
power at time
power at time
power at time
power at time
of generator
of generator
of generator
of generator

CHAPTER 8:

MWD ERFO O W

is
is
is
is
is
is
is
is
is

Additional Features of Arrays

128.30 MwW.
139.80 MW.
142.60 MW.
111.90 Mw.
106.90 MW.

so the numbers match and the program appears to be working correctly.

Note that in this problem the raw data array power was organized as a 6 X 4
matrix (6 times by 4 generators), but the input data file was organized as a 4 X 6
matrix (4 generators by 6 times)! This reversal is caused by the fact that Fortran stores
array data in columns, but reads in data along lines. In order for the columns to be
filled correctly in memory, the data had to be transposed in the input file! Needless to
say, this can be very confusing for people having to work with the program and its
input data.

It would be much better if we could eliminate this source of confusion by making the
organization of the data in the input file match the organization of the data within the com-
puter. How can we do this? With implied DO loops! If we were to replace the statement

READ (9,*,I0STAT=status) power

with the statement

READ (9,*,I0STAT=status) ((power(itime,igen), igen=1,max_gen), itime=1, max_time)

then the data along a row in the input file would go into the corresponding row of the
matrix in the computer’s memory. With the new READ statement, the input data file
could be structured as follows

20.0 40.3 42.0 20.4
19.8 40.1 41.5 26.9
20.1 40.0 41.3 38.4
20.0 39.5 41.1 42.0
20.0 39.9 39.8 12.2
19.9 40.0 41.0 6.0

and after the READ statement, the contents of array power would be

20.0 40.3 42.0 20.4
19.8 40.1 41.5 26.9
power = .1 40.0 41.3 38.4
20.0 39.5 41.1 42.0
20.0 39.9 39.8 12.2
19.9 40.0 41.0 6.0

Additional Features of Arrays 371

Good Programming Practice
g Use DO loops and/or implied DO loops when reading or writing rank 2 arrays in order

to keep the structure of the matrix in the file the same as the structure of the matrix
within the program. This correspondence makes the programs easier to understand.

8.1.5 Whole Array Operations and Array Subsets

Two arrays may be used together in arithmetic operations and assignment statements
as long as they are conformable (i.e., as long as they either have the same shape one of
them is a scalar). If they are conformable, then the corresponding operation will be
performed on an element-by-element basis.

Array subsets may be selected from rank 2 arrays using subscript triplets or
vectors subscripts. A separate subscript triplet or vector subscript is used for each
dimension in the array. For example, consider the following 5 X 5 array.

1 2 3 4 5

6 7 8 9 10 '
a=|11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

The array subset corresponding to the first column of this array is selected as a(:,1):

1

6
a(:,1)y=|11
16

21

and the array subset corresponding to the first row is selected as a(1, :):
a(l,:)=1[1 2 3 4 5]

Array subscripts may be used independently in each dimension. For example, the array
subset a(1:3,1:5:2) selects rows 1 through 3 and columns 1, 3, and 5 from array a.
This array subset is:

1 3 5
a(l:3,1:5:2)=]16 8 10
11 13 15

Similar combinations of subscripts can be used to select any rows or columns out of a
rank 2 array.

372

CHAPTER 8: Additional Features of Arrays

8.2
MULTIDIMENSIONAL OR RANK n ARRAYS

Fortran supports more complex arrays with up to 15 different subscripts. These larger
arrays are declared, initialized, and used in the same manner as the rank 2 arrays
described in the previous section.

Rank 7 arrays are notionally allocated in memory in a manner that is an extension
of the column order used for rank 2 arrays. Memory allocation for a 2 X 2 X 2 rank 3
array is illustrated in Figure 8-6. Note that the first subscript runs through its complete
range before the second subscript is incremented, and the second subscript runs
through its complete range before the third subscript is incremented. This process re-
peats for whatever number of subscripts are declared for the array, with the first sub-
script always changing most rapidly and the last subscript always changing most
slowly. We must keep this allocation structure in mind if we wish to initialize or per-
form I/O operations with rank n arrays.

a(l,1,1)

a(2,1,1)

a(l,2,1)

Notional a(2,2,1)
arrangement
in computer

memory a(l,1,2)

a(2,1,2)

a(l,2,2)

a(2,2,2)

FIGURE 8-6

Notional memory allocation fora 2 X 2 X 2 array a. Array elements are allocated so that
the first subscript changes most rapidly, the second subscript the next most rapidly, and the
third subscript the least rapidly.

Additional Features of Arrays 373

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Sections 8.1 and 8.2. If you have trouble with the quiz, reread the sec-
tions, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

For questions 1 to 3, determine the number of elements in the array specified
by the declaration statements and the valid subscript range(s) for each array.

1. REAL, DIMENSION(-64:64,0:4) :: data_input

2. INTEGER, PARAMETER :: MIN_U = 0, MAX_U = 70
INTEGER, PARAMETER :: MAXFIL = 3
CHARACTER(1en=24), DIMENSION(MAXFIL,MIN_U:MAX_U) :: filenm

3. INTEGER, DIMENSION(-3:3,-3:3,6) :: 1in

Determine which of the following Fortran statements are valid. For each valid
statement, specify what will happen in the program. Assume default typing for
any variables that are not explicitly typed.

4. REAL, DIMENSION(0:11,2) :: dist
dist = [0.00, 0.25, 1.00, 2.25, 4.00, 6.25, &
9.00, 12.25, 16.00, 20.25, 25.00, 30.25, &
-0.00, -0.25, -1.00, -2.25, -4.00, -6.25, &
-9.00,-12.25,-16.00,-20.25,-25.00,-30.251

5. REAL, DIMENSION(0:11,2) :: dist
dist = RESHAPE([0.00, 0.25, 1.00, 2.25, 4.00, 6.25, &
9.00,12.25, 16.00, 20.25, 25.00,30.25, &
0.00, 0.25, 1.00, 2.25, 4.00, 6.25, &
9.00,12.25, 16.00, 20.25, 25.00,30.251, &
[12,21)

6. REAL, DIMENSION(-2:2,-1:0)
RESHAPE ([1.0, 2

6.0, 7.
L 5,21)
REAL, DIMENSION(O:)
RESHAPE (L

4,2

0.0,

5.0,
[5,21

REAL, DIMENSION(5,2) :: data_out

data_out = datal + data?

WRITE (*,*) data_out(:,1)

WRITE (*,*) data_out(3,:)

(continued)

374 CHAPTER 8: Additional Features of Arrays

(concluded)

7. INTEGER, DIMENSION(4) :: Tistl [1,4,2,21]
INTEGER, DIMENSION(3) :: Tist2
INTEGER, DIMENSION(5,5) :: array
DO i = 1,5

DO j = 1,5
array(i,j) =1 + 10 * j
END DO
END DO
WRITE (*,*) array(listl, 1ist2)

8. INTEGER, DIMENSION(4) :: 1ist =1[2,3,2,11]
INTEGER, DIMENSION(10) :: vector = [(10*k, k = -4,5) 1
vector(list) = [1, 2, 3, 4 1]

WRITE (*,*) vector

Suppose that a file input is opened on i/o unit 2, and contains the following data:

11.2 16.5 31.3 3.1414 16.0 12.0
1.1 9.0 17.1 11. 15.0 -1.3
10.0 11.0 12.0 13.0 14.0 5.0
15.1 16.7 18.9 21.1 24.0 -22.2

What data would be read from file input by each of the following statements?
What would the value of mydata(2,4) be in each case?

9. REAL, DIMENSION(3,5) :: mydata
READ (2,*) mydata

10. REAL, DIMENSION(0:2,2:6) :: mydata
READ (2,*) mydata

11. REAL, DIMENSION(3,5) :: mydata
READ (2,*) ((mydata(i,j), j=1,5), i=1,3)
12. REAL, DIMENSION(3,5) :: mydata
DO i =1, 3
READ (2,*) (mydata(i,j), j=1,5)
END DO

Answer the following questions:

I
—_
-
-
w
]

13. What is the value of dist(6,2) in Question 5 of this quiz?

14. What is the rank of mydata in Question 10 of this quiz?

15. What is the shape of mydata in Question 10 of this quiz?

16. What is the extent of the first dimension of data_input in Question 1 of
this quiz?

17. What is the maximum number of dimensions that an array can have in

Fortran?
|

Additional Features of Arrays 375

8.3
USING FORTRAN INTRINSIC FUNCTIONS WITH ARRAYS

There are three classes of Fortran intrinsic functions: elemental functions, inquiry
functions, and transformational functions. Some of the functions from each of these
classes are designed for use with array arguments. We will now examine a few of
them. A more complete description of all Fortran intrinsic functions and subroutines is
found in Appendix B.

8.3.1 Elemental Intrinsic Functions

Elemental intrinsic functions are ones that are specified for scalar arguments, but
that may also be applied to array arguments. If the argument of an elemental function
is a scalar, then the result of the function will be a scalar. If the argument of the func-
tion is an array, then the result of the function will be an array of the same shape as
the input array. Note that if there is more than one input argument, all of the argu-
ments must have the same shape. If an elemental function is applied to an array, the
result will be the same as if the function were applied to each element of the array on
an element-by-element basis. Thus, the following two sets of statements are
equivalent:

REAL, DIMENSION(4) ::
REAL, DIMENSION(4) :: y

[0., 3.141592, 1., 2.1

>
Il

INTEGER :: i
y = SIN(x) ! Whole array at once
DO i =1,4

y(i) = SIN(x(i)) ! Element by element
END DO

Most of the Fortran intrinsic functions that accept scalar arguments are elemental,
and so can be used with arrays. This includes common functions such as ABS, SIN,
COS, TAN, EXP, LOG, LOG10, MOD, and SQRT.

8.3.2 Inquiry Intrinsic Functions

Inquiry intrinsic functions are functions whose value depends on the properties of
an object being investigated. For example, the function UBOUND (arr) is an inquiry
function that returns the largest subscript(s) of array arr. A list of some of the com-
mon array inquiry functions is shown in Table 8-1. Any function arguments shown
in italics are optional; they may or may not be present when the function is
invoked.

These functions are useful for determining the properties of an array, such as its
size, shape, extent, and the legal subscript range in each extent. They will be especially
important once we begin passing arrays to procedures in Chapter 9.

376

TABLE 8-1

CHAPTER 8: Additional Features of Arrays

Some common array inquiry functions

Function name and
calling sequence

Purpose

ALLOCATED (ARRAY)

Determines allocation status of an allocatable array (see Section 8.6).

LBOUND(ARRAY, DIM) Returns all of the lower bounds of ARRAY if DIMis absent, or a specified lower bound of ARRAY if

SHAPE(SOURCE)
SIZECARRAY, DIM)

DIMis present. The result is a rank 1 array if DIMis absent, or a scalar if DIMis present.
Returns the shape of array SOURCE.

Returns either the extent of ARRAY along a particular dimension if DIMis present; otherwise, it
returns the total number of elements in the array.

UBOUND(ARRAY, DIM) Returns all of the upper bounds of ARRAY if DIMis absent, or a specified upper bound of ARRAY if

DIMis present. The result is a rank 1 array if DIMis absent, or a scalar if DIMis present.

EXAMPLE
8-2

Determining the Properties of an Array:

To illustrate the use of the array inquiry functions, we will declare a rank 2 array a,
and use the functions to determine its properties.

SOLUTION
The program in Figure 8-7 invokes the functions SHAPE, SIZE, LBOUND, and UBOUND
to determine the properties of the array.

FIGURE 8-7
Program to determine the properties of an array.

PROGRAM check_array

Purpose:
To illustrate the use of array inquiry functions.

|
|
|
|
I Record of revisions:

! Date Programmer Description of change
|

|

|

I

11/23/15 S. J. Chapman Original code
IMPLICIT NONE

I List of variables:
REAL,DIMENSION(-5:5,0:3) :: a = 0. ! Array to examine

I Get the shape, size, and bounds of the array.
WRITE (*,100) SHAPE(a)

100 FORMAT ('The shape of the array is: ',716)

(continued)

Additional Features of Arrays 377

(concluded)
WRITE (*,110) SIZE(a)
110 FORMAT ('The size of the array is: ',16)

WRITE (*,120) LBOUND(a)
120 FORMAT ('The Tlower bounds of the array are: ',716)

WRITE (*,130) UBOUND(a)
130 FORMAT ('The upper bounds of the array are: ',716)

END PROGRAM check_array
When the program is executed, the results are:

C:\book\fortran\chap8>check_array

The shape of the array is: 11 4
The size of the array is: 44

The Tower bounds of the array are: -5 0
The upper bounds of the array are: 5 3

These are obviously the correct answers for array a.

8.3.3 Transformational Intrinsic Functions

Transformational intrinsic functions are functions that have one or more array-val-
ued arguments or an array-valued result. Unlike elemental functions, which operate on
an element-by-element basis, transformational functions operate on arrays as a whole.
The output of a transformational function will often not have the same shape as the
input arguments. For example, the function DOT_PRODUCT has two vector input argu-
ments of the same size and produces a scalar output.

There are many transformational intrinsic functions in Fortran. Some of the more
common ones are summarized in Table 8-2. Some of the functions listed in Table 8-2
have additional optional arguments that are not mentioned. The complete details of

TABLE 8-2

Some common transformational functions
Function name and calling sequence Purpose
ALL(MASK) Logical function that returns TRUE if all of the values in array MASK are true.
ANY (MASK) Logical function that returns TRUE if any of the values in array MASK are true.
COUNT (MASK) Returns the number of TRUE elements in array MASK.
DOT_PRODUCT(VECTOR_A, VECTOR_B) Calculates the dot product of two equal-sized vectors.
MATMUL(MATRIX_A, MATRIX_B) Performs matrix multiplication on to conformable matrices.

(continued)

378 CHAPTER 8: Additional Features of Arrays

(concluded)

MAXLOC (ARRAY, MASK) Returns the location of the maximum value in ARRAY among those elements
for which MASK was true. The result is a rank 1 array with one element for
each subscript in ARRAY. (MASK is optional.)

MAXVAL (ARRAY, MASK)! Returns the maximum value in ARRAY among those elements for which MASK
was true. (MASK is optional.)

MINLOC(ARRAY, MASK) Returns the location of the minimum value in ARRAY among those elements
for which MASK was true. The result is a rank 1 array with one element for
each subscript in ARRAY. (MASK is optional.)

MINVAL(ARRAY, MASK)! Returns the minimum value in ARRAY among those elements for which MASK
was true. (MASK is optional.)

PRODUCT(ARRAY, MASK)1 Calculates the product of the elements in ARRAY for which the MASK is true.

MASK is optional; if not present, it calculates the product of all of the
elements in the array.

RESHAPE(SOURCE, SHAPE) Constructs an array of the specified shape from the elements of array
SOURCE. SHAPE is a rank 1 array containing the extents of each dimension
in the array to be built.

SUMCARRAY, MASK)! Calculates the sum of the elements in ARRAY for which the MASK is true.
MASK is optional; if not present, it calculates the sum of all of the elements in
the array.

TRANSPOSE (MATRIX) Returns the transpose of a rank 2 array.

'If a MASK is specified in these functions, it must be specified in the form MASK=ma sk_expr, where mask_expr is the logical array
specifying the mask. The reason for this form is explained in Chapter 9 and Appendix B.

each function, including any additional arguments, are found in Appendix B. Any
function arguments shown in italics are optional; they may or may not be present when
the function is invoked.

We have already seen the RESHAPE function used to initialize arrays. A number
of other transformational functions will appear in the exercises at the end of this
chapter.

84
MASKED ARRAY ASSIGNMENT: THE WHERE CONSTRUCT

We have already seen that Fortran permits us to use either array elements or entire
arrays in array assignment statements. For example, we could take the logarithm of the
elements in a rank 2 array value in either of the following ways:
DO i =1, ndiml
DO j =1, ndim2
Togval(i,j) = LOG(value(i,j)) Togval = LOG (value)
END DO
END DO

Both of the above examples take the logarithm of all of the elements in array
value and store the result in array Togval.

Additional Features of Arrays 379

Suppose that we would like to take the logarithm of some of the elements of array
value, but not all of them. For example, suppose that we only want to take the loga-
rithm of positive elements, since the logarithms of zero and negative numbers are not
defined and produce runtime errors. How could we do this? One way would be to do it
on an element-by-element basis using a combination of DO loops and an IF construct.
For example,

DO i =1, ndiml
DO j = 1, ndim2
IF (value(i,j) > 0.) THEN
Togval(i,j) = LOG(value(i,j))
ELSE
Togval(i,j) = -99999.
END IF
END DO
END DO

We can also perform this calculation all at once using a special form of array assign-
ment statement known as masked array assignment. A masked array assignment state-
ment is an assignment statement whose operation is controlled by a logical array of the
same shape as the array in the assignment. The assignment operation is only performed
for the elements of the array that correspond to TRUE values in the mask. In Fortran,
masked array assignments are implemented using the WHERE construct or statement.

8.4.1 The WHERE Construct

The general form of a WHERE construct is

[name:] WHERE (mask_exprl)

Array Assignment Statement(s) I Block 1
ELSEWHERE (mask_expr2) [namel

Array Assignment Statement(s) I Block 2
ELSEWHERE [name]

Array Assignment Statement(s) ! Block 3

END WHERE [namel

where each mask_exprl is a logical array of the same shape as the array(s) being
manipulated in the array assignment statements. This construct applies the operation
or set of operations in Block 1 to all of the elements of the array for which
mask_exprlis TRUE. It applies the operation or set of operations in Block 2 to all of
the elements of the array for which mask_exprlis FALSE and mask_exprZis TRUE.
Finally, it applies the operation or set of operations in Block 3 to all the elements of the
array for which both mask_exprl and mask_exprZ are FALSE. There can be as many
masked ELSEWHERE clauses as desired in a Fortran WHERE construct.

Note that at most one block of statements will be executed for any given element in
the array.

A name may be assigned to a WHERE construct, if desired. If the WHERE statement
at the beginning of a construct is named, then the associated END WHERE statement
must also have the same name. The name is optional on an ELSEWHERE statement even
if it is used on the corresponding WHERE and END WHERE statements.

380

CHAPTER 8: Additional Features of Arrays

The example given above could be implemented with a WHERE construct as:

WHERE (value > 0.)
Togval = LOG(value)
ELSEWHERE
lTogval = -99999.
END WHERE

The expression “value > 0.” produces a logical array whose elements are TRUE
where the corresponding elements of value are greater than zero, and FALSE where
the corresponding elements of value are less than or equal zero. This logical array
then serves as a mask to control the operation of the array assignment statement.

The WHERE construct is generally more elegant than element-by-element opera-
tions, especially for multidimensional arrays.

Good Programming Practice
Use WHERE constructs to modify and assign array elements when you want to mod-
ify and assign only those elements that pass some test.

8.4.2 The WHERE Statement

Fortran also includes a single-line WHERE statement:
WHERE (mask_expr) Array Assignment Statement

The assignment statement is applied to those elements of the array for which the mask
expression is true.

EXAMPLE
8-3

Limiting the Maximum and Minimum Values in an Array:

Suppose that we are writing a program to analyze an input data set whose values should
be in the range [21000, 1000]. If numbers greater than 1000 or less than 1000 would
cause problems with our processing algorithm, it might be desirable to put in a test
limiting all data values to the acceptable range. Write such a test for a 10,000-element
rank 1 real array input using both DO and IF constructs and a WHERE construct.

SOLUTION
The test using DO and IF constructs is

DO i =1, 10000
IF (input(i) > 1000.) THEN
input(i) = 1000.
ELSE IF (input(i) < -1000.) THEN
input(i) = -1000.
END IF
END DO

(continued)

Additional Features of Arrays 381

(concluded)
The test using a Fortran WHERE construct is

WHERE (input > 1000.)

input = 1000.

ELSEWHERE (input < -1000.)
input = -1000.

END WHERE

The WHERE construct is simpler than the DO and IF constructs for this example.

85
THE FORALL CONSTRUCT

Fortran also includes a construct that is designed to permit a set of operations to be
applied on an element-by-element basis to a subset of the elements in an array. The
elements to be operated on may be chosen both by subscript index and by a logical
condition. The operations will only be applied to those elements of the array that sat-
isfy both the index constraints and the logical condition. This construct is called the
FORALL construct.

8.5.1 The Form of the FORALL Construct

The general form of the FORALL construct is

[name:] FORALL (inl=tripletll[, in2=triplet2, ..., logical_exprl)
Statement 1
Statement 2

éfétement n
END FORALL [namel

Each index in the FORALL statement is specified by a subscript triplet of the form
subscript_1 : subscript_2 : stride

where subscript_I is the starting value of the index, subscript_2 is the ending
value, and stride is index step. Statements 1 through 7 in the body of the construct are
assignment statements that manipulate the elements of arrays having the selected indi-
ces and satisfying the logical expression on an element-by-element basis.

A name may be assigned to a FORALL construct, if desired. If the FORALL
statement at the beginning of a construct is named, then the associated END FORALL
statement must also have the same name.

A simple example of a FORALL construct is shown below. These statements create
a 10 x 10 identity matrix, which has 1s along the diagonal and Os everywhere else.

382 CHAPTER 8: Additional Features of Arrays

REAL, DIMENSION(10,10) :: i_matrix = 0.

FORALL (i=1:10)
i_matrix(i,i) = 1.0
END FORALL

As a more complex example, let’s suppose that we would like to take the recipro-
cal of all of the elements in an n X m array work. We might do this with the simple
assignment statement

work = 1. / work

but this statement would cause a runtime error and abort the program if any of the el-
ements of work happened to be zero. A FORALL construct that avoids this problem is

FORALL (i=l:n, j=1:m, work(i,j) /= 0.)
work(i,j) = 1. / work(i,j)
END FORALL

8.5.2 The Significance of the FORALL Construct

In general, any expression that can be written in a FORALL construct could also be
written as a set of nested DO loops combined with a block IF construct. For example,
the previous FORALL example could be written as

DO i=1,n
DO j =1, m
IF (work(i,j) /= 0.
work(i,j) = 1. / work(i,j)
END IF
END DO
END DO

What is the difference between these two sets of statements, and why is the FORALL
construct included in the Fortran language at all?

The answer is that the statements in the DO loop structure must be executed in a
strict order, while the statements in the FORALL construct may be executed in any order.
In the DO loops, the elements of array work are processed in the following strict order:

work(1,1)
work(1,2)

work(1,m)

work(2,1)

work(2,2)

Wé;k(z,m)

work(n,m)
In contrast, the FORALL construct processes the same set of elements in any order
selected by the processor. This freedom means that massively parallel computers can

Additional Features of Arrays 383

optimize the program for maximum speed by parceling out each element to a separate
processor, and the processors can finish their work in any order without impacting the
final answer.

If the body of a FORALL construct contains more than one statement, then the pro-
cessor completely finishes all of the selected elements of the first statement before start-
ing any of the elements of the second statement. In the example below, the values for
a(i,J) that are calculated in the first statement are used to calculate b(i,J) in the
second statement. All of the a values are calculated before the first b value is calculated.

FORALL (i=2:n-1, j=2:n-1)
a(i,j) = SQRT(a(i,j))
b(i,j) = 1.0 / a(i,j)

END FORALL

Because each element must be capable of being processed independently, the
body of a FORALL construct cannot contain transformational functions whose results
depend on the values in the entire array. However, the body can contain nested FORALL
and WHERE constructs.?

8.5.3 The FORALL Statement

Fortran also includes a single-line FORALL statement:
FORALL (indI=tripletll, ..., Togical_exprl) Assignment Statement

The assignment statement is executed for those indices and logical expressions that
satisfy the FORALL control parameters. This simpler form is the same as a FORALL
construct with only one statement.

8.6
ALLOCATABLE ARRAYS

In all of the examples that we have seen so far, the size of each array was declared in a
type declaration statement at the beginning of the program. This type of array declara-
tion is called static memory allocation, since the size of each array is set at compila-
tion time and never changes. The size of each array must be made large enough to hold
the largest problem that a particular program will ever have to solve, which can be a
very serious limitation. If we declare the array sizes to be large enough to handle the
largest problem that we will ever need to solve, then the program will waste memory
99% of the time that it is run. In addition, the program might not run at all on small
computers that don’t have enough memory to hold it. If the arrays are made small, then
the program cannot solve large problems at all.

2 The proposed Fortran 2015 Draft Standard (currently proposed for approval in 2018) declares FORALL to
be obsolescent, indicating that it should not be used in new programs. It has been replaced by better mech-
anisms of allocating work amongst processors, as we shall see later.

384

CHAPTER 8: Additional Features of Arrays

What can a programmer do about this problem? If the program is well designed,
then the array limitations could be modified by just changing one or two array size
parameters in the source code and recompiling it. This process will work for in-house
programs for which the source code is available, but it is not very elegant. It won’t
work at all for programs whose source code is unavailable, such as those programs that
you buy from someone else.

A much better solution is to design a program that uses dynamic memory alloca-
tion: it dynamically sets the sizes of the arrays each time it is executed to be just large
enough to solve the current problem. This approach does not waste computer memory
and will allow the same program to run on both small and large computers.

8.6.1 Fortran Allocatable Arrays

A Fortran array using dynamic memory is declared using the ALLOCATABLE attribute
in the type declaration statement, and is actually allocated with an ALLOCATE state-
ment. When the program is through using the memory, it should free it up for other
uses with a DEALLOCATE statement. The structure of a typical array declaration with
the ALLOCATABLE attribute? is

REAL, ALLOCATABLE, DIMENSIONC:,:) :: arrl

Note that colons are used as placeholders in the declaration since we do not know how
big the array will actually be. The rank of the array is declared in the type declaration
statement, but not the size of the array.

An array declared with colons for dimensions is known as a deferred-shape
array, because the actual shape of the array is deferred until the memory for the array
is allocated. (In contrast, an array whose size is explicitly declared in a type declara-
tion statement is known as an explicit-shape array.)

When the program executes, the actual size of the array will be specified with an
ALLOCATE statement. The forms of an ALLOCATE statement are

ALLOCATE (7ist of arrays, STAT=status, ERRMSG=err_msg)
ALLOCATE (array to allocate, SOURCE=source_expr, STAT=status, ERRMSG=string)

A typical example of the first form of the ALLOCATE statement is
ALLOCATE (arrl1(100,0:10), STAT=status, ERR_MSG=msg)

3 An array may also be declared to be allocatable in a separate ALLOCATABLE statement of the form
ALLOCATABLE :: arrl

It is preferable not to use this statement, since it is always possible to specify the ALLOCATABLE attribute
in a type declaration statement and the array will appear in a type declaration statement anyway. The only
time when a separate ALLOCATABLE statement is necessary is when default typing is used and there is no
type declaration statement. Since we should never use default typing in any program, there is never a need
for this statement.

Additional Features of Arrays 385

This statement allocates a 100 X 11 array arrl at execution time. The STAT= and
ERR_MSG= clauses are optional. If it is present, STAT= returns an integer status. If
the allocation is successful, the integer value returned by the STAT= clause will be 0,
and the character variable in the ERRMSG= clause will not be changed. If the alloca-
tion is unsuccessful, the integer value returned by the STAT= clause will be a non-
zero code indicating the type of the error, and the character variable in the ERRMSG=
clause will contain a descriptive message indicating what the problem is for display
to the user.

In the second form of the ALLOCATE statement, the array allocated has the same
shape as the source expression, and the data from the source expression is copied to
the newly allocated array. For example, if array source_array is a 10 X 20 array,
then array myarray will be allocated as a 10 X 20 array and the contents of the two
arrays will be identical.

ALLOCATE (myarray, SOURCE=source_array, STAT=istat, ERRMSG=msg)

The most common source of failure for any allocate statement is not having enough
free memory to allocate the array. If the allocation fails and the STAT= clause is not
present, then the program will abort. You should always use the STAT= clause so that
the program can terminate gracefully if there is not enough memory available to allo-
cate the array.

Good Programming Practice

Always include the STAT= clause in any ALLOCATE statement and always check the
returned status, so that a program can be shut down gracefully if there is insufficient
memory to allocate the necessary arrays.

An allocatable array may not be used in any way in a program until memory is
allocated for it. Any attempt to use an allocatable array that is not currently allocated
will produce a runtime error and cause the program to abort. Fortran includes the log-
ical intrinsic function ALLOCATED () to allow a program to test the allocation status of
an array before attempting to use it. For example, the following code tests the status of
allocatable array input_data before attempting to reference it:

REAL, ALLOCATABLE, DIMENSION(:) :: input_data

IF (ALLOCATED(input_data)) THEN

READ (8,*) input_data
ELSE

WRITE (*,*) 'Warning: Array not allocated!'’
END IF

This function can be very helpful in large programs involving many procedures, in
which memory is allocated in one procedure and used in a different one.

386

EXAMPLE
8-4

CHAPTER 8: Additional Features of Arrays

At the end of the program or procedure in which an allocatable array is used, you
should deallocate the memory to make it available for reuse. This is done with a
DEALLOCATE statement. The structure of a DEALLOCATE statement is

DEALLOCATE (7ist of arrays to deallocate, STAT=status)
A typical example is
DEALLOCATE (arrl, STAT=status)

where the status clause has the same meaning as in the ALLOCATE statement. After a
DEALLOCATE statement is executed, the data in the deallocated arrays is no longer
available for use.

You should always deallocate any allocatable arrays once you are finished with
them. This frees up the memory to be used elsewhere in the program, or in other pro-
grams running on the same computer.

Good Programming Practice
Always deallocate allocatable arrays with a DEALLOCATE statement as soon as you
are through using them.

Using Allocatable Arrays:

To illustrate the use of allocatable arrays, we will rewrite the statistical analysis
program of Example 6-4 to dynamically allocate only the amount of memory needed
to solve the problem. To determine how much memory to allocate, the program will
read the input data file and count the number of values. It will then allocate the array,
rewind the file, read in the values, and calculate the statistics.

SOLUTION
The modified program with allocatable arrays is shown in Figure 8-8.

FIGURE 8-8
A modified form of the statistics program that uses allocatable arrays.

PROGRAM stats_5

|
! Purpose:

! To calculate mean, median, and standard deviation of an input

! data set read from a file. This program uses allocatable arrays
! to use only the memory required to solve each problem.

|

(continued)

Additional Features of Arrays

387

(continued)
Record of revisions:
Date Programmer Description of change
11/18/15 S. J. Chapman Original code
1. 11/23/15 S. J. Chapman Modified for dynamic memory

!
!
!
!
!
!
I

!

MPLICIT NONE

Data dictionary: declare variable types & definitions

REAL,ALLOCATABLE,DIMENSION(:) :: a ! Data array to sort

CHARACTER(1en=20) :: filename I Input data file name
INTEGER :: 1 Loop index

INTEGER :: iptr Pointer to smallest value
INTEGER :: Loop index

REAL :: median
CHARACTER(1en=80) :: msg
INTEGER :: nvals =0
INTEGER :: status

REAL ::

REAL :: sum_x = 0.
REAL :: sum_x2 = 0.
REAL :: temp

REAL :: x_bar

|
|
|
!
I Error message
I Number of values to process
I Status: 0 for success
std_dev !
I Sum of input values
I Sum of input values squared
|
|

Average of input values

! Get the name of the file containing the input data.

WRITE (*,1000)

1000 FORMAT ('Enter the file name with the data to be sorted:')
READ (*,'(A20)') filename

! Open input data file. Status is OLD because the input data mu
I already exist.
OPEN (UNIT=9, FILE=filename, STATUS='0LD', ACTION='READ', &

I0STAT=status, IOMSG=msg)

! Was the OPEN successful?
fileopen: IF (status == 0) THEN ! Open successful

! The file was opened successfully, so read the data to find
! out how many values are in the file, and allocate the
! required space.

DO
READ (9, *, IOSTAT=status) temp I Get value
IF (status /=0) EXIT I Exit on end of data
nvals = nvals + 1 I Bump count

END DO

! Allocate memory
WRITE (*,*) 'Allocating a: size = ', nvals
ALLOCATE (a(nvals), STAT=status) ! Allocate memory

I Was allocation successful? If so, rewind file, read in
! data, and process it.
allocate_ok: IF (status == 0) THEN

The median of the input samples

Standard deviation of input samples

Temporary variable for swapping

st

(continued)

388 CHAPTER 8: Additional Features of Arrays

(continued)
REWIND (UNIT=9) I Rewind file

! Now read in the data. We know that there are enough
I values to fill the array.
READ (9, *) a I Get value

I Sort the data.
outer: DO i =1, nvals-1

! Find the minimum value in a(i) through a(nvals)
iptr =i
inner: DO j = i+l, nvals
minval: IF (a(j) < a(iptr)) THEN
iptr =
END IF minval
END DO inner

I iptr now points to the minimum value, so swap a(iptr)
I with a(i) if i /= iptr.
swap: IF (i /= iptr) THEN

temp = a(i)

a(i) = a(iptr)

a(iptr) = temp
END IF swap

END DO outer

I The data is now sorted. Accumulate sums to calculate
I statistics.
sums: DO i =1, nvals

sum_x = sum_x + a(i)
SUM_X2 = sum_x2 + a(i)**2
END DO sums

I Check to see if we have enough input data.
enough: IF (nvals < 2) THEN

I Insufficient data.
WRITE (*,*) 'At least 2 values must be entered.'’

ELSE

I Calculate the mean, median, and standard deviation
x_bar = sum_x / real(nvals)
std_dev = sqrt((real(nvals) * sum_x2 - sum_x**2) &
/ (real(nvals) * real(nvals-1)))
even: IF (mod(nvals,2) == 0) THEN
median = (a(nvals/2) + a(nvals/2+1)) / 2.
ELSE
median = a(nvals/2+1)
END IF even

(continued)

Additional Features of Arrays 389

(concluded)
I Tell user.
WRITE (*,*) 'The mean of this data set is: ', x_bar
WRITE (*,*) 'The median of this data set is:', median
WRITE (*,*) 'The standard deviation is: ", std_dev
WRITE (*,*) 'The number of data points is: ', nvals

END IF enough

! Deallocate the array now that we are done.
DEALLOCATE (a, STAT=status)

END IF allocate_ok
ELSE fileopen

! Else file open failed. Tell user.
WRITE (*,1050) TRIM(msg)
1050 FORMAT ('File open failed--status = ', A)

END IF fileopen
END PROGRAM stats_5
To test this program, we will run it with the same data set as Example 6-4. u

C:\book\fortran\chap8>stats_5
Enter the file name containing the input data:

input4

Allocating a: size = 5

The mean of this data set is: 4.400000
The median of this data set is: 4.000000
The standard deviation is: 2.966479
The number of data points is: 5

The program gives the correct answers for our test data set.

8.6.2 Using Fortran Allocatable Arrays in Assignment Statements

We have already seen how to allocate and deallocate allocatable arrays using
ALLOCATE and DEALLOCATE statements. In addition, Fortran 2003 and later allow
allocatable arrays to be allocated and deallocated automatically by simply assigning
data to them.

If an expression is assigned to an allocatable array of the same rank, then the array
is automatically allocated to the correct shape if it is unallocated, or it is automatically
deallocated and reallocated to the correct shape if it was previously allocated with an
incompatible shape. No ALLOCATE and DEALLOCATE statements are required. If the
shape of the data being assigned is the same as the shape already allocated, it is just
reused without reallocating. This means that the arrays can be used seamlessly in cal-
culations with data of different sizes.

390

CHAPTER 8: Additional Features of Arrays

For example, consider the following program.

PROGRAM test_allocatable_arrays
IMPLICIT NONE

I Declare data

REAL, DIMENSION(:), ALLOCATABLE :: arrl

REAL, DIMENSION(8) :: arr2 =10[1., 2., 3., 4., 5., 6., 7., 8.1
REAL, DIMENSION(3) :: arr3 =10[1., -2., 3. 1

! Automatically allocate arrl as a 3 element array
arrl = 2. * arr3
WRITE (*,*) arrl

I Automatically allocate arrl as a 4 element array
arrl = arr2(1:8:2)
WRITE (*,*) arrl

I Reuse arrl as a 4 element array without deallocating
arrl = 2. * arr2(1:4)

WRITE (*,*) arrl

END PROGRAM test_allocatable_arrays

When this program is compiled and executed, the results are:

C:\book\fortran\chap8>ifort/standard-semantics test_allocatable_arrays.f90
Intel(R) Visual Fortran Intel(R) 64 Compiler for applications running on
Intel(R) 64, Version 16.0.2.180 Build 20160204

Copyright (C) 1985-2016 Intel Corporation. A1l rights reserved.

Microsoft (R) Incremental Linker Version 12.00.40629.0
Copyright (C) Microsoft Corporation. A1l rights reserved.

-out:test_allocatable_arrays.exe
-subsystem:console
test_allocatable_arrays.obj

C:\book\fortran\chap8>test_allocatable_arrays
2.000000 -4.000000 6.000000

1.000000 3.000000 5.000000 7.000000
2.000000 4.000000 6.000000 8.000000

When the first assignment statement is executed, arrl is unallocated, so it is
automatically allocated as a 3-element array and the values [2. —4. 6.] are stored in it.
When the second assignment statement is executed, arrl is allocated as a 3-element
array, which is the wrong size, so the array is automatically deallocated and reallocated
with four elements and the values [1. 3. 5. 7.] are stored in it. When the third
assignment statement is executed, arrl is allocated as a 4-element array, which is the
correct size, so the array is not reallocated and the values [2. 4. 6. 8.] are stored in the
existing allocation.*

4 Note that it is necessary to use the /standard-semantics option with the Intel Fortran compiler to
enable Fortran 2003 allocatable array behaviors. Different options may be required for other compilers.

Additional Features of Arrays 391

Note that this automatic allocation and deallocation works only if the allocatable
variable is the same rank as the expression being assigned to it. If the ranks differ, the
assignment will produce a compile-time error.

REAL, DIMENSION(:), ALLOCATABLE :: arrl
REAL, DIMENSION(2,2), :: arr2 = RESHAPE ([1,2,3,4 1, [2,21)

arrl = arr?2 ! Error

Good Programming Practice

When allocatable arrays are used in a Fortran 2003 or later program, they are auto-
matically resized to match the size of the data assigned to them as long as that data
has the same rank as the allocatable array.

Fortran 2003 allocatable arrays declared without a SAVE attribute’ are automati-
cally deallocated whenever the program unit containing them finishes. Thus, allocat-
able arrays in subroutines or functions do not need to be deallocated with a
DEALLOCATE statement at the end of the subroutine or function.

Good Programming Practice

Allocatable arrays declared in a subroutine or function without a SAVE attribute will
be automatically deallocated when the subroutine or function exits. No DEALLOCATE
statements are required.

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Sections 8.3 through 8.6. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

For questions 1 to 6, determine what will be printed out by the WRITE statements.

1. REAL, DIMENSION(-3:3,0:50) :: values
WRITE (*,*) LBOUND(values,l)
WRITE (*,*) UBOUND(values,2)
WRITE (*,*) SIZE(values,l)
WRITE (*,*) SIZE(values)
WRITE (*,*) SHAPE(values)

(continued)

5 The SAVE attribute is described in Chapter 9.

392 CHAPTER 8: Additional Features of Arrays

(continued)

2. REAL, ALLOCATABLE, DIMENSION(:,:,:) :: values

ALLOCATE(values(3,4,5), STAT=istat)
WRITE (*,*) UBOUND(values,?2)

WRITE (*,*) SIZE(values)

WRITE (*,*) SHAPE(values)

3. REAL, DIMENSION(5,5) :: inputl

DO i =1, 5

DO j =1, 5

inputl(i,j) = i+j-1

END DO
END DO
WRITE (*,*) MAXVAL(inputl)
WRITE (*,*) MAXLOC(inputl)

4. REAL, DIMENSION(2,2) :: arrl
arrl = RESHAPE([3.,0.,-3.,5.1, [2,2])
WRITE (*,*) SUM(C arrl)
WRITE (*,*) PRODUCT(arrl)
WRITE (*,*) PRODUCT(arrl, MASK=arrl /= 0.)
WRITE (*,*) ANY(Carrl > 0.)
WRITE (*,*) ALLCarrl > 0.)

5. INTEGER, DIMENSION(2,3) :: arr2
arr2 = RESHAPE([3,0,-3,5,-8,21, [2,3]1)
WHERE (arr2 > 0)
arr2 =2 * arr2
END WHERE
WRITE (*,*) SUM(C arr2, MASK=arr2 > 0.)

6. REAL, ALLOCATABLE, DIMENSION(:) :: a, b, c
a=10[1., 2., 3.1
b=1L[6., 5., 4. 1
c=a+b
WRITE (*,*) ¢

Determine which of the following sets of Fortran statements are valid. For each
set of valid statements, specify what will happen in the program. For each set of
invalid statements, specify what is wrong. Assume default typing for any vari-
ables that are not explicitly typed.

7. REAL, DIMENSION(6) :: distl
REAL, DIMENSION(5) :: time
distl = [0.00, 0.25, 1.00, 2.25, 4.00, 6.25]

(continued)

Additional Features of Arrays 393

(concluded)

time = [0.0, 1.0, 2.0, 3.0, 4.0 1
WHERE (time > 0.)

distl = SQRT(distl)
END WHERE

8. REAL, DIMENSIONC(:), ALLOCATABLE :: time
time = [0.00, 0.25, 1.00, 2.25, 4.00, 6.25, &
9.00, 12.25, 16.00, 20.251
WRITE (*,*) time

9. REAL, DIMENSIONC(:,:), ALLOCATABLE :: test
WRITE (*,*) ALLOCATED(test)

8.7

SUMMARY u

In this chapter, we presented 2D (rank 2) and multidimensional arrays (rank »). Fortran
allows up to seven dimensions in an array.

A multidimensional array is declared using a type declaration statement by nam-
ing the array and specifying the maximum (and, optionally, the minimum) subscript
values with the DIMENSION attribute. The compiler uses the declared subscript
ranges to reserve space in the computer’s memory to hold the array. The array
elements are allocated in the computer’s memory in an order such that the first sub-
script of the array changes most rapidly and the last subscript of the array changes
most slowly.

As with any variable, an array must be initialized before use. An array may be
initialized at compile time using array constructors in the type declaration statements
or at run time using array constructors, DO loops, or Fortran READs.

Individual array elements may be used freely in a Fortran program just like any
other variable. They may appear in assignment statements on either side of the equal
sign. Entire arrays and array sections may also be used in calculations and assignment
statements as long as the arrays are conformable with each other. Arrays are conform-
able if they have the same number of dimensions (rank) and the same extent in each
dimension. A scalar is also conformable with any array. An operation between two
conformable arrays is performed on an element-by-element basis. Scalar values are
also conformable with arrays.

Fortran contains three basic types of intrinsic functions: elemental functions,
inquiry functions, and transformational functions. Elemental functions are defined for
a scalar input and produce a scalar output. When applied to an array, an elemental
function produces an output that is the result of applying the operation separately to
each element of the input array. Inquiry functions return information about an array,

394

CHAPTER 8: Additional Features of Arrays

such as its size or bounds. Transformational functions operate on entire arrays and
produce an output that is based on all of the elements of the array.

The WHERE construct permits an array assignment statement to be performed on
only those elements of an array that meet specified criteria. It is useful for preventing
errors caused by out-of-range data values in the array.

The FORALL construct is a method of applying an operation to many elements of
an array without specifying the order in which the operation must be applied to the
individual elements.

Arrays may either be static or allocatable. The size of static arrays is declared at
compilation time, and they may only be modified by recompiling the program. The
size of dynamic arrays may be declared at execution time, allowing a program to ad-
just its memory requirements to fit the size of the problem to be solved. Allocatable
arrays are declared using the ALLOCATABLE attribute, are allocated during program
execution using the ALLOCATE statement, and are deallocated using the DEALLOCATE
statement. In Fortran 2003 and later versions, allocatable arrays can also be automati-
cally allocated and deallocated using assignment statements, and allocatable arrays
without a SAVE attribute are automatically deallocated at the end of the execution of a
subroutine or function.

8.7.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with arrays.

1. Use the RESHAPE function to change the shape of an array. This is especially
useful when used with an array constructor to create array constants of any desired
shape.

2. Use implicit DO loops to read in or write out rank 2 arrays so that each row of the
array appears as a row of the input or output file. This correspondence makes it
easier for a programmer to relate the data in the file to the data present within the
program.

3. Use WHERE constructs to modify and assign array elements when you want to
modify and assign only those elements that pass some test.

4. Use allocatable arrays to produce programs that automatically adjust their memory
requirements to the size of the problem being solved. Declare allocatable arrays
with the ALLOCATABLE attribute, allocate memory to them with the ALLOCATE
statement and deallocate memory with the DEALLOCATE statement.

5. Always include the STAT= clause in any ALLOCATE statement, and always check
the returned status, so that a program can be shut down gracefully if there is insuf-
ficient memory to allocate the necessary arrays.

6. Always deallocate allocatable arrays with a DEALLOCATE statement as soon as you
are through using them.

7. When allocatable arrays are used in a Fortran 2003 or later program, they are au-
tomatically resized to match the size of the data assigned to them as long as that
data has the same rank as the allocatable array.

8. Allocatable arrays declared in a subroutine or function without a SAVE attribute
will be automatically deallocated when the subroutine or function exits. No
DEALLOCATE statements are required.

Additional Features of Arrays 395

8.7.2 Summary of Fortran Statements and Constructs

ALLOCATABLE Attribute:
type, ALLOCATABLE, DIMENSION(C:,[:, ...1) :: arrayl,

Examples:

REAL, ALLOCATABLE, DIMENSIONC(:) :: arrayl
INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: indices

Description:

The ALLOCATABLE attribute declares that the size of an array is dynamic. The size will be specified in an
ALLOCATE statement at run time. The type declaration statement must specify the rank of the array but not
the extent in each dimension. Each dimension is specified using a colon as a placeholder.

ALLOCATABLE statement:
ALLOCATABLE :: arrayl,

Example:

ALLOCATABLE :: arrayl

Description:

The ALLOCATABLE statement declares that the size of an array is dynamic. It duplicates the function of the
ALLOCATABLE attribute associated with a type declaration statement. Do not use this statement. Use the
ALLOCATABLE attribute instead.

ALLOCATE statement:

ALLOCATE (arrayl([il:1i2, [jl:1j2, ...), ... , STAT=status, ERRMSG=msg)
ALLOCATE (arrayl, SOURCE=expr, STAT=status, ERRMSG=msg)

Examples:

ALLOCATE (arrayl1(10000), STAT=istat)
ALLOCATE (indices(-10:10,-10:10,5), STAT=istat)
ALLOCATE (arrayl, SOURCE=array?2, STAT=istat, ERRMSG=msg)

Description:
The ALLOCATE statement dynamically allocates memory to an array that was previously declared allocat-
able. In the first form of the ALLOCATE statement, the extent of each dimension is specified in the ALLOCATE
statement. The returned status will be zero for successful completion and will be a machine-dependent
positive number in the case of an error.

In the second form of the ALLOCATE statement, the size of the array is the same as the size of the
source array, and the contents of the array are the same as the source array.

The second form of the ALLOCATE statement, the SOURCE= clause, and the ERRMSG= clause are only
supported in Fortran 2003 and later.

396

CHAPTER 8: Additional Features of Arrays

DEALLOCATE statement:
DEALLOCATE (arrayl, ... , STAT=status, ERRMSG=msg)

Example:

DEALLOCATE (arrayl, indices, STAT=status)

Description:

The DEALLOCATE statement dynamically deallocates the memory that was assigned by an ALLOCATE
statement to one or more allocatable arrays. After the statement executes, the memory associated with
those arrays is no longer accessible. The returned status will be zero for successful completion and will be
a machine-dependent positive number in the case of an error.

FORALL construct:

[name: 1 FORALL (indexl=tripletll, ..., logical_exprl)
Assignment Statement(s)
END FORALL [namel

Example:
FORALL (i=1:3, j=1:3, i > j)
arrl(i,j) = ABS(i-j) + 3
END FORALL
Description:

The FORALL construct permits assignment statements to be executed for those indices that meet the triplet
specifications and the optional logical expression, but it does not specify the order in which they are exe-
cuted. There may be as many indices as desired, and each index will be specified by a subscript triplet. The
logical expression is applied as a mask to the indices, and those combinations of specified indices for which
the logical expression is TRUE will be executed.

FORALL statement:
FORALL (indexl=tripletll, ..., logical_exprl) Assignment Statement

Description:
The FORALL statement is a simplified version of the FORALL construct in which there is only one assignment
statement.

WHERE construct:
[name:1 WHERE (mask_exprl)
Block 1
ELSEWHERE (mask_expr2) [namel
Block 2

(continued)

Additional Features of Arrays 397

(concluded)

ELSEWHERE [namel
Block 3
END WHERE [namel

Description:
The WHERE construct permits operations to be applied to the elements of an array that match a given criterion.
A different set of operations may be applied to the elements that do not match. Each mask_expr must be a
logical array of the same shape as the arrays being manipulated within the code blocks. If a given element of the
mask_exprl is true, then the array assignment statements in Block 1 will be applied to the corresponding
element in the arrays being operated on. If an element of the mask_expr1 is false and the corresponding
element of the mask_exprZ is true, then the array assignment statements in Block 2 will be applied to the
corresponding element in the arrays being operated on. If both mask expressions are false, then the array
assignment statements in Block 3 will be applied to the corresponding element in the arrays being operated on.
The ELSEWHERE clauses are optional in this construct. There can be as many masked ELSEWHERE
clauses are desired, and up to one plain ELSEWHERE.

WHERE statement:
WHERE (mask expression) array_assignment_statement u

Description:
The WHERE statement is a simplified version of the WHERE construct in which there is only one array
assignment statement and no ELSEWHERE clause.

8.7.3 Exercises

8-1. Determine the shape and size of the arrays specified by the following declaration state-
ments, and the valid subscript range for each dimension of each array.

(a) CHARACTER(1en=80), DIMENSION(3,60) :: line
(b) INTEGER, DIMENSION(-10:10,0:20) :: char
(¢) REAL, DIMENSION(-5:5,-5:5,-5:5,-5:5,-5:5) :: range

8-2. Determine which of the following Fortran program fragments are valid. For each valid
statement, specify what will happen in the program. (Assume default typing for any
variables that are not explicitly typed within the program fragments.)

(a) REAL, DIMENSION(6,4) :: b

DO i =1
DO j 4
temp = b(i,J)
b(i,j) = b(j,1)
b(j,i) = temp
END DO
END DO

6
1,

398

8-3.

(b) INTEGER, DIMENSION(9)

CHAPTER 8: Additional Features of Arrays

:: info

info = [1,-3,0,-5,-9,3,0,1,7]

WHERE (info > O
info = -info
ELSEWHERE

info = -3 * info

END WHERE
WRITE (*,*) info

(¢) INTEGER, DIMENSION(8)

)

info = [1,-3,0,-5,-9,3,0,7]
WRITE (*,*) info <=0

(d) REAL, DIMENSION(4,4)

4

FORALL (i=1:4, j=1:4)

z(i,j) = ABS(i-j)

END FORALL

:: info

Given a5 X 5 array my_array containing the values shown below, determine the shape
and contents of each of the following array sections.

my_array =

(a) my_array(3,:)
(b) my_array(:,2)
(¢) my_array(1:5:2,:)
(d) my_array(:,2:5:2)

1

2

6 7

11 12
16 17

3 4
8 9
13 14
18 19

21 22 23 24

(e) my_array(1:5:2,1:5:2)

(f) INTEGER, DIMENSION(3)

my_array(:,1list)

Why is the output of the two statements different?

PROGRAM test_outputl
IMPLICIT NONE

INTEGER, DIMENSION(0:1,0:3)

INTEGER :: 1, J

my_data(0,:) = [1,
my_data(1l,:) = [5,
!

DO i = 0,1

2
6

3, 4
7, 8

:: my_data

]
]

WRITE (*,100) (my_data(i,j), j=0,3)

100 FORMAT (6(1X,I4))

END DO

END PROGRAM test_outputl

WRITE (*,100) ((my_data(i,j), j=0,3),

5
10
15
20
25

clist =01, 2, 41

. What will be the output from each of the WRITE statements in the following program?

i=0,1)

Additional Features of Arrays 399

8-5. An input data file inputl contains the following values:

27 17 10 8 6
11 13 -11 12 -21
-1 0 0 6 14
-16 11 21 26 -16
04 99 -99 17 2

Assume that file inputl has been opened on i/o unit 8, and that array values is a
4 X 4 integer array, all of whose elements have been initialized to zero. What will be
the contents of array values after each of the following READ statements has been
executed?

(@) DO i =1, 4
READ (8,*) (values(i,j), j =1, 4)
END DO
(b) READ (8,*) ((values(i,j), j =1, 4), i=1,4)

(c) DO i =1, 4
READ (8,*) values(i,:)
END DO

(d) READ (8,*) values
8-6. What will be printed out by the following program?

PROGRAM test

IMPLICIT NONE

INTEGER, PARAMETER :: N =5, M =10
INTEGER, DIMENSION(N:M,M-N:M+N) :: info

WRITE (*,100) SHAPE(info)

100 FORMAT ('The shape of the array is: ',216)
WRITE (*,110) SIZE(info)

110 FORMAT ('The size of the array is: ',16)
WRITE (*,120) LBOUND(info)

120 FORMAT ('The Tower bounds of the array are: ',216)

WRITE (*,130) UBOUND(info)
130 FORMAT ('The upper bounds of the array are: ',2I6)
END PROGRAM test

8-7. Assume that values is a 10,201-element array containing a list of measurements from
a scientific experiment, which has been declared by the statement

REAL, DIMENSION(-50:50,0:100) :: values

(a) Create a set of Fortran statements that would count the number of positive values,
negative values, and zero values in the array, and write out a message summarizing
how many values of each type were found. Do not use any intrinsic functions in your
code.

(b) Use the transformational intrinsic function COUNT to create a set of Fortran state-
ments that would count the number of positive values, negative values, and zero
values in the array, and write out a message summarizing how many values of each
type were found. Compare the complexity of this code to the complexity of the
code in (a).

400

CHAPTER 8: Additional Features of Arrays

. Write a program that can read in a rank 2 array from an input disk file, and calculate the

sums of all the data in each row and each column in the array. The size of the array to
read in will be specified by two numbers on the first line in the input file, and the
elements in each row of the array will be found on a single line of the input file. Size the
program to handle arrays of up to 100 rows and 100 columns. An example of an input
data file containing a 2 row X 4 column array is shown below:

2 4
-24.0 -1121. 812.1 11.1
35.6 8.1E3 135.23 -17.3

Write out the results in the form:

Sum of row 1 =
Sum of row 2 =

Sum of col 1 =

8-9. Test the program that you wrote in Exercise 8-8 by running it on the following array:
33. —-12. 16. 05 -19
array — —-6. —14. 35 1. 2.1
YZlaa 11 71 93 161
03 62 —99 -12. 68
8-10. Modify the program you wrote in Exercise 8-8 to use allocatable arrays that are adjusted
to match the number of rows and columns in the problem each time the program is run.
8-11. Write a set of Fortran statements that would search a rank 3 array arr and limit the max-
imum value of any array element to be less than or equal to 1000. If any element exceeds
1000, its value should be set to 1000. Assume that array arr has dimensions 1000 X
10 x 30. Write two sets of statements, one checking the array elements one at a time using
DO loops and one using the WHERE construct. Which of the two approaches is easier?
8-12. Average Annual Temperature As a part of a meteorological experiment, average
annual temperature measurements were collected at 36 locations specified by latitude
and longitude as shown in the chart below.
90.0° W long 90.5° W long 91.0° W long 91.5° W long 92.0° W long 92.5° W long
30.0° N lat 68.2 72.1 72.5 74.1 74.4 74.2
30.5° N lat 69.4 71.1 71.9 73.1 73.6 73.7
31.0° N lat 68.9 70.5 70.9 71.5 72.8 73.0
31.5° N lat 68.6 69.9 70.4 70.8 71.5 72.2
32.0° N lat 68.1 69.3 69.8 70.2 70.9 71.2
32.5° N lat 68.3 68.8 69.6 70.0 70.5 70.9

Write a Fortran program that calculates the average annual temperature along each
latitude and each longitude included in the experiment. Finally, calculate the average
annual temperature for all of the locations in the experiment. Take advantage for intrinsic
functions where appropriate to make your program simpler.

Additional Features of Arrays 401

8-13. Matrix Multiplication Matrix multiplication is only defined for two matrices in which

8-14.

8-15.

8-16.

the number of columns in the first matrix is equal to the number of rows in the second
matrix. If matrix A isan N X L matrix and matrix Bisan L X M matrix, then the prod-
uct C=A X Bisan N X Mmatrix whose elements are given by the equation

L
Cik = Za,/bjk (8-1)
=1

For example, if matrices A and B are 2 X 2 matrices

3.0 -1.0 1.0 4.0
Az[l.o 2.0] and Bz[z.o -3.0]

then the elements of matrix C will be

¢y = ayby + apby = (3.0)(1.0) + (-1.0)(2.0) = 1.0
cip=aybp + apby =(3.0)(4.0) + (-1.0)(-3.0) = 15.0
€1 = dyibyy + apby = (1.0)(1.0) + (2.0)(2.0) = 5.0

Co = Ay + anbyy = (1.0)(4.0) + (2.0)(=3.0) = -2.0

Write a program that can read two matrices of arbitrary size from two input disk
files, and multiply them if they are of compatible sizes. If they are of incompatible
sizes, an appropriate error message should be printed. The number of rows and columns
in each matrix will be specified by two integers on the first line in each file, and the
elements in each row of the matrix will be found on a single line of the input file.
Use allocatable arrays to hold both the input matrices and the resulting output matrix.
Verify your program by creating two input data files containing matrices of the com-
patible sizes, calculating the resulting values, and checking the answers by hand. Also,
verify the proper behavior of the program if it is given that the two matrices are of
incompatible sizes.

Use the program produced in Exercise 8-14 to calculate C = A X B where:
[1. -5 4. 2]
A= >
|[—-6. —4. 2. 2.]
- 5
1. =2, -1
2. 3. 4.
B =
0. -1 2.
[0. -3 1]

How many rows and how many columns are present in the resulting matrix C?

Fortran includes an intrinsic function MATMUL to perform matrix multiplication.
Rewrite the program of Exercise 8-13 to use function MATMUL to multiply the matrices
together.

Relative Maxima A point in a rank 2 array is said to be a relative maximum if it is
higher than any of the eight points surrounding it. For example, the element at position

402

8-17.

CHAPTER 8: Additional Features of Arrays

(2, 2) in the array shown below is a relative maximum, since it is larger than any of the
surrounding points.

11 7 =2
-7 14 3
2 -3 5

Write a program to read a matrix A from an input disk file and to scan for all relative
maxima within the matrix. The first line in the disk file should contain the number of
rows and the number of columns in the matrix and then the next lines should contain
the values in the matrix, with all of the values in a given row on a single line of the
input disk file. (Be sure to use the proper form of implied DO statements to read in the
data correctly.) Use allocatable arrays. The program should only consider interior points
within the matrix, since any point along an edge of the matrix cannot be completely
surrounded by points lower than itself. Test your program by finding all of the relative
maxima in the following matrix, which can be found in file FINDPEAK:

2. -1 -2 1 3. -5 2. 1.9

-2. 0. =25 5. =2, 2. 1. 0.

-3. =-3. =3 3. 0 0. -1. -=2.

A= -45 -4 -7. 6 1. -3. 0. 5.
-35 -3. =5 0. 4 17. 11. 5.

-9. —-6. -5 3. 1 2. 0. 05

-7. =4, =5 -=3. 2. 4. 3. -l

y 6. 5. -5, -2. 0. 1. 2. 5.4

Temperature Distribution on a Metallic Plate Under steady-state conditions, the tem-
perature at any point on the surface of a metallic plate will be the average of the tempera-
tures of all points surrounding it. This fact can be used in an iterative procedure to
calculate the temperature distribution at all points on the plate.

Figure 8-9 shows a square plate divided in 100 squares or nodes by a grid. The tem-
peratures of the nodes form a 2D array 7. The temperature in all nodes at the edges of
the plate is constrained to be 20° C by a cooling system, and the temperature of the node
(3, 8) is fixed at 100° C by exposure to boiling water.

A new estimate of the temperature in any given node can be calculated from the
average of the temperatures in all segments surrounding it:

1
Tijnew = Z(Ti+l,j + Timyj+ Tijyr + Tiy—1) (8-2)

To determine the temperature distribution on the surface of a plate, an initial assumption
must be made about the temperatures in each node. Then Equation 8-2 is applied to each
node whose temperature is not fixed to calculate a new estimate of the temperature in
that node. These updated temperature estimates are used to calculate newer estimates,
and the process is repeated until the new temperature estimates in each node differ from
the old ones by only a small amount. At that point, a steady-state solution has been
found.

Additional Features of Arrays 403

10

FIGURE 8-9
A metallic plate divided into 100 small segments.

Write a program to calculate the steady-state temperature distribution throughout
the plate, making an initial assumption that all interior segments are at a temperature of
50° C. Remember that all outside segments are fixed at a temperature of 20° C and seg-
ment (3, 8) is fixed at a temperature of 100° C. The program should apply Equation 8-1
iteratively until the maximum temperature change between iterations in any node is less
than 0.01 degree. What will the steady-state temperature of segment (5, 5) be?

404

9

Additional Features of Procedures

OBJECTIVES

e Learn how to use multidimensional arrays in Fortran procedures.

* Understand how and when to use the SAVE attribute or statement.

e Understand the difference between allocatable and automatic arrays, and when
to use each in a procedure.

e Understand pure and elemental procedures.

* Learn how to declare and use internal subroutines and functions.

e Learn how to separate procedure interfaces and executable code using SUBMODULEs.

In Chapter 7, we learned the basics of using Fortran subroutines, function subpro-
grams, and modules. This chapter describes more advanced features of procedures,
including multidimensional arrays in procedures and the use of internal
procedures.

9.1

PASSING MULTIDIMENSIONAL ARRAYS TO
SUBROUTINES AND FUNCTIONS

Multidimensional arrays can be passed to subroutines or functions in a manner similar
to 1D arrays. However, the subroutine or function will need to know both the number
of dimensions and the extent of each dimension in order to use the array properly.
There are three possible ways to pass this information to the subprogram.

9.1.1 Explicit Shape Dummy Arrays
The first approach is to use explicit shape dummy arrays. In this case, we pass the

array and the extent of each dimension of the array to the subroutine. The extent values
are used to declare the size of the array in the subroutine, and thus the subroutine

Additional Features of Procedures 405

knows all about the array. An example subroutine using explicit shape dummy arrays
is shown below.

SUBROUTINE processl (datal, data2, n, m)

INTEGER, INTENTCIN) :: n, m

REAL, INTENT(IN), DIMENSION(n,m) :: datal ! Explicit shape
REAL, INTENT(OUT), DIMENSION(n,m) :: data2 ! Explicit shape

data2 = 3. * datal
END SUBROUTINE processl

When explicit-shape dummy arrays are used, the size and shape of each dummy array
in the subprogram are known to the compiler. Since the size and shape of each array are
known, it is possible to use array operations and array sections with the dummy arrays.

9.1.2 Assumed-Shape Dummy Arrays

The second approach is to declare all dummy arrays in a subroutine as assumed-shape
dummy arrays. Assumed-shape arrays are declared using colons as placeholders for
each subscript of the array. These arrays work only if the subroutine or function has an
explicit interface, so that the calling program knows everything about the subroutine
interface. This is normally accomplished by placing the subprogram into a module,

and then USEing the module in the calling program.

Whole array operations, array sections, and array intrinsic functions can all be
used with assumed-shape dummy arrays, because the compiler can determine the size
and shape of each array from the information in the interface. If needed, the actual size
and extent of an assumed-shape array can be determined by using the array inquiry
functions in Table 8-1. However, the upper and lower bounds of each dimension can-
not be determined, since only the shape of the actual array but not the bounds are
passed to the procedure. If the actual bounds are needed for some reason in a particular
procedure, then an explicit-shape dummy array must be used.

Assumed-shape dummy arrays are generally better than explicit-shape dummy ar-
rays in that we don’t have to pass every bound from the calling program unit to a pro-
cedure. However, assumed-shape arrays only work if a procedure has an explicit
interface.

An example subroutine using assumed-shape dummy arrays is shown below:

MODULE test_module
CONTAINS

SUBROUTINE process2 (datal, data2)

REAL, INTENTCIN), DIMENSION(:,:) :: datal ! Explicit shape
REAL, INTENT(OUT), DIMENSIONC:,:) :: data2 ! Explicit shape
data2 = 3. * datal

END SUBROUTINE process?

END MODULE test_module

406

YT@\S

CHAPTER 9: Additional Features of Procedures

9.1.3 Assumed-Size Dummy Arrays

The third (and oldest) approach is to use an assumed-size dummy array. These are
arrays in which the length of one of the array dimensions is an asterisk. Assumed-size
dummy arrays are a holdover from earlier versions of Fortran. They should never be
used in any new programs, so we will not discuss them here.

Good Programming Practice

Use either assumed-shape arrays or explicit-shape arrays as dummy array arguments
in procedures. If assumed-shape arrays are used, an explicit interface is required.
Whole array operations, array sections, and array intrinsic functions may be used
with the dummy array arguments in either case. Never use assumed-size arrays in
any new program.

EXAMPLE
9-1

Gauss-Jordan Elimination:

Many important problems in science and engineering require the solution of a system
of N simultaneous linear equations in N unknowns. Some of these problems require
the solution of small systems of equations, say 3 X 3 or 4 X 4. Such problems are
relatively easy to solve. Other problems might require the solution of really large sets
of simultaneous equations, like 1000 equations in 1000 unknowns. Those problems are
much harder to solve and the solution requires a variety of special iterative techniques.
A whole branch of the science of numerical methods is devoted to different ways to
solve systems of simultaneous linear equations.

We will now develop a subroutine to solve a system of simultaneous linear
equations using the straightforward approach known as Gauss-Jordan elimination. The
subroutine that we develop should work fine for systems of up to about 20 equations in
20 unknowns.

Gauss-Jordan elimination depends on the fact that you can multiply one equation
in a system of equations by a constant and add it to another equation, and the new sys-
tem of equations will still be equivalent to the original one. In fact, it works in exactly
the same way that we solve systems of simultaneous equations by hand.

To understand the technique, consider the 3 X 3 system of equations shown below.

1.0x; + 1.0x, + 1.0x3 = 1.0
2.0x1 + 1.0)(2 + 1.0X3 =20 (9-1)
1.0x; + 3.0x, + 2.0x3 = 4.0

We would like to manipulate this set of equations by multiplying one of the equations

by a constant and adding it to another one until we eventually wind up with a set of
equations of the form

Additional Features of Procedures 407

1.0x; + 0.0x, + 0.0x3 = b
0.0x; + 1.0x, + 0.0x3 = b, (9-2)
0.0x; + 0.0x, + 1.0x3 = b3
When we get to this form, the solution to the system will be obvious: x; = by, x, = b,,
and x; = b;.
To get from Equations (9-1) to (9-2) equation reference goes here, we must go
through three steps:

1. Eliminate all coefficients of x; except in the first equation.
2. Eliminate all coefficients of x, except in the second equation.
3. Eliminate all coefficients of x; except in the third equation.

First, we will eliminate all coefficients of x; except that in the first equation. If we
multiply the first equation by —2 and add it to the second equation, and multiply the
first equation by —1 and add it to the third equation, the results are:

l.Oxl + l.O.XZ + I.OX3 =1.0
0.0x; — 1.0x, — 1.0x3 = 0.0 9-3)
0.0x; + 2.0x, + 1.0x3 = 3.0

Next, we will eliminate all coefficients of x, except in the second equation. If we add
the second equation as it is to the first equation, and multiply the second equation by 2

and add it to the third equation, the results are: u

1.0x; + 0.0x, + 0.0x3 = 1.0
0.0x; — 1.0x, — 1.0x3 = 0.0 (9-4)
0.0x; + 0.0x, — 1.0x3 = 3.0

Finally, we will eliminate all coefficients of x; except in the third equation. In this
case, there is no coefficient of x; in the first equation, so we don’t have to do anything
there. If we multiply the third equation by —1 and add it to the second equation, the
results are:

1.0x; + 0.0x, + 0.0x3 = 1.0
0.0x; — 1.0x, + 0.0x; = =3.0 (9-5)
0.0x; + 0.0x, — 1.0x3 = 3.0

The last step is almost trivial. If we divide the equation 1 by the coefficient of x;,

equation 2 by the coefficient of x,, and equation 3 by the coefficient of x3, then the
solution to the equations will appear on the right hand side of the equations.

1.0x; + 0.0x, + 0.0x3 = 1.0
0.0x; + 1.0x, + 0.0x3 = 3.0 (9-6)
0.0x; + 0.0x, + 1.0x3 = =3.0

The final answer is x; = 1, x, = 3, and x3 = —3!

408

CHAPTER 9: Additional Features of Procedures

Sometimes the technique shown above does not produce a solution. This happens
when the set of equations being solved are not all independent. For example, consider
the following 2 X 2 system of simultaneous equations:

2.0x; + 3.0x, = 4.0

9-7
4.0x; + 6.0x, = 8.0 ©-7)

If equation 1 is multiplied by —2 and added to equation 1, we get
2.0x; + 3.0x, =4.0 ©9-8)

0.0x; + 0.0x, = 0.0

There is no way to solve this system for a unique solution, since there are infinitely
many values of x; and x, that satisfy Equations (9-8). These conditions can be recog-
nized by the fact that the coefficient of x, in the second equation is 0. The solution to
this system of equations is said to be nonunique. Our computer program will have to
test for problems like this and report them with an error code.

SOLUTION

We will now write a subroutine to solve a system of N simultaneous equations in N
unknowns. The computer program will work in exactly the manner shown above,
except that at each step in the process, we will reorder the equations. In the first step,
we will reorder the N equations such that the first equation is the one with the largest
coefficient (absolute value) of the first variable. In the second step, we will reorder
second equation through the Nth equation such that the second equation is the one with
the largest coefficient (absolute value) of the second variable. This process is repeated
for each step in the solution. Reordering the equations is important, because it reduces
round-off errors in large systems of equations and also avoids divide-by-zero errors.
(This reordering of equations is called the maximum pivot technique in the literature of
numerical methods.)

1. State the problem.

Write a subroutine to solve a system of N simultaneous equations in N unknowns
using Gauss-Jordan elimination and the maximum pivot technique to avoid round-off
errors. The subroutine must be able to detect singular sets of equations and set an error
flag if they occur. Use explicit-shape dummy arrays in the subroutine.

2. Define the inputs and outputs.

The input to the subroutine consists of an ndim X ndim matrix a, containing an
n X n set of coefficients for the simultaneous equations and an ndim vector b, with
the contents of the right-hand sides of the equations. The size of the matrix ndim
must be greater than or equal to the size of the set of simultaneous equations n.
Since the subroutine is to have explicit-shape dummy arrays, we will also have to
pass ndim to the subroutine and use it to declare the dummy array sizes. The outputs
from the subroutine are the solutions to the set of equations (in vector b) and an error
flag. Note that the matrix of coefficients a will be destroyed during the solution
process.

Additional Features of Procedures 409

3. Describe the algorithm.
The pseudocode for this subroutine is:

DO for irow =1 to n

! Find peak pivot for column irow in rows i to n
ipeak « irow
DO for jrow = irow+l to n
IF Ja(jrow,irow)| > |a(ipeak,irow)| then
ipeak « jrow
END of IF
END of DO

I Check for singular equations
IF |a(ipeak,irow)| < epsilon THEN

Equations are singular; set error code & exit
END of IF

I Otherwise, if ipeak /= irow, swap equations irow & ipeak
IF ipeak <> irow
DO for kcol =1 ton
temp « a(ipeak,kcol)
a(ipeak,kcol) « a(irow,kcol)
a(irow,kcol) « temp
END of DO
temp « b(ipeak)
b(ipeak) « b(irow)
b(irow) « temp
END of IF

! Multiply equation irow by -a(jrow,irow)/a(irow,irow),
I and add it to Eqn jrow
DO for jrow =1 to n except for irow
factor «— -a(jrow,irow)/a(irow,irow)
DO for kcol =1 ton
a(jrow,kcol) « a(irow,kcol) * factor + a(jrow,kcol)

END of DO
b(jrow) « b(irow) * factor + b(jrow)
END of DO
END of DO

End of main Toop over all equations. A1l off-diagonal
terms are now zero. To get the final answer, we must
divide each equation by the coefficient of its on-diagonal
term.
0 for irow =1 ton
b(irow) « b(irow) / a(irow,irow)
a(irow,irow) « 1.
END of DO

O e— e— e— o—

4. Turn the algorithm into Fortran statements.
The resulting Fortran subroutine is shown in Figure 9-1. Note that the sizes of ar-
rays a and b are passed explicitly to the subroutine as a(ndim,ndim) and b(ndim).
By doing so, we can use the compiler’s bounds checker while we are debugging the

410

CHAPTER 9: Additional Features of Procedures

subroutine. Note also that the subroutine’s large outer loops and IF structures are all
named to make it easier for us to understand and keep track of them.

FIGURE 9-1
Subroutine simul.

SUBROUTINE simul (a, b, ndim, n, error)

Purpose:
Subroutine to solve a set of n Tinear equations in n
unknowns using Gaussian elimination and the maximum
pivot technique.

Date Programmer Description of change

!

!

!

!

!

!

I Record of revisions:
!

!

! 11/25/15 S. J. Chapman Original code
!

I

MPLICIT NONE

| Data dictionary: declare calling parameter types & definitions
INTEGER, INTENTCIN) :: ndim ! Dimension of arrays a and b
REAL, INTENT(INOUT), DIMENSION(ndim, nd1m) troa
! Array of coefficients (n x n).

! This array is of size ndim x

I ndim, but only n x n of the

I coefficients are being used.

I The declared dimension ndim

I must be passed to the sub, or

I it won't be able to interpret

I subscripts correctly. (This

! array is destroyed during

! processing.)
REAL, INTENT(INOUT), DIMENSION(ndim) :: b

I Input: Right-hand side of egns.

I Qutput: Solution vector.
INTEGER, INTENTCIN) :: n I Number of equations to solve.
INTEGER, INTENT(OUT) :: error I Error flag:

! 0 -- No error

! 1 -- Singular equations

! Data dictionary: declare constants
REAL, PARAMETER :: EPSILON = 1.0E-6 ! A "small” number for comparison
I when determining singular eqns

! Data dictionary: declare Tlocal var1ab1e types & definitions

REAL :: factor ! Factor to multiply eqn irow by
I before adding to egn jrow

INTEGER :: irow ! Number of the equation currently
! being processed

INTEGER :: ipeak I Pointer to equation containing
I maximum pivot value
! Number of the equation compared
I to the current equation

INTEGER :: jrow

(continued)

Additional Features of Procedures 411

(continued)
INTEGER :: kcol I Index over all columns of eqn
REAL :: temp I Scratch value

I Process n times to get all equations...
mainloop: DO irow =1, n

I Find peak pivot for column irow in rows irow to n
ipeak = irow
max_pivot: DO jrow = irow+l, n
IF (ABS(a(jrow,irow)) > ABS(a(ipeak,irow))) THEN
ipeak = jrow
END IF
END DO max_pivot

I Check for singular equations.

singular: IF (ABS(a(ipeak,irow)) < EPSILON) THEN
error =1
RETURN

END IF singular

I Otherwise, if ipeak /= irow, swap equations irow & ipeak
swap_eqn: IF (ipeak /= irow) THEN
DO kcol =1, n
temp
a(ipeak,kcol)

a(ipeak,kcol)
a(irow,kcol)

a(irow,kcol) temp
END DO
temp = b(ipeak)
b(ipeak) = b(irow)
b(irow) = temp

END IF swap_egn

! Multiply equation irow by -a(jrow,irow)/a(irow,irow),
! and add it to Egqn jrow (for all egns except irow itself).
eliminate: DO jrow =1, n
IF (jrow /= irow) THEN
factor = -a(jrow,irow)/a(irow,irow)
DO kcol =1, n
a(jrow,kcol) = a(irow,kcol)*factor + a(jrow,kcol)
END DO
b(jrow) = b(irow)*factor + b(jrow)
END IF
END DO eliminate
END DO mainloop

! End of main Toop over all equations. A1l off-diagonal

I terms are now zero. To get the final answer, we must

! divide each equation by the coefficient of its on-diagonal
I term.
d

ivide: DO irow =1, n
b(irow) = b(irow) / a(irow,irow)
a(irow,irow) = 1.

END DO divide

(continued)

412

CHAPTER 9: Additional Features of Procedures

(concluded)

I Set error flag to 0 and return.
error = 0
END SUBROUTINE simul

5. Test the resulting Fortran programs.

To test this subroutine, it is necessary to write a driver program. The driver pro-
gram will open an input data file to read the equations to be solved. The first line of the
file will contain the number of equations n in the system, and each of the next n lines
will contain the coefficients of one of the equations. To show that the simultaneous
equation subroutine is working correctly, we will display the contents of arrays a and
b both before and after the call to simuT.

The test driver program for subroutine simul is shown in Figure 9-2.

FIGURE 9-2
Test driver routine for subroutine simul.

PROGRAM test_simul

Purpose:
To test subroutine simul, which solves a set of N linear
equations in N unknowns.

Date Programmer Description of change

11/25/15 S. J. Chapman Original code

|
|
|
|
!
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare constants
INTEGER, PARAMETER :: MAX_SIZE = 10 I Max number of eqns

! Data dictionary: declare local variable types & definitions

REAL, DIMENSION(MAX_SIZE,MAX_SIZE) :: a
I Array of coefficients (n x n).
I This array is of size ndim x
I ndim, but only n x n of the
I coefficients are being used.
I The declared dimension ndim
! must be passed to the sub, or
I it won't be able to interpret
I subscripts correctly. (This
! array is destroyed during
! processing.)

I Input: Right-hand side of eqns.

I Qutput: Solution vector.

! Error flag:

! 0 -- No error

! 1 -- Singular equations

REAL, DIMENSION(MAX_SIZE) :: b

INTEGER :: error

(continued)

Additional Features of Procedures 413

(continued)

CHARACTER(1en=20) :: file_name ! Name of file with eqns

INTEGER :: 1 I Loop index

INTEGER :: ! Loop index

CHARACTER(1en=80) :: msg ! Error message

INTEGER :: n I Number of simul egns (<= MAX_SIZE)
|

INTEGER :: istat I/0 status

I Get the name of the disk file containing the equations.
WRITE (*,"("Enter the file name containing the egns: ')")
READ (*,'(A20)') file_name

! Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=1, FILE=file_name, STATUS='OLD', ACTION='READ', &
I0STAT=istat, IOMSG=msg)

! Was the OPEN successful?

fileopen: IF (istat == 0) THEN
! The file was opened successfully, so read the number of
I equations in the system.
READ (1,*) n

I If the number of equations is <= MAX_SIZE, read them in
! and process them.
size_ok: IF (n <= MAX_SIZE) THEN
DOi=1,n
READ (1,*) (a(i,j), j=l,n), b(i)
END DO

| Display coefficients.
WRITE (*,"(/,'Coefficients before call:')")
DO i=1,n
WRITE (*,"(1X,7F11.4)") (a(i,j), j=1,n), b(i)
END DO

I Solve equations.
CALL simul (a, b, MAX_SIZE, n, error)

I Check for error.
error_check: IF (error /=0) THEN

WRITE (*,1010)
1010 FORMAT (/'Zero pivot encountered!', &
//'There is no unique solution to this system.')

ELSE error_check

I No errors. Display coefficients.
WRITE (*,"(/,'Coefficients after call:")")
DO i=1,n
WRITE (*,"(1X,7F11.4)") (a(i,j), j=1l,n), b(i)
END DO

(continued)

414

CHAPTER 9: Additional Features of Procedures

(concluded)

I Write final answer.
WRITE (*,"(/,'The solutions are:')")
DO i=1,n
WRITE (*,"(2X,'X(',I12,'") = ',F16.6)") i, b(i)
END DO

END IF error_check
END IF size_ok
ELSE fileopen

! Else file open failed. Tell user.
WRITE (*,1020) msg
1020 FORMAT ('File open failed: ', A)

END IF fileopen
END PROGRAM test_simul

To test the subroutine, we need to call it with two different data sets. One of them
should have a unique solution and the other one should be singular. We will test the
system with two sets of equations. The original equations that we solved by hand will
be placed in file inputsl

1.0x; + 1.0x, + 1.0x3 = 1.0
2.0x; + 1.0x, + 1.0x3 = 2.0 9-1)
1.0x; + 3.0x, + 2.0x3 = 4.0

and the following set of equations will be placed in file inputs?2.

1.0X1 + 1.0)(:2 + 1.0)(3 =1.0
2.0x; + 6.0x, + 4.0x3 = 8.0 9-9)
1.0x; + 3.0x, + 2.0x3 = 4.0

The second equation of this set is a multiple of the third equation, so the second set of
equations is singular. When we run program test_simul with these data sets, the
results are:

C:\book\fortran\chap9>test_simul
Enter the file name containing the eqns:

inputsl
Coefficients before call:
1.0000 1.0000 1.0000 1.0000
2.0000 1.0000 1.0000 2.0000
1.0000 3.0000 2.0000 4.0000
Coefficients after call:
1.0000 .0000 .0000 1.0000
.0000 1.0000 .0000 3.0000

.0000 .0000 1.0000 -3.0000

Additional Features of Procedures 415

The solutions are:

X 1) = 1.000000
X(2) = 3.000000
X(3) = -3.000000

C:\book\fortran\chap9>test_simul
Enter the file name containing the eqgns:
inputs2

Coefficients before call:
1.0000 1.0000 1.0000 1.0000
2.0000 6.0000 4.0000 8.0000
1.0000 3.0000 2.0000 4.0000

Zero pivot encountered!

There is no unique solution to this system.

The subroutine appears to be working correctly for both unique and singular sets of
simultaneous equations.

Note that subroutine simul uses explicit-shape arrays. You will be asked to
modify this subroutine to use assumed-shape dummy arrays in an end-of-chapter
exercise.

EXAMPLE Using Assumed-Shape Dummy Arrays:
9-2
A simple procedure using an assumed-shape dummy array is shown in Figure 9-3.
This procedure declares an assumed-shape dummy array “array,” and then determines
its size, shape, and bounds using array intrinsic functions. Note that the subroutine is
contained in a module, so it has an explicit interface.

FIGURE 9-3
Subroutine to illustrate the use of assumed-shape arrays.

MODULE test_module
! Purpose:
! To illustrate the use of assumed-shape arrays.
|
CONTAINS
SUBROUTINE test_array(array)
IMPLICIT NONE

REAL, DIMENSION(:,:) :: array ! Assumed-shape array
INTEGER :: i1, i2 I Bounds of first dimension
INTEGER :: j1, j2 I Bounds of second dimension

(continued)

416 CHAPTER 9: Additional Features of Procedures

(concluded)
I Get details about array.
il = LBOUND(array,1)
i2 = UBOUND(array,1)
j1 = LBOUND(array,?2)
j2 = UBOUND(array,?2)

WRITE (*,100) i1, i2, j1, j2
100 FORMAT ('The bounds are: (',I2,':',I12,',',12,':',12,")")
WRITE (*,110) SHAPE(array)

110 FORMAT ('The shape is: ',214)
WRITE (*,120) SIZE(array)
120 FORMAT ('The size is: ', 14)

END SUBROUTINE test_array
END MODULE test_module

PROGRAM assumed_shape

|

! Purpose:

! To illustrate the use of assumed-shape arrays.
|

USE test_module

IMPLICIT NONE

I Declare local variables
REAL, DIMENSION(-5:5,-5:5) :: a = 0. ! Array a
REAL, DIMENSION(10,2) :: b = 1. ! Array b

I Call test_array with array a.
WRITE (*,*) 'Calling test_array with array a:'
CALL test_array(a)

I Call test_array with array b.
WRITE (*,*) 'Calling test_array with array b:'
CALL test_array(b)

END PROGRAM assumed_shape
When program assumed_shape is executed, the results are:

C:\book\fortran\chap9>assumed_shape
Calling test_array with array a:
The bounds are: (1:11, 1:11)

The shape is: 11 11

The size is: 121

Calling test_array with array b:
The bounds are: (1:10, 1: 2)

The shape is: 10 2

The size is: 20

Note that the subroutine has complete information about the rank, shape, and size of
each array passed to it, but not about the bounds used for the array in the calling
program.

Additional Features of Procedures 417

9.2
THE SAVE ATTRIBUTE AND STATEMENT

According to the Fortran standard, the values of all the local variables and arrays in a
procedure become undefined whenever we exit the procedure. Any local allocatable
arrays will also be deleted when we exit the procedure. The next time that the procedure
is invoked, the values of the local variables and arrays may or may not be the same as
they were the last time we left it, depending on the behavior of the particular compiler
being used. If we write a procedure that depends on having its local variables undis-
turbed between calls, the procedure will work fine on some computers and fail miserably
on other ones!

Fortran provides a way to guarantee that local variables and arrays are saved
unchanged between calls to a procedure: the SAVE attribute. The SAVE attribute appears
in a type declaration statement like any other attribute. Any local variables declared
with the SAVE attribute will be saved unchanged between calls to the procedure. For
example, a local variable sums could be declared with the SAVE attribute as

REAL, SAVE :: sums

In addition, any local variable that is initialized in a type declaration statement is
automatically saved. The SAVE attribute may be specified explicitly, if desired, but the
value of the variable will be saved whether or not the attribute is explicitly included.
Thus, the following two variables are both saved between invocations of the procedure
containing them.

REAL, SAVE :: sum_x = 0.
REAL :: sum_x2 = 0.

Local allocatable arrays with a SAVE attribute will not be deallocated and will be
saved unchanged between invocations of the procedure containing them.

Fortran also includes a SAVE statement. It is a nonexecutable statement that
goes into the declaration portion of the procedure along with the type declaration
statements. Any local variables listed in the SAVE statement will be saved
unchanged between calls to the procedure. If no variables are listed in the SAVE
statement, then all of the local variables will be saved unchanged. The format of
the SAVE statement is

SAVE :: varl, var2, ...
or simply
SAVE

The SAVE attribute may not appear associated with dummy arguments or with data
items declared with the PARAMETER attribute. Similarly, neither of these items may
appear in a SAVE statement.

The SAVE statement should appear in any module used to share data, to ensure that
the values in the module remain intact between calls to procedures that USE the
module. Figure 7-8 showed a sample module that included a SAVE statement.

418

CHAPTER 9: Additional Features of Procedures

Good Programming Practice

If a procedure requires that the value of a local variable not change between succes-
sive invocations, include the SAVE attribute in the variable’s type declaration state-
ment or include the variable in a SAVE statement, or initialize the variable in its type
declaration statement. If you do not do so, the subroutine will work correctly on
some processors but will fail on other ones.

EXAMPLE
9-3

Running Averages:

It is sometimes desirable to keep running statistics on a data set as the values are being
entered. The subroutine running_average shown in Figure 9-4 accumulates running
averages and standard deviations for use in problems where we would like to keep
statistics on data as it is coming in to the program. As each new data value is added,
the running averages and standard deviations of all data up to that point are updated.
The running sums used to derive the statistics are reset when the subroutine is called
with the logical argument reset set to true. Note that the sums n, sum_x, and sum_x2
are being accumulated in local variables in this subroutine. To ensure that they remain
unchanged between subroutine calls, those local variables must appear in a SAVE
statement or with a SAVE attribute.

FIGURE 9-4
A subroutine to calculate the running mean and standard deviation of an input data set.

SUBROUTINE running_average (x, ave, std_dev, nvals, reset)

Purpose:
To calculate the running average, standard deviation,
and number of data points as data values x are received.
If "reset” is .TRUE., clear running sums and exit.

Date Programmer Description of change

11/25/15 S. J. Chapman Original code

|
|
|
|
|
1
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare calling parameter types & definitions
REAL, INTENT(IN) :: x ! Input data value.

REAL, INTENT(OUT) :: ave I Running average.
REAL, INTENT(OUT) :: std_dev ! Running standard deviation.
INTEGER, INTENT(OUT) :: nvals ! Current number of points.
LOGICAL, INTENTCIN) :: reset | Reset flag: clear sums if true
I Data dictionary: declare Tocal variable types & definitions
INTEGER, SAVE :: n ! Number of input values.

(continued)

Additional Features of Procedures 419

(concluded)
REAL, SAVE :: sum_x ! Sum of input values.
REAL, SAVE :: sum_x2 ! Sum of input values squared.

I If the reset flag is set, clear the running sums at this time.
calc_sums: IF (reset) THEN

n

SUm_x
sum_x2
ave
std_dev
nvals

[e> N e» e e N e N e

ELSE

I Accumulate sums.

n n+1

SUm_x sum_x + X
sum_x2 sum_x2 + x**2

I Calculate average.
ave = sum_x / REAL(n)

I Calculate standard deviation.
IF (n >= 2) THEN

std_dev = SQRT((REAL(n) * sum_x2 - sum_x**2) &
/ (REAL(n) * REAL(n-1)))
ELSE
std_dev = 0.
END IF

! Number of data points.
nvals =n

END IF calc_sums
END SUBROUTINE running_average

A test driver for this subroutine is shown in Figure 9-5.

FIGURE 9-5
A test driver program to test subroutine running_average.

PROGRAM test_running_average
|
! Purpose:

! To test running average subroutine.
|

IMPLICIT NONE

I Declare variables:
INTEGER :: istat 1 ' 1/0 status
REAL :: ave ! Average

(continued)

420

CHAPTER 9: Additional Features of Procedures

(concluded)

REAL :: std_dev ! Standard deviation
CHARACTER(1en=80) :: msg ! Error message
INTEGER :: nvals I Number of values
REAL :: x ! Input data value
CHARACTER(1en=20) :: file_name ! Input data file name

I Clear the running sums.
CALL running_average (0., ave, std_dev, nvals, .TRUE.)

I Get the name of the file containing the input data.
WRITE (*,*) 'Enter the file name containing the data: '
READ (*,'(A20)') file_name

! Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=21, FILE=file_name, STATUS='OLD', ACTION='READ', &
I0STAT=istat, IOMSG=msg)

I Was the OPEN successful?
openok: IF (istat == 0) THEN

! The file was opened successfully, so read the data to calculate
I running averages for.

calc: DO
READ (21,*,I0STAT=istat) x I Get next value
IF (istat /=0) EXIT I EXIT if not valid.

I Get running average & standard deviation
CALL running_average (x, ave, std_dev, nvals, .FALSE.)

I Now write out the running statistics.

WRITE (*,1020) 'Value ="', x, ' Ave ="', ave, &
" Std_dev = ', std_dev, &
" Nvals = ', nvals
1020 FORMAT (3(A,F10.4),A,16)
END DO calc

ELSE openok

! Else file open failed. Tell user.
WRITE (*,1030) msg
1030 FORMAT ('File open failed: ', A)

END IF openok
END PROGRAM test_running_average
To test this subroutine, we will calculate running statistics by hand for a set of five

numbers and compare the hand calculations to the results from the computer program.
Recall that the average and standard deviation are defined as

X =

N
Dox; (4-1)
i=1

2=

and

Additional Features of Procedures 421

N N 2
Nzx? - <Zx,->
= i=1 i=1 (4-2)
N(N - 1)

where x;, is sample i out of N samples. If the five values are:
3, 2., 3, 4, 28

then the running statistics calculated by hand would be:

Value n Xx Xx? Average Std_dev
3.0 1 3.0 9.0 3.00 0.000
2.0 2 5.0 13.0 2.50 0.707
3.0 3 8.0 22.0 2.67 0.577
4.0 4 12.0 38.0 3.00 0.816
2.8 5 14.8 45.84 2.96 0.713

The output of the test program for the same data set is:

C:\book\fortran\chap9>test_running_average
Enter the file name containing the data:

inputé

Value = 3.0000 Ave = 3.0000 Std_dev = 0.0000 Nvals = 1
Value = 2.0000 Ave = 2.5000 Std_dev = 0.7071 Nvals = 2
Value = 3.0000 Ave = 2.6667 Std_dev = 0.5774 Nvals = 3
Value = 4.0000 Ave = 3.0000 Std_dev = 0.8165 Nvals = 4
Value = 2.8000 Ave = 2.9600 Std_dev = 0.7127 Nvals = 5

so the results check to the accuracy shown in the hand calculations.

9.3
ALLOCATABLE ARRAYS IN PROCEDURES

In Chapter 7, we learned how to declare and allocate memory for allocatable arrays.
Allocatable arrays could be adjusted to exactly the size required by the particular prob-
lem being solved.

An allocatable array that is used in a procedure must be declared as a local variable
in that procedure. If the allocatable array is declared with the SAVE attribute or appears
in a SAVE statement, then the array would be allocated once using an ALLOCATE state-
ment the first time the procedure is called. That array would be used in the calculations
and then its contents would be preserved intact between calls to the procedure.

If the allocatable array is declared without the SAVE attribute, then the array must
be allocated using an ALLOCATE statement! every time the procedure is called. That
array would be used in the calculations, and then its contents would be automatically
deallocated when execution returns to the calling program.

! Or by direct assignment in the case of a Fortran 2003 or later program.

422

CHAPTER 9: Additional Features of Procedures

9.4
AUTOMATIC ARRAYS IN PROCEDURES

Fortran provides another, simpler way to automatically create temporary arrays while
a procedure is executing and to automatically destroy them when execution returns
from the procedure. These arrays are called automatic arrays. An automatic array is
a local explicit-shape array with nonconstant bounds. (The bounds are specified either
by dummy arguments or through data from modules.)

For example, array temp in the following code is an automatic array. Whenever
subroutine subl is executed, dummy arguments n and m are passed to the subroutine.
Note that arrays x and y are explicit-shape dummy arrays of size n X m that have been
passed to the subroutine, while array temp is an automatic array that is created within
the subroutine. When the subroutine starts to execute, an array temp of size n X mis
automatically created, and when the subroutine ends, the array is automatically destroyed.

SUBROUTINE subl (x, y, n, m)

IMPLICIT NONE

INTEGER, INTENTCIN) :: n, m

REAL, INTENTCIN), DIMENSION(n,m) :: x ! Dummy array
REAL, INTENT(OUT), DIMENSION(n,m) :: y ! Dummy array
REAL, DIMENSION(n,m) :: temp ! Automatic array
temp = 0.

END SUBROUTINE subl

Automatic arrays may not be initialized in their type declaration statements, but
they may be initialized by assignment statements at the beginning of the procedure
in which they are created. They may be passed as calling arguments to other proce-
dures invoked by the procedure in which they are created. However, they cease to
exist when the procedure in which they are created executes a RETURN or END state-
ment. It is illegal to specify the SAVE attribute for an automatic array.

9.4.1 Comparing Automatic Arrays and Allocatable Arrays

Both automatic arrays and allocatable arrays can be used to create temporary working
arrays in a program. What is the difference between them, and when should we choose
one type of array or another for a particular application? The major differences
between the two types of arrays are:

1. Automatic arrays are allocated automatically whenever a procedure containing
them is entered, while allocatable arrays must be allocated manually (deallocation
is still automatic). This feature favors the use of automatic arrays when the tempo-
rary memory is only needed within a single procedure and any procedures that
may be invoked by it.

2. Allocatable arrays are more general and flexible, since they may be created and
destroyed in separate procedures. For example, in a large program, we might
create a special subroutine to allocate all arrays to be just the proper size to solve

Additional Features of Procedures 423

&

the current problem, and we might create a different subroutine to deallocate them
after they have been used. Also, allocatable arrays may be used in a main program,
while automatic arrays may not.

3. Allocatable arrays can be resized during a calculation. A programmer can change
the size of an allocatable array during execution using DEALLOCATE and ALLOCATE
statements,? so a single array can serve multiple purposes requiring different
shapes within a single procedure. In contrast, an automatic array is automatically
allocated to the specified size at the beginning of the procedure execution and the
size cannot be changed during that particular execution.

Automatic arrays should normally be used to create temporary working arrays
within a single procedure, while allocatable arrays should be used to create arrays in
main programs, or arrays that will be created and destroyed in different procedures, or
arrays that must be able to change size within a given procedure.

Good Programming Practice

Use automatic arrays to create local temporary working arrays in procedures. Use
allocatable arrays to create arrays in main programs, or arrays that will be created
and destroyed in different procedures, or arrays that must be able to change size
within a given procedure.

9.4.2 Example Program

EXAMPLE
9.4

Using Automatic Arrays in a Procedure:

As an example using automatic arrays in a procedure, we will write a new version
of subroutine simul that does not destroy its input data while calculating the
solution.

To avoid destroying the data, it will be necessary to add a new dummy argument
to return the solution to the system of equations. This argument will be called soln
and will have INTENT (OUT), since it will only be used for output. Dummy arguments
a and b will now have INTENT(IN), since they will not be modified at all in the sub-
routine. In addition, we will take advantages of array sections to simplify the nested DO
loops found in the original subroutine simul.

The resulting subroutine is shown in Figure 9-6. Note that arrays al and templ
are automatic arrays, since they are local to the subroutine but their bounds are passed
to the subroutine as dummy arguments. Arrays a, b, and soln are explicit-shape
dummy arrays, because they appear in the argument list of the subroutine.

2 Or by direct assignment in the case of a Fortran 2003 program.

424

CHAPTER 9: Additional Features of Procedures

FIGURE 9-6

A rewritten version of subroutine simul using allocatable arrays. This version does not
destroy its input arrays. The declarations of automatic arrays al and templ and the use of
array sections are shown in bold face.

SUBROUTINE simul2 (a, b, soln, ndim, n, error)

Purpose:
Subroutine to solve a set of N linear equations in N
unknowns using Gaussian elimination and the maximum
pivot technique. This version of simul has been
modified to use array sections and allocatable arrays
It DOES NOT DESTROY the original input values.

Date Programmer Description of change

!

!

!

!

!

!

1

!

I Record of revisions:
!

!

! 11/25/15 S. J. Chapman Original code

11, 11/25/15 S. J. Chapman Add automatic arrays
!

I

MPLICIT NONE

! Data dictionary: declare calling parameter types & definitions
INTEGER, INTENTCIN) :: ndim D1mens1on of arrays a and b
REAL, INTENTC(IN), DIMENSION(nd1m,nd1m)

! Array of coefficients (N x N).

I This array is of size ndim X

! ndim, but only N x N of the

I coefficients are being used.
REAL, INTENT(IN), DIMENSION(ndim) :: b
I Input: Right-hand side of eqgns.
REAL, INTENT(OUT), DIMENSION(ndim) :: soln

I Qutput: Solution vector.
INTEGER, INTENT(CIN) :: n I Number of equations to solve.
INTEGER, INTENT(OUT) :: error ! Error flag:

! 0 -- No error

! 1 -- Singular equations

! Data dictionary: declare constants
REAL, PARAMETER :: EPSILON = 1.0E-6 ! A "small" number for comparison
I when determining singular eqns

| Data dictionary: declare local variable types & definitions

REAL, DIMENSION(n,n) :: al ! Copy of "a" which will be

! destroyed during the solution

I Factor to multiply egn irow by

! before adding to eqn jrow

I Number of the equation currently

|

|
REAL :: factor !
|
|
! being processed
|
|
|
|
|

INTEGER :: irow
INTEGER :: ipeak ! Pointer to equation containing
I maximum pivot value

! Number of the equation compared

! to the current equation
! Scratch value

INTEGER :: Jjrow

REAL :: temp
(continued)

Additional Features of Procedures 425

(continued)

REAL, DIMENSION(n) :: templ ! Scratch array

man

! Make copies of arrays "a" and "b" for Tocal use
al = a(l:n,1l:n)
soln = b(1l:n)

I Process N times to get all equations...
mainloop: DO irow =1, n

! Find peak pivot for column irow in rows irow to N
ipeak = irow
max_pivot: DO jrow = irow+l, n
IF (ABS(al(jrow,irow)) > ABS(al(ipeak,irow))) THEN
ipeak = jrow
END IF
END DO max_pivot

I Check for singular equations.

singular: IF (ABS(al(ipeak,irow)) < EPSILON) THEN
error =1
RETURN

END IF singular

I Otherwise, if ipeak /= irow, swap equations irow & ipeak

swap_eqn: IF (ipeak /= irow) THEN
templ = al(ipeak,l:n)
al(ipeak,l:n) = al(irow,1l:n) I Swap rows in a

al(irow,1l:n) = templ
temp = soln(ipeak)
soln(ipeak) = soln(irow) I Swap rows in b
soln(irow) = temp
END IF swap_eqgn

I Multiply equation irow by -al(jrow,irow)/al(irow,irow),
I and add it to Eqn jrow (for all eqns except irow itself).
eliminate: DO jrow =1, n
IF (jrow /= irow) THEN
factor = -al(jrow,irow)/al(irow,irow)
al(jrow,:) = al(irow,l:n)*factor + al(jrow,1l:n)
soln(jrow) = soln(irow)*factor + soln(jrow)
END IF
END DO eliminate
END DO mainloop

I End of main Toop over all equations. A11 off-diagonal terms
! are now zero. To get the final answer, we must divide
I each equation by the coefficient of its on-diagonal term.
divide: DO irow =1, n

soln(irow) = soln(irow) / al(irow,irow)

al(irow,irow) = 1.
END DO divide

(continued)

426

CHAPTER 9: Additional Features of Procedures

(concluded)

I Set error flag to 0 and return.
error =0
END SUBROUTINE simul2

Testing this subroutine is left as an exercise to the student (see Exercise 9-9).

A PROFUSION (AND CONFUSION!) OF FORTRAN ARRAY TYPES

We have now seen many different types of Fortran arrays, and no doubt produced a
little confusion along the way. Let’s step back and review the different array types,
seeing just where each type is used and how they relate to each other.

1. Explicit-Shape Arrays with Constant Bounds
Explicit-shape arrays with constant bounds are nondummy arrays whose shape is
explicitly specified in their type declaration statements. They may be declared either
in main programs or in procedures, but they do not appear in the dummy argument
list of a procedure. Explicit-shape arrays with constant bounds allocate fixed, perma-
nent arrays for use in a program. They may be initialized in their type declaration
statements.

If an explicit-shape array with constant bounds is allocated in a procedure, the data
stored in it is only guaranteed to be intact from invocation to invocation if the array is
declared with the SAVE attribute, or if the array is initialized in the type declaration
statement.

Two examples of explicit-shape arrays with constant bounds are

INTEGER, PARAMETER :: NDIM = 100
REAL, DIMENSION(NDIM,NDIM) :: input_data = 1.
REAL, DIMENSION(-3:3) :: scratch = 0.

2. Dummy Arrays
Dummy arrays are arrays that appear in the dummy argument list of procedures. They
are placeholders for the actual arrays passed to the procedure when it is invoked. No
actual memory is allocated for dummy arrays. There are three types of dummy arrays:
explicit-shape dummy arrays, assumed-shape dummy arrays, and assumed-size dummy
arrays.

a. Explicit-Shape Dummy Arrays

Explicit-shape dummy arrays are arrays that appear in the dummy argument list of
a procedure, and whose dimensions are explicitly declared by arguments in the proce-
dure’s argument list. All of the advanced features of Fortran arrays can be used with
explicit-shape dummy arrays, including whole array operations, array sections, and
array intrinsic functions. An example of an explicit-shape dummy array is

Additional Features of Procedures 427

SUBROUTINE test (array, n, ml, m2)

INTEGER, INTENTCIN) :: n, ml, m2
REAL, DIMENSION(n,ml:m2) :: array

b. Assumed-Shape Dummy Arrays

Assumed-shape dummy arrays are arrays that appear in the dummy argument list
of a procedure, and whose dimensions are declared by colons. The type declaration
statement specifies the type and rank of the array, but not the extent of each dimen-
sion. An assumed-shape dummy array is only usable in a procedure with an explicit
interface. These arrays assume the shape of whatever actual array is passed to the
procedure when it is invoked. All of the advanced features of Fortran arrays can be
used with assumed-shape dummy arrays, including whole array operations, array
sections, and array intrinsic functions. An example of an assumed-shape dummy
array is

SUBROUTINE test (array)
REAL, DIMENSION(:,:) :: array

c. Assumed-Size Dummy Arrays

Assumed-size dummy arrays are arrays that appear in the dummy argument list
of a procedure, and whose last dimension is declared with an asterisk. The size of
all dimensions except for the last must be explicitly specified so that the procedure
can determine how to locate specific array elements in memory. An assumed-size
dummy array cannot be used with whole array operations or with many of the
array intrinsic functions, because the shape of the actual array is unknown.
Assumed-size dummy arrays are a holdover from earlier versions of Fortran; they
should never be used in any new programs. An example of an assumed-size
dummy array is

SUBROUTINE test (array)
REAL, DIMENSION(10,*) :: array

3. Automatic Arrays
Automatic arrays are explicit-shape arrays with nonconstant bounds that appear in
procedures. They do not appear in the procedure’s argument list, but the bounds of the
array are either passed via the argument list or by shared data in a module.

When the procedure is invoked, an array of the shape and size specified by the
nonconstant bounds is automatically created. When the procedure ends, the array is
automatically destroyed. If the procedure is invoked again, a new array will be created
that could be either the same shape as or a different shape from the previous one. Data
is not preserved in automatic arrays between invocations of the procedure, and it is
illegal to specify either a SAVE attribute or a default initialization for an automatic
array. An example of an automatic array is:

SUBROUTINE test (n, m)

INTEGER, INTENTCIN) :: n, m
REAL, DIMENSION(n,m) :: array ! Bounds in argument 1list, but not array

428

CHAPTER 9: Additional Features of Procedures

4. Deferred-Shape Arrays

Deferred-shape arrays are allocatable arrays or pointer arrays (pointer arrays are cov-
ered in Chapter 15). A deferred-shape array is declared in a type declaration statement
with an ALLOCATABLE (or POINTER) attribute, and with the dimensions declared by
colons. It may appear in either main programs or procedures. The array may not be
used in any fashion (except as an argument to the ALLOCATED function) until memory
is actually allocated for it. Memory is allocated using an ALLOCATE statement and
deallocated using a DEALLOCATE statement. (In Fortran 2003, memory can also be
allocated automatically by an assignment statement.) A deferred-shape array may not
be initialized in its type declaration statement.

If an allocatable array is declared and allocated in a procedure, and if it is desired
to keep the array between invocations of the procedure, it must be declared with the
SAVE attribute. If the array is not needed, it should not be declared with the SAVE attri-
bute. In that case, the allocatable array will be automatically deallocated at the end of
the procedure. An unneeded pointer array (defined later) should be explicitly deallo-
cated to avoid possible problems with “memory leaks.”

An example of a deferred-shape allocatable array is:

INTEGER, ALLOCATABLE :: array(:,:)
ALLOCATE (array(1000,1000), STATUS=istat)

DEALLOCATE (array, STATUS=istat)

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Sections 9.1 through 9.3. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

1. When should a SAVE statement or attribute be used in a program or proce-
dure? Why should it be used?

2. What is the difference between an automatic and an allocatable array?
When should each of them be used?

3. What are the advantages and disadvantages of assumed-shape dummy arrays?

For questions 4 through 6, determine whether there are any errors in these
programs. If possible, tell what the output from each program will be.

4. PROGRAM testl
IMPLICIT NONE
INTEGER, DIMENSION(10) :: 1
INTEGER :: j
DO j =1, 10
(continued)

Additional Features of Procedures 429

(concluded)
CALL subl C i(j))
WRITE (*,*) " i =", i(J)
END DO

END PROGRAM testl

SUBROUTINE subl (ival)
IMPLICIT NONE

INTEGER, INTENT(CINOUT) :: ival
INTEGER :: isum

isum = isum + 1

ival = isum

END SUBROUTINE subl

5. PROGRAM test?2
IMPLICIT NONE
REAL, DIMENSION(3,3) :: a
a(l,:) =[C1., 2., 3.1
a(2,:) L 4., 5., 6. 1]
a(3,:) ==[07., 8., 9.1
CALL sub2 (a, b, 3)
WRITE (*,*) b
END PROGRAM test2

SUBROUTINE sub2(x, y, nvals)

IMPLICIT NONE

REAL, DIMENSION(nvals), INTENTCIN) :: X
REAL, DIMENSION(nvals), INTENT(OUT) :: y
REAL, DIMENSION(nvals) :: temp

temp = 2.0 * x**2

y = SQRT(x)

END SUBROUTINE sub2

6. PROGRAM test3
IMPLICIT NONE
REAL, DIMENSION(2,2) :: a = 1., b = 2.
CALL sub3(a, b)
WRITE (*,*) a
END PROGRAM test3

SUBROUTINE sub3(a,b)

REAL, DIMENSIONC:,:), INTENTCINOUT) :: a
REAL, DIMENSIONC:,:), INTENTCIN) :: b
a=a+b

END SUBROUTINE sub3
__|

430

CHAPTER 9: Additional Features of Procedures

9.5

ALLOCATABLE ARRAYS AS DUMMY
ARGUMENTS IN PROCEDURES

Allocatable arrays have been made more flexible in Fortran 2003 and later versions.
Two of the changes in allocatable arrays affect procedures:

1. It is now possible to have allocatable dummy arguments.
2. Tt is now possible for a function to return an allocatable value.

9.5.1 Allocatable Dummy Arguments

If a subroutine has an explicit interface, it is possible for subroutine dummy arguments
to be allocatable. If a dummy argument is declared to be allocatable, then the corre-
sponding actual arguments used to call the subroutine must be allocatable as well.

Allocatable dummy arguments are allowed to have an INTENT attribute. The
INTENT affects the operation of the subroutine as follows:

1. If an allocatable argument has the INTENT(IN) attribute, then the array is not
permitted to be allocated or deallocated in the subroutine and the values in the
array cannot be modified.

2. If the allocatable argument has the INTENT (INOUT) attribute, then the status (allo-
cated or not) and the data of the corresponding actual argument will be passed to
the subroutine when it is called. The array may be deallocated, reallocated, or mod-
ified in any way in the subroutine, and the final status (allocated or not) and the
data of the dummy argument will be passed back to the calling program in the ac-
tual argument.

3. If the allocatable argument has the INTENT(OUT) attribute, then the actual argu-
ment in the calling program will be automatically deallocated on entry, so any data
in the actual array will be lost. The subroutine can then use the unallocated argu-
ment in any way, and the final status (allocated or not) and the data of the dummy
argument will be passed back to the calling program in the actual argument.

A program that illustrates the use of allocatable array dummy arguments is shown
in Figure 9-7. This program allocates and initializes an allocatable array and passes it to
subroutine test_al1oc. The data in the array on entry to test_alloc is the same as
the originally initialized values. The array is deallocated, reallocated, and initialized in
the subroutine, and that data is present in the main program when the subroutine returns.

FIGURE 9-7
Program illustrating the use of allocatable array dummy arguments.

MODULE test_module

I Purpose:

! To illustrate the use of allocatable arguments
! in a subroutine.
|

(continued)

Additional Features of Procedures 431

(continued)

CONTAINS

SUBROUTINE test_alloc(array)

IMPLICIT NONE

REAL,DIMENSION(:),ALLOCATABLE,INTENT(INOUT) :: array
I Test array

I Local variables
INTEGER :: 1 I Loop index
INTEGER :: istat ! Allocate status

I Get the status of this array
IF (ALLOCATED(array)) THEN
WRITE (*,'(A)") 'Sub: the array is allocated’

WRITE (*,'(A,6F4.1)") 'Sub: Array on entry = ', array
ELSE

WRITE (*,*) 'Sub: the array is not allocated’
END IF

! Deallocate the array

IF (ALLOCATED(array)) THEN
DEALLOCATE(array, STAT=istat)

END IF

| Reallocate as a 5 element vector
ALLOCATE(array(5), STAT=istat)

I Save data
DO i =1, 5

array(i) =6 - i
END DO

! Display contents of array a on exit
WRITE (*,'(A,6F4.1)"') 'Sub: Array on exit ="', array

I Return to caller
END SUBROUTINE test_alloc

END MODULE test_module

PROGRAM test_allocatable_arguments

|
! Purpose:

! To illustrate the use of allocatable arguments
! in a subroutine.

|

USE test_module
IMPLICIT NONE

! Declare Tocal variables
REAL,ALLOCATABLE,DIMENSION(:) :: a ! Allocatable array
INTEGER :: istat ! Allocate status

(continued)

432

CHAPTER 9: Additional Features of Procedures

(concluded)

! Allocate the array initially
ALLOCATE(a(6), STAT=istat)

I Initialize array
a=1>[1., 2., 3.,4.,5.,6.1

! Display a before call
WRITE (*,'(A,6F4.1)") 'Main: Array a before call ="', a

I Call subroutine
CALL test_alloc(a)

| Display a after call
WRITE (*,"(A,6F4.1)") 'Main: Array a after call ="', a

END PROGRAM test_allocatable_arguments

When this program executes, the results are as shown below:

C:\book\fortran\chap9>test_allocatable_arguments
Main: Array a before call = 1.0 2.0 3.0 4.0 5.0 6.0
Sub: the array is allocated

Sub: Array on entry = 1.0 2.0 3.0 4.0 5.0 6.0

Sub: Array on exit = 5.0 4.0 3.0 2.0 1.0

Main: Array a after call = 5.0 4.0 3.0 2.0 1.0

9.5.2 Allocatable Functions

A Fortran function result is permitted to return a value with an ALLOCATABLE attri-
bute. The return variable will not be allocated on entry to the function. The variable
can be allocated and deallocated as often as desired inside the function, but it must be

allocated and contain a value before the function returns.

A program that illustrates the use of allocatable functions is shown in Figure 9-8.
This program calls function test_alloc_fun with a parameter specifying the
number of values to return in the allocatable array. The function allocates the result

variable, saves data into it, and returns to the main program for display.

FIGURE 9-8
Program illustrating the use of allocatable functions.

MODULE test_module

! Purpose:

! To illustrate the use of allocatable function
! return values.

|

CONTAINS

FUNCTION test_alloc_fun(n)
IMPLICIT NONE
INTEGER, INTENTCIN) :: n ! Number of elements to return

(continued)

Additional Features of Procedures 433

(concluded)
REAL,ALLOCATABLE,DIMENSION(:) :: test_alloc_fun

I Local variables
INTEGER :: 1 I Loop index
INTEGER :: istat ! AlTocate status

| Get the status of the array
IF (ALLOCATED(test_alloc_fun)) THEN
WRITE (*,'(A)") 'Array is allocated’
ELSE
WRITE (*,'(A)') 'Array is NOT allocated’
END IF

! Allocate as an n element vector
ALLOCATE(test_alloc_fun(n), STAT=istat)

I Initialize data
DO i =1, n
test_alloc_fun(i) =6 - i
END DO

! Display contents of array a on exit
WRITE (*,'(A,20F4.1)") '"Array on exit = ', test_alloc_fun

I Return to caller
END FUNCTION test_alloc_fun

END MODULE test_module

PROGRAM test_allocatable_function

Il Purpose:
! To illustrate the use of allocatable function
! return values.

IUSE test_module
IMPLICIT NONE

! Declare local variables
INTEGER :: n =5 I Number of elements to allocate

REAL,DIMENSION(:),ALLOCATABLE :: res ! Result

I Call function and display results
res = test_alloc_fun(n)
WRITE (*,'(A,20F4.1)") 'Function return ="', res

END PROGRAM test_allocatable_function
When this program executes, the results are as shown below:

C:\book\fortran\chap9>test_allocatable_function
Array is NOT allocated

Array on exit = 5.0 4.0
Function return = 5.0 4.

434

CHAPTER 9: Additional Features of Procedures

9.6
PURE AND ELEMENTAL PROCEDURES

As we mentioned in previous chapters, the Fortran language has been evolving in ways
to make it easier to execute on massively parallel processors. As a part of this evolu-
tion, Fortran 95 introduced two new classifications of procedures: pure procedures
and elemental procedures.

9.6.1 Pure Procedures

Pure functions are functions that do not have side effects. That is, they do not modify
their input arguments and any other data (such as data in modules) that is visible out-
side the function. In addition, local variables may not have the SAVE attribute, and may
not be initialized in type declaration statements (since such initialization implies the
SAVE attribute). Any procedures invoked by a pure function must also be pure.

Because pure functions do not have side effects, it is safe to invoke them in a
FORALL construct, where they might be executed in any order. This is very helpful on
massively parallel processors, because each processor can take one combination of
control indices from the FORALL construct and execute it in parallel with all of the
others.

Every argument in a pure function must be declared with INTENT (IN), and any sub-
routine or functions invoked by the function must itself be pure. In addition, the function
must not do any external file I/O operations, and must not contain a STOP statement. These
constraints are easy to abide by—all of the functions that we have created so far are pure.

A pure function is declared by adding a PURE prefix to the function statement. For
example, the following function is pure:

PURE FUNCTION length(x, y)
IMPLICIT NONE

REAL, INTENTCIN) :: x, y
REAL :: length

Tength = SQRT(x**2 + y**2)
END FUNCTION Tength

Pure subroutines are subroutines that do not have side effects. Their constraints
are exactly the same as those on pure functions, except that they are permitted to mod-
ify arguments declared with INTENT(OUT) or INTENT(INOUT). Pure subroutines are
declared by adding the PURE prefix to the SUBROUTINE statement.

9.6.2 Elemental Procedures

Elemental functions are functions that are specified for scalar arguments, but that may also
be applied to array arguments. If the argument(s) of an elemental function are scalars, then
the result of the function will be a scalar. If the argument(s) of the function are arrays,
then the result of the function will be an array of the same shape as the input argument(s).

Additional Features of Procedures 435

User-defined elemental functions must normally be PURE functions, and must
satisfy the following additional constraints:

1. All dummy arguments must be scalars, and must not have the POINTER attribute.
(We will learn about pointers in Chapter 15.)

2. The function result must be a scalar, and must not have the POINTER attribute.

3. Dummy arguments must not be used in type declaration statements except as argu-
ments of certain intrinsic functions. This constraint prohibits the use of automatic
arrays in elemental functions.

A user-defined elemental function is declared by adding an ELEMENTAL prefix to
the function statement. For example, the function sinc(x) from Figure 7-16 meets
the requirements of an elemental function, so it could be declared as:

ELEMENTAL FUNCTION sinc(x)

If the sinc function is declared ELEMENTAL, then the function can also accept array
arguments and return array results.

Elemental subroutines are subroutines that are specified for scalar arguments,
but that may also be applied to array arguments. They must meet the same constraints
as elemental functions. An elemental subroutine is declared by adding an ELEMENTAL
prefix to the subroutine statement. For example,

ELEMENTAL SUBROUTINE convert(x, y, z)

9.6.3 Impure Elemental Procedures

Elemental procedures can also be designed to modify their calling arguments. If so,
they are impure elemental procedures. Such procedures must be declared with an
IMPURE keyword, and any arguments that are modified must be declared with
INTENTCINOUT). When an impure elemental procedure is called on an array, the pro-
cedure is executed element-by-element in array order: a(1),a(2),a(3),...,a(n).
If it is a multidimensional array, the elements are executed in column major order:
a(l,1),a(2,1),...,etc.

For an example, consider the impure elemental function cum below. This
function replaces each value in an array by the sum of all values up to that point in
the array.

IMPURE ELEMENTAL REAL FUNCTION cum(a, sum)
IMPLICIT NONE

REAL, INTENTCIN) :: a

REAL, INTENTCINOUT) :: sum

sum = sum + a

cum = sum

END FUNCTION cum

A test program for this function is shown below:

PROGRAM test_cum
REAL,DIMENSION(5) :: a, b

436

CHAPTER 9: Additional Features of Procedures

REAL :: sum
INTEGER :: 1

sum
ol

= 0.
[1., 2., 3., 4., 5.]
b cum

(é,sum)

WRITE (*,*) b
END PROGRAM test_cum

When this program is executed, the value in each element of array b is the sum of all
elements in array a up to and including the corresponding index:

1.00000 3.000000 6.000000 10.000000 15.000000

9.7
INTERNAL PROCEDURES

In Chapter 7, we learned about external procedures and module procedures. There
is also a third type of procedure—the internal procedure. An internal procedure is a
procedure that is entirely contained within another program unit, called the host
program unit, or just the host. The internal procedure is compiled together with the
host and it can only be invoked from the host program unit. Like module procedures,
internal procedures are introduced by a CONTAINS statement. An internal procedure
must follow all of the executable statements within the host procedure and must be
introduced by a CONTAINS statement.

Why would we want to use internal procedures? In some problems, there are low-level
manipulations that must be performed repeatedly as a part of the solution. These low-level
manipulations can be simplified by defining an internal procedure to perform them.

A simple example of an internal procedure is shown in Figure 9-9. This program
accepts an input value in degrees and uses an internal procedure to calculate the secant
of that value. Although the internal procedure secant is invoked only once in this
simple example, it could have been invoked repeatedly in a larger problem to calculate
secants of many different angles.

FIGURE 9-9
Program to calculate the secant of an angle in degrees using an internal procedure.

PROGRAM test_internal

Purpose:
To illustrate the use of an internal procedure.

Date Programmer Description of change

|

|

!

!

I Record of revisions:
!

!

! 11/25/15 S. J. Chapman Original code
|

(continued)

Additional Features of Procedures 437

(concluded)
IMPLICIT NONE

! Data dictionary: declare constants
REAL, PARAMETER :: PI = 3.141592 1 PI

! Data dictionary: declare variable types & definitions
REAL :: theta I Angle in degrees

I Get desired angle
WRITE (*,*) 'Enter desired angle in degrees: '
READ (*,*) theta

! Calculate and display the result.
WRITE (*,'(A,F10.4)") 'The secant is ', secant(theta)

! Note that the WRITE above was the last executable statement.
! Now, declare internal procedure secant:
CONTAINS

REAL FUNCTION secant(angle_in_degrees)

1

! Purpose:

! To calculate the secant of an angle in degrees.

1

REAL :: angle_in_degrees

! Calculate secant
secant = 1. | cos(angle_in_degrees * pi | 180.)

END FUNCTION secant
END PROGRAM test_internal

Note that the internal function secant appears after the last executable statement
in program test. It is not a part of the executable code of the host program. When
program test is executed, the user is prompted for an angle and the internal function
secant is called to calculate the secant of the angle as a part of the final WRITE state-
ment. When this program is executed, the results are:

C:\book\fortran\chap9>test
Enter desired angle in degrees:
45

The secant is 1.4142

An internal procedure functions exactly like an external procedure, with the fol-
lowing three exceptions:

1. The internal procedure can only be invoked from the host procedure. No other
procedure within the program can access it.

2. The name of an internal procedure may not be passed as a command line argument
to another procedure.

3. Aninternal procedure inherits all of the data entities (parameters and variables) of
its host program unit by host association.

438

CHAPTER 9: Additional Features of Procedures

The last point requires more explanation. When an internal procedure is defined
within a host program unit, all of the parameters and variables within the host pro-
gram unit are also usable within the internal procedure. Look at Figure 9-9 again.
Note that there is no IMPLICIT NONE statement within the internal procedure, be-
cause the one in the host program applies to the internal procedure as well. Note also
that the named constant PI, which is defined in the host program, is used in the inter-
nal procedure.

The only time when an internal procedure cannot access a data entity defined in its
host is when the internal procedure defines a different data entity with the same name.
In that case, the data entity defined in the host is not accessible in the procedure and
the data entity in the host will be totally unaffected by any manipulations that occur
within the internal procedure.

Good Programming Practice
Use internal procedures to perform low-level manipulations that must be performed
repeatedly, but are only needed by one program unit.

9.8
SUBMODULES

In Chapter 7, we learned about module procedures. Procedures that are declared in a
module have a full explicit interface, and these procedures can be used in any other pro-
cedures in a program by declaring the module in a USE statement. Modules can be used
to store libraries of procedures, which can then be used by other parts of a program.

A procedure is placed into a module by including the whole procedure after the
keyword CONTAINS. The Fortran compiler automatically generates an explicit inter-
face for the procedure and also automatically compiles the code to execute from the
procedure description.

MODULE test_module
IMPLICIT NONE

CONTAINS

SUBROUTINE procedurel(a, b, c)
IMPLICIT NONE

REAL, INTENTCIN) :: a

REAL, INTENTCIN) :: b

REAL, INTENT(OUT) :: c

END SUBROUTINE procedurel

REAL FUNCTION func2(a, b)
IMPLICIT NONE
REAL,INTENT(IN) :: a
REAL, INTENTCIN) :: b

Additional Features of Procedures 439

END FUNCTION func2

END MODULE test_module

Unfortunately, if anything changes in a module, it has to be recompiled, and any
other parts of a program depending on it will also need to be recompiled. This can
result in a massive recompilation taking a very long time if even one line of a key
module is changed. This long compile cycle can be very inefficient during the devel-
opment of a large program.

Why should we have to recompile everything depending on some module? The
only part of a module procedure that is visible by calling procedures is the interface,
the list of calling and returning parameters from the procedure. Any executable code
inside the procedure is not visible to the calling procedure, and so any changes inside
it should not force us to completely recompile the calling program.

Fortran has a mechanism to do this, known as submodules. If a programmer uses
submodules, he or she splits the procedures in a module into two pieces. The first piece
is the module itself containing the interface (calling arguments) to each module proce-
dure and the second piece is a submodule that contains the actual executable code for
the procedures. If the interface for any procedure changes, all of the other procedures
USEing the module must be recompiled. If only the implementation (executable code)
of a procedure in the submodule is changed, then only the submodule needs to be
recompiled. The interface to the procedures in the submodule has no changes, so rest of
the program does not need to be modified or recompiled (see Figure 9-10).

A procedure is placed into a module/submodule combination by including the u
interface to the procedure in the module and the executable code in the submodule.

Module
containing
library
procedures

Main program

(a)

Module
containing
interface
definitions

Main program

Submodule

containing

executable
code

(b)
FIGURE 9-10
(a) A library in a module can be accessed by a main program using USE association. Any
change in the library will force a recompilation of the main program. (b) A library in a
module/submodule combination. The interface is in the module and the executable code is in
the submodule. The module can be accessed by a main program using USE association. Any
change in the executable code of the library that does not change the interface will not require
a recompilation of the main program.

440 CHAPTER 9: Additional Features of Procedures

Note that the module contains an INTERFACE block, not a CONTAINS statement, and
that the interface to each procedure is introduced by the keyword MODULE. The For-
tran compiler automatically generates an explicit interface from the interface block.

MODULE test_module
IMPLICIT NONE

INTERFACE

MODULE SUBROUTINE procedurel(a, b, c)
IMPLICIT NONE

REAL,INTENTCIN) :: a

REAL, INTENTCIN) :: b

REAL, INTENT(OUT) :: c

END SUBROUTINE procedurel

MODULE REAL FUNCTION func2(a, b)
IMPLICIT NONE

REAL,INTENTCIN) :: a

REAL, INTENTCIN) :: b

END FUNCTION func2

END INTERFACE
END MODULE test_module

Then the executable code is placed in a submodule, as shown below:

SUBMODULE (test_module) test_module_exec
IMPLICIT NONE
CONTAINS

MODULE PROCEDURE procedurel

END PROCEDURE procedurel
MODULE PROCEDURE func?

END PROCEDURE func?
END SUBMODULE test_module_exec

This submodule is declared to be a submodule of test_module by the SUBMODULE
statement. Note that there is no definition for the input and output parameters of each
module procedure—they are inherited from the interface definition in the module. If
the code is written this way, then the contents of the submodule can be changed and
recompiled without having to recompile the portions of the program that depend on it.

EXAMPLE Use of Submodules:
9-5
Rewrite the simultaneous equations solving subroutine simul created in Example 9-1
so that it is in a module/submodule to create an explicit interface and to isolate the
executable code from the interface.

Additional Features of Procedures 441

The Fortran module is shown in Figure 9-11 and the submodule is shown in
Figure 9-12. Note that the interface definition for the subroutine is in the module and
the executable code for the subroutine is in the submodule.

FIGURE 9-11
The interface for subroutine simul is placed in module solver.

MODULE solvers
I This module contains simultaneous equation solvers.

INTERFACE
MODULE SUBROUTINE simul (a, b, ndim, n, error)

Purpose:
Subroutine to solve a set of n linear equations in n
unknowns using Gaussian elimination and the maximum
pivot technique.

Date Programmer Description of change

12/23/15 S. J. Chapman Original code

IMPLICIT NONE u

! Data dictionary: declare calling parameter types & definitions
INTEGER, INTENTCIN) :: ndim ! Dimension of arrays a and b
REAL, INTENT(INOUT), DIMENSION(ndim,ndim) :: a

I Array of coefficients (n x n).

|
|
|
|
|
!
I Record of revisions:
|
|
|
|
I

I This array is of size ndim x

I ndim, but only n x n of the

I coefficients are being used.

! The declared dimension ndim

! must be passed to the sub, or

I it won't be able to interpret

! subscripts correctly. (This

I array is destroyed during

! processing.)

REAL, INTENT(INOUT), DIMENSION(ndim) :: b
! Input: Right-hand side of egns.
! Output: Solution vector.

INTEGER, INTENTCIN) :: n I Number of equations to solve.

INTEGER, INTENT(OUT) :: error ! Error flag:
! 0 -- No error
! 1 -- Singular equations

END SUBROUTINE simul

END INTERFACE

END MODULE solvers

442

CHAPTER 9: Additional Features of Procedures

FIGURE 9-12
The executable code for subroutine simul is placed in submodule solver_exec.

SUBMODULE (solvers) solvers_exec

I This submodule contains executable code for simultaneous
! equation solvers.

CONTAINS
MODULE PROCEDURE simul

I Data dictionary: declare constants
REAL, PARAMETER :: EPSILON = 1.0E-6 ! A "small" number for comparison
! when determining singular eqns

! Data dictionary: declare local variable types & definitions

REAL :: factor Factor to multiply eqn irow by
before adding to eqn jrow
Number of the equation currently
being processed

Pointer to equation containing
maximum pivot value

Number of the equation compared
to the current equation

Index over all columns of egn
Scratch value

INTEGER :: irow
INTEGER :: ipeak
INTEGER :: jrow

|
|
|
|
|
|
|
1
INTEGER :: kcol !
REAL :: temp !
I Process n times to get all equations...
mainloop: DO irow =1, n

! Find peak pivot for column irow in rows irow to n
ipeak = irow
max_pivot: DO jrow = irow+l, n
IF (ABS(a(jrow,irow)) > ABS(a(ipeak,irow))) THEN
ipeak = jrow
END IF
END DO max_pivot

I Check for singular equations.

singular: IF (ABS(a(ipeak,irow)) < EPSILON) THEN
error =1
RETURN

END IF singular

! Otherwise, if ipeak /= irow, swap equations irow & ipeak
swap_eqgn: IF (ipeak /= irow) THEN
DO kcol =1, n
temp
a(ipeak,kcol)

a(ipeak,kcol)
a(irow,kcol)

a(irow,kcol) temp
END DO
temp = b(ipeak)
b(ipeak) = b(irow)

(continued)

Additional Features of Procedures 443
(concluded)

b(irow) = temp
END IF swap_egn

I Multiply equation irow by -a(jrow,irow)/a(irow,irow),
! and add it to Eqn jrow (for all eqns except irow itself).
eliminate: DO jrow = 1, n
IF (jrow /= irow) THEN
factor = -a(jrow,irow)/a(irow,irow)

DO kcol =1, n
a(jrow,kcol) = a(irow,kcol)*factor + a(jrow,kcol)
END DO
b(jrow) = b(irow)*factor + b(jrow)
END IF

END DO eliminate
END DO mainloop

End of main Toop over all equations. A1l off-diagonal
terms are now zero. To get the final answer, we must
divide each equation by the coefficient of its on-diagonal

|
|
|
!
divide: DO irow

term.

=1,n
b(irow) = b(irow) / a(irow,irow)
a(irow,irow) = 1.

END DO divide
I Set error flag to 0 and return. u

error = 0
END PROCEDURE simul

END SUBMODULE solvers_exec

The test driver program for subroutine simul is shown in Figure 9-13. Note that
this test program USEs module solvers but not the submodule.

FIGURE 9-13
Test driver routine for subroutine simul.

PROGRAM test_simul_2

Purpose:
To test subroutine simul, which solves a set of N linear
equations in N unknowns.

Record of revisions:
Date Programmer Description of change

12/23/15 S. J. Chapman Original code

|
|
|
|
|
|
|
|
|
|

(continued)

444

CHAPTER 9: Additional Features of Procedures

(continued)

USE solvers
IMPLICIT NONE

! Data dictionary: declare constants
INTEGER, PARAMETER :: MAX_SIZE = 10 I Max number of eqns

! Data dictionary: declare local variable types & definitions
REAL, DIMENSION(MAX_SIZE,MAX_SIZE) :: a

I Array of coefficients (n x n).

I This array is of size ndim x

I ndim, but only n x n of the

I coefficients are being used.

I The declared dimension ndim

I must be passed to the sub, or

I it won't be able to interpret

I subscripts correctly. (This

! array is destroyed during

! processing.)
REAL, DIMENSION(MAX_SIZE) :: b I Input: Right-hand side of eqgns.
|
|
|
|
|
|
|
|
|
|

Qutput: Solution vector.
INTEGER :: error Error flag:
0 -- No error

1 -- Singular equations

CHARACTER(1en=20) :: file_name Name of file with egns

INTEGER :: 1 Loop index

INTEGER :: j Loop index

CHARACTER(1en=80) :: msg Error message

INTEGER :: n Number of simul eqns (<= MAX_SIZE)

INTEGER :: istat I/0 status

! Get the name of the disk file containing the equations.
WRITE (*,"(" Enter the file name containing the egns: ')")
READ (*,'(A20)') file_name

! Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=1, FILE=file_name, STATUS='OLD', ACTION='READ', &
I0STAT=istat, IOMSG=msg)

! Was the OPEN successful?

fileopen: IF (istat == 0) THEN
! The file was opened successfully, so read the number of
I equations in the system.
READ (1,*) n

I If the number of equations is <= MAX_SIZE, read them in
! and process them.
size_ok: IF (n <= MAX_SIZE) THEN
DOi=1,n
READ (1,*) (a(i,j), j=l,n), b(i)
END DO

(continued)

Additional Features of Procedures 445

(concluded)

! Display coefficients.
WRITE (*,"(/,'Coefficients before call:")")
DO i=1,n
WRITE (*,"(1X,7F11.4)") (a(i,j), j=1,n), b(i)
END DO

! Solve equations.
CALL simul (a, b, MAX_SIZE, n, error)

I Check for error.
error_check: IF (error /= 0) THEN

WRITE (*,1010)
1010 FORMAT (/'Zero pivot encountered!’, &
//'There is no unique solution to this system.')

ELSE error_check

I No errors. Display coefficients.
WRITE (*,"(/,'Coefficients after call:")")
DO i=1,n
WRITE (*,"(1X,7F11.4)") (a(i,j), j=1,n), b(i)
END DO

I Write final answer.
WRITE (*,"(/,'The solutions are:')")
DO i=1,n

WRITE (*,"(2X,'X(",I2,") = ",F16.6)") i, b(i)
END DO

END IF error_check
END IF size_ok
ELSE fileopen

! Else file open failed. Tell user.
WRITE (*,1020) msg
1020 FORMAT ('File open failed: ', A)

END IF fileopen
END PROGRAM test_simul_2

To test the subroutine, we need to call it with the same two data sets as before:

C:\book\fortran\chap9\solvers>test_simul_2
Enter the file name containing the eqgns:
inputsl

Coefficients before call:
1.0000 1.0000 1.0000 1.0000
2.0000 1.0000 1.0000 2.0000
1.0000 3.0000 2.0000 4.0000

446

CHAPTER 9: Additional Features of Procedures

Coefficients after call:

1.0000 .0000 .0000 1.0000
.0000 1.0000 .0000 3.0000
.0000 .0000 1.0000 -3.0000
The solutions are:
X(1) = 1.000000
X(2) = 3.000000
X(3) = -3.000000

C:\book\fortran\chap9\solvers>test_simul_2
Enter the file name containing the eqgns:
inputs2

Coefficients before call:
1.0000 1.0000 1.0000 1.0000
2.0000 6.0000 4.0000 8.0000
1.0000 3.0000 2.0000 4.0000

Zero pivot encountered!

There is no unique solution to this system.

The subroutine appears to be working correctly for both unique and singular sets of
simultaneous equations.

Good Programming Practice
Use submodules to separate executable code from procedure interfaces, making it
easier to modify internal code without forcing major recompilations.

There can be more than one submodule associated with a given module, and sub-
modules can have submodules of their own. This flexibility can help us to organize our
code in a structured way.

The procedures located in submodules are also called separate procedures.

9.9
SUMMARY

Multidimensional arrays can be passed to a subroutine or function subprogram either
as explicit-shape dummy arrays or as assumed-shape dummy arrays. If multidimen-
sional arrays are passed as explicit-shape dummy arrays, then the extent of each array
dimension must also be passed to the subroutine as a calling argument and must be
used to declare the array. If multidimensional arrays are passed as assumed-shape
dummy arrays, then the procedure must have an explicit interface and the dimensions
of the arrays are declared with colons as placeholders.

Additional Features of Procedures 447

When a procedure finishes executing, the Fortran standard says that the local vari-
ables in the procedure become undefined. When the procedure is called again, the
local variables might or might not have the same values as they did during the previous
call, depending on the compiler and compiler options you are using. If a procedure
needs for some local variables to be preserved between calls, the variables must be
declared with the SAVE attribute or in a SAVE statement.

Automatic arrays are automatically created when a procedure starts executing and
are automatically destroyed when the procedure finishes executing. Automatic arrays
are local arrays whose dimensions are set by calling arguments, so they can have dif-
ferent sizes each time that the procedure is called. Automatic arrays are used as tempo-
rary work areas within a procedure.

Allocatable arrays may be used as dummy arguments and function return values
in Fortran, as long as the subroutine or function has an explicit interface. If an
allocatable array is declared with INTENT (IN), then the array cannot be deallocated
or modified in the subroutine or function. If an allocatable array is declared with
INTENT(COUT), then the array will be automatically deallocated before the
subroutine or function starts to execute. If an allocatable array is declared with
INTENTCINOUT), then the array will be unchanged at the start of the subroutine or
function, but that subroutine or function is free to modify the data and/or the
allocation of the array.

An internal procedure is a procedure defined entirely within another program unit,
which is called the host program unit. It is only accessible from the host program unit.
Internal procedures are included in the host program unit after all of the executable state-
ments of the program unit and are preceded by a CONTAINS statement. An internal pro-
cedure has access to all of the data items defined in its host program unit by host
association, unless the internal procedure contains a data item of the same name as a data
item in the host. In that case, the data item in the host is not accessible to the internal
procedure.

Submodules can be used to separate the interface definition of a procedure from
the executable code of the procedure. If they are used, then a programmer can freely
modify the executable code in the submodule without forcing all other code dependent
on it to be recompiled, as long as the interface is not changed.

9.9.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with subroutines and
functions.

1. Always use either explicit-shape dummy arrays or assumed-shape dummy arrays
for dummy array arguments. Never use assumed-size dummy arrays in any new
program.

2. If a procedure requires that the value of a local variable not change between
successive invocations of the procedure, specify the SAVE attribute in the variable’s
type declaration statement, or include the variable in a SAVE statement, or initial-
ize the variable in its type declaration statement.

448 CHAPTER 9: Additional Features of Procedures

3. Use automatic arrays to create local temporary working arrays in procedures. Use
allocatable arrays to create arrays in main programs, or arrays that will be created
and destroyed in different procedures, or arrays that must be able to change size
within a given procedure.

4. Use internal procedures to perform low-level manipulations that must be per-
formed repeatedly, but are only needed by one program unit.

5. Use submodules to separate executable code from procedure interfaces, making it
easier to modify internal code without forcing major recompilations.

9.9.2 Summary of Fortran Statements and Structures

CONTAINS statement:
CONTAINS
Example:

PROGRAM main
CONTAINS
SUBROUTINE subl(x, y)

END SUBROUTINE subl
END PROGRAM

Description:

The CONTAINS statement is a statement that specifies that the following statements are one or more sepa-
rate procedures within the host unit. When used within a module, the CONTAINS statement marks the begin-
ning of one or more module procedures. When used within a main program or an external procedure, the
CONTAINS statement marks the beginning of one or more internal procedures. The CONTAINS statement must
appear after any type, interface, and data definitions within a module, and must follow the last executable
statement within a main program or an external procedure.

ELEMENTAL Prefix:

ELEMENTAL FUNCTION name(argl, ...)

ELEMENTAL SUBROUTINE name(argl, ...)
Example:

ELEMENTAL FUNCTION my_fun (a, b, c)
Description:

This prefix declares that a procedure is ELEMENTAL, which means that it is defined with scalar inputs and
outputs, but can be used with array inputs and outputs. When it is used with arrays, the operation defined
by the elemental procedure is applied on an element-by-element basis to every element in the input array.

Additional Features of Procedures

449

END SUBMODULE statement:

END SUBMODULE [module_namel
Examples:

END SUBMODULE solvers_exec

Description:
This statement marks the end of a submodule.

PURE Prefix:

PURE FUNCTION name(argl, ...)

PURE SUBROUTINE name(argl, ...)
Example:

PURE FUNCTION my_fun (a, b, c)
Description:

This prefix declares that a procedure is PURE, which means that it has no side effects.

SAVE Attribute:

type, SAVE :: namel, name?,
Example:

REAL, SAVE :: sum
Description:

This attribute declares that the value of a local variable in a procedure must remain unchanged between
successive invocations of the procedure. It is equivalent to the naming of the variable in a SAVE statement.

SAVE statement:
SAVE [varl, var2, ...]
Examples:

SAVE count, index
SAVE

Description:

This statement declares that the value of a local variable in a procedure must remain unchanged between
successive invocations of the procedure. If a list of variables is included, only those variables will be saved.

If no list is included, every local variable in the procedure or module will be saved.

450 CHAPTER 9: Additional Features of Procedures

SUBMODULE statement:

SUBMODULE (parent_module) module_name
Examples:

SUBMODULE (solvers) solvers_exec
Description:

This statement declares a submodule, which can separate the executable code in a procedure from the
interface (the calling sequence), which is declared in the parent module.

9.9.3 Exercises

9-1. What are the advantages and disadvantages of using explicit-shape dummy arrays in
procedures? What are the advantages and disadvantages of using assumed-shape dummy
arrays? Why should assumed-size dummy arrays never be used?

9-2. What are the differences between internal procedures and external procedures? When
should an internal procedure be used instead of an external procedure?

9-3. What is the purpose of the SAVE statement and attribute? When should they be used?

9-4. Is the following program correct or not? If it is correct, what is printed out when it exe-
cutes? If not, what is wrong with it?

PROGRAM junk

IMPLICIT NONE

REAL :: a =3, b =4, output

INTEGER :: 1 =0

call subl(a, i, output)

WRITE (*,*) 'The output is ', output

CONTAINS

SUBROUTINE subl(x, j, junk)
REAL, INTENT(CIN) :: x
INTEGER, INTENTCIN) ::
REAL, INTENT(OUT) :: junk
junk = (x - j) /b

END SUBROUTINE subl

END PROGRAM junk

9-5. What is printed out when the following code is executed? What are the values of x, y, 1,
and j at each point in the program? If a value changes during the course of execution,
explain why it changes.

PROGRAM exercise9_5
IMPLICIT NONE
REAL :: x =12., y = -3., result

Additional Features of Procedures

9-6.

9-7.

9-8.

9-10.

451

INTEGER :: i =6, j =14

WRITE (*,100) 'Before call: x, y, i, j =",
100 FORMAT (A,2F6.1,216)

result = exec(y,i)

WRITE (*,*) 'The result is ', result
WRITE (*,100) 'After call: x, y, i, j ="
CONTAINS

X, ¥, 1,

L X, Y, 1,

REAL FUNCTION exec(x,i)
REAL, INTENTCIN) :: x
INTEGER, INTENTCIN) :: i
WRITE (*,100) 'In exec:
100 FORMAT (A,2F6.1,216)
exec = (x+y)/ REAL (i+ j)

X, ¥, 1,3 =",%x, ¥, 1,3

J i
END FUNCTION exec

END PROGRAM exercise9_5b

Matrix Multiplication Write a subroutine to calculate the product of two matrices if
they are of compatible sizes and if the output array is large enough to hold the result. If
the matrices are not of compatible sizes or if the output array is too small, set an error
flag and return to the calling program. The dimensions of all three arrays a, b, and ¢
should be passed to the subroutines from the calling program so that explicit-shape
dummy arrays can be used and size checking can be done. (Note: The definition of
matrix multiplication may be found in Exercise 8-13.) Check your subroutine by multi-
plying the following two pairs of arrays both with the subroutine and with the intrinsic
subroutine MATMUL.

[2
-1
| 2

(@)

a =

(b)

a=

[1
2
3

L 5

-1

-3 4
4 2]

-1
2
3
4

2

-2
0
3
4]

N =N
— N W

[-2
b=| 5
2

Write a new version of the matrix multiplication subroutine from Exercise 9-6 that uses
an explicit interface and assumed-shape arrays. Before multiplying the matrices, this
version should check to ensure that the input arrays are compatible and that the output
array is large enough to hold the product of the two matrices. It can check for compati-
bility using the inquiry intrinsic functions found in Table 8-1. If these conditions are not
satisfied, the subroutine should set an error flag and return.

Write a new version of the matrix multiplication subroutine from Exercise 9-6 that uses
submodules to separate the explicit interface from the executable code.

. Modify subroutine simul from Example 9-1 to use assumed-shape arrays. Use the two

data sets in Example 9-1 to test the subroutine.

Write a test driver program to test subroutine simul2 in Figure 9-6. Use the two data
sets in Example 9-1 to test the subroutine.

452

9-11.
9-12.

9-13.

9-14.

9-15.

9-16.

9-17.

CHAPTER 9: Additional Features of Procedures

Why should the data in a module be declared with the SAVE attribute?

Modify program test_alTloc in Figure 9-7 so that the allocatable dummy argument
has an INTENT(IN) attribute. Does this program work now? If so, what does it do? If
not, why not?

Modify program test_alloc in Figure 9-7 so that the allocatable dummy argument
has an INTENT (OUT) attribute. Does this program work now? If so, what does it do? If
not, why not?

Simulating Dice Throws Assume that a programmer is writing a game program.
As a part of the program, it is necessary to simulate the throw of a pair of dice.
Write a subroutine called throw to return two random values from 1 to 6 each time
that it is called. The subroutine should contain an internal function called die to
actually calculate the result of each toss of a die, and that function should be called
twice by the subroutine to get the two results to return to the calling routine. (Note:
It is possible to generate a random die result by using the intrinsic subroutine
RANDOM_NUMBER.)

Create a set of ELEMENTAL functions to calculate the sine, cosine, and tangent of an
angle 6, where @ is measured in degrees. Create a set of ELEMENTAL functions to calcu-
late the arcsine, arccosine, and arctangent functions, returning the results in degrees.
Test your functions by attempting to calculate the sine, cosine, and tangent of the 2 X 3
array arrl, and then inverting the calculations with the inverse functions. Array arrl
is defined as follows:

rrl- |100 200 300 ©-10)
~ 1400 500 60.0 i

You should attempt to apply each function to the entire array in a single statement. Did
your functions work properly with an array input?

Convert the ELEMENTAL functions of the previous exercise into PURE functions and try
the problem again. What results do you get with PURE functions?

Second-Order Least-Squares Fits Sometimes, it makes no sense to fit a set of data
points to a straight line. For example, consider a thrown ball. We know from basic phys-
ics that the height of the ball versus time will follow a parabolic shape, not a linear
shape. How do we fit noisy data to a shape that is not a straight line?

It is possible to extend the idea of least-squares fits to find the best (in a least-
squares sense) fit to a polynomial more complicated than a straight line. Any polynomial
may be represented by an equation of the form

y(x) =c0+c1x+02x2+c3x3+C4x4+..- 9-11)

where the order of the polynomial corresponds to the highest power of x appearing in the
polynomial. To perform a least-squares fit to a polynomial of order n, we must solve for
the coefficients ¢, ¢y, . . . , ¢, that minimize the error between the polynomial and the
data points being fit.

Additional Features of Procedures 453

The polynomial being fitted to the data may be of any order as long as there are at
least as many distinct data points as there are coefficients to solve for. For example, the
data may be fitted to a first order polynomial of the form

y(x) =c¢o+ crx (9-12)

as long as there are at least two distinct data points in the fit. This is a straight line, where
¢, 1s the intercept of the line and ¢, is the slope of the line. Similarly, the data may be
fitted to a second order polynomial of the form

y(x) =co+ cix + cz)c2 (9-13)

as long as there are at least three distinct data points in the fit. This is a quadratic expres-
sion whose shape is parabolic.

It can be shown? that the coefficients of a linear least squares fit to the polynomial
y(x) = ¢y + c1x are the solutions of the following system of equations

Ney + (Zx)cp =2y (9-14)
(Zx)cy + e, = Zxy

where

(x,, y)) is the ith sample measurement

N is the number of sample measurements included in the fit

2x is the sum of the x; values of all measurements

2x? is the sum of the squares of the x; values of all measurements u

2xy is the sum of the products of the corresponding x; and y, values

Any number of sample measurements (x;, y;) may be used in the fit, as long as the
number of measurements is greater than or equal to 2.

The formulation shown above can be extended to fits of higher-order polynomials.
For example, it can be shown that the coefficients of a least-squares fit to the second
order polynomial y(x) = ¢y + ¢1x + ¢,x* are the solutions of the following system of
equations

Ney + (Cx)ep + ExDe, =2y
(Ex)co + Exe; + (ExX7)c, = Zxy (9-15)
ExD ey + ExX)e; + (ExHe, = Zxy

where the various terms have meanings similar to the ones described above. Any number
of sample measurements (x;, y;) may be used in the fit, as long as the number of distinct
measurements is greater than or equal to 3. The least-squares fit of the data to a parabola
can be found by solving Equations (9-15) for ¢, ¢;, and c,.

Create a subroutine to perform a least-squares fit to a second order polynomial
(a parabola), and use that subroutine to fit a parabola to the position data contained in
Table 9-1 below. Use an internal subroutine to solve the system of simultaneous equa-
tions given in Equations (9-15).

3 Probability and Statistics, by Athanasios Papoulis, Prentice-Hall, 1990, pp. 392-393.

454

9-18.

9-19.

CHAPTER 9: Additional Features of Procedures

TABLE 9-1
Measured position and velocity of a ball versus time
Time (sec) Position (m) Velocity (m/s)
0.167 49.9 -5.1
0.333 52.2 -12.9
0.500 50.6 —15.1
0.667 47.0 —6.8
0.833 47.7 —12.3
1.000 42.3 —18.0
1.167 37.9 5.7
1.333 38.2 —-6.3
1.500 38.0 —-12.7
1.667 33.8 —13.7
1.833 26.7 -26.7
2.000 24.8 -31.3
2.167 22.0 -22.9
2.333 16.5 -25.6
2.500 14.0 -25.7
2.667 5.6 -25.2
2.833 2.9 -35.0
3.000 0.8 -27.9

Create a test data set by calculating points (x;, y;) along the curve y(x) = x* — 4x + 3
for x; =0, 0.1,0.2, ..., 5.0. Next, use the intrinsic subroutine RANDOM_NUMBER to add
random noise to each of the y; values. Then, use the subroutine created in Exercise 9-16
to try to estimate the coefficients of the original function that generated the data set. Try
this when the added random noise has the range:

(a) 0.0 (No added noise)

(b) [-0.1,0.1)

(¢) [-0.5,0.5)

@ [-1.0, 1.0)

(e) [-2.0,2.0)

(fH1.—,3.0)

How did the quality of the fit change as the amount of noise in the data increased?

Higher-Order Least-Squares Fits It can be shown that the coefficients of a least-
squares fit to the nth order polynomial y(x) = co + ¢1x + c2x° + . .. + ¢,x" are the
solutions of the following system of n equations in n unknowns

Ney + o) +EDe, +... + ExMe, =3y
Ex)cg + EDe; + ExDey, 4.0+ Ex" e, = Sxy
ExDeo + ExDe; + ExMNey, A+ .o+ Ex"e, = Xy (9-16)

(ExMeo + CX" e + (EX e + ...+ (Zxe, =Xy

Additional Features of Procedures 455

9-20.

9-21.

9-22.

Write a subroutine that implements a least-squares fit to any polynomial of any order.
(Note: Use dynamic memory allocation to create arrays of the proper size for the prob-
lem being solved.)

Create a test data set by calculating points (x;, y;) along the curve y(x) = x* — 3x° —
4x* 4 2x+ 3for x; = 0,0.1,0.2, ..., 5.0. Next, use the intrinsic subroutine RANDOM_
NUMBER to add random noise to each of the y; values. Then, use the higher-order
least-squares fit subroutine created in Exercise 9-19 to try to estimate the coefficients of
the original function that generated the data set. Try this when the added random noise
has the range:

(a) 0.0 (No added noise)
(») [-0.1,0.1)
(c) [-0.5,0.5)
@ [-1.0,1.0)

How did the quality of the fit change as the amount of noise in the data increased? How
does the quality of the higher-order fit for a given amount of noise compare to the qual-
ity of a quadratic fit (Exercise 9-18) for the same amount of noise?

Place your second order least-squares fit subroutine and your higher-order least-squares
fit subroutine into a common library that could be reused by other programs. Place them
into a module and declare that the two subroutines have PUBLIC access. Rerun the test
programs with the new module to show that the code works identically.

Interpolation A least-squares fit of order n calculates the nth order polynomial that
“best fits” an (x, y) data set in a least-squares sense. Once this polynomial has been
calculated, it can be used to estimate the expected value y, associated with any location
Xo within the data set. This process is called interpolation. Write a program that calcu-
lates a quadratic least-squares fit to the data set given below and then uses that fit to
estimate the expected value y, at xo = 3.5.

Noisy Measurements

x y
0.00 -23.22
1.00 —13.54
2.00 —4.14
3.00 —-0.04
4.00 3.92
5.00 4.97
6.00 3.96
7.00 -0.07
8.00 -5.67
9.00 —12.29

10.00 -20.25

456

9-23. Extrapolation Once a least-squares fit has been calculated, the resulting polynomial can
also be used to estimate the values of the function beyond the limits of the original input
data set. This process is called extrapolation. Write a program that calculates a linear
least-squares fit to the data set given below, and then uses that fit to estimate the expected

value y, at xo = 14.0.

CHAPTER 9:

Noisy Measurements

x y
0.00 —14.22
1.00 —10.54
2.00 -5.09
3.00 -3.12
4.00 0.92
5.00 3.79
6.00 6.99
7.00 8.95
8.00 11.33
9.00 14.71
10.00 18.75

Additional Features of Procedures

10

More about Character Variables

OBJECTIVES

e Understand the kinds of characters available in Fortran compilers, including
possible Unicode support.

e Understand how relational operations work with character data.

e Understand the lexical functions LLT, LLE, LGT, and LGE, and why they are
safer to use than the corresponding relational operators.

¢ Know how to use the character intrinsic functions CHAR, ICHAR, ACHAR,
TACHAR, LEN, LEN_TRIM, TRIM, and INDEX.

* Know how to use internal files to convert numeric data to character form, and
vice versa.

A character variable is a variable that contains character information. In this
context, a “‘character” is any symbol found in a character set. There are two basic
character sets in common use in the United States: ASCII (American Standard Code
for Information Interchange, ISO/IEC 646:1991) and Unicode (ISO 10646).!

The ASCII character set is a system in which each character is stored in 1 byte
(8 bits). Such a system allows for 256 possible characters, and the ASCII standard
defines the first 128 of these possible values. The 8-bit codes corresponding to each
letter and number in the ASCII coding system are given in Appendix A. The remaining
128 possible values that can be stored in a 1-byte character can have different
definitions in different countries, depending on the “code page” used in that particular
country, or sometimes on the operating system that the compiler runs on. These
characters are defined in the ISO-8859 standard series.

The Unicode character set uses multiple bytes to represent each character, allowing
a maximum of 1,112,064 possible characters. The Unicode character set includes the
characters required to represent almost every language on Earth. The most common

! Previous versions of this book also discussed the EBCDIC character set, which was another 1-byte char-
acter set used in older IBM mainframes. The author has not seen an EBCDIC-coded computer in 32 years
now, so all discussions of that character set have been dropped.

457

458

CHAPTER 10: More about Character Variables

character encoding scheme is UTF-8, which uses a variable number of bytes to
represent different characters. The 127 base ASCII characters are also the first 127
characters in Unicode and can be represented in a single byte. Characters higher up in
the set may require 2, 3, or 4 bytes to encode.

Every Fortran compiler supports a 1-byte characters set called the default character
set. The bottom 127 characters will be the ASCII character set. Fortran compilers are
allowed to support other character sets such as Unicode as well, and many now do so.

10.1
CHARACTER COMPARISON OPERATIONS
Character strings may be compared to each other using either relational operators or
special character comparison functions called lexical functions. Lexical functions have
an advantage over the relational operators when program portability is considered.

10.1.1 The Relational Operators with Character Data

Character strings can be compared in logical expressions using the relational

operators ==, / -, <, <=, >, and >=. The result of the comparison is a logical value that
is either true or false. For instance, the expression '123' == '123"' is true, while the
expression '123' == "1234"' is false.

How are two characters compared to determine if one is greater than the other? The
comparison is based on the collating sequence of the characters. The collating sequence
of the characters is the order in which they occur within a specific character set. For
example, the character 'A' is character number 65 in the ASCII character set, while the
character 'B' is character number 66 in the set (see Appendix A). Therefore, the logical
expression ‘A’ < 'B' is true in the ASCII character set. On the other hand, the char-
acter 'a' is character number 97 in the ASCII set, so 'a' is greater than "A'.

If a particular computer uses a different character set, then it is possible that the
results of relational comparisons could differ because characters might occur in differ-
ent order.?

We can make some comparisons safely regardless of character set. The letters 'A’
to 'Z' are always in alphabetical order, the numbers '0' to '9' are always in numeri-
cal sequence, and the letters and numbers are not intermingled in the collating sequence.
Beyond that, however, all bets are off. The relationships among the special symbols and
the relationship between the uppercase and lowercase letters may differ for different
character sets.

How are two strings compared to determine if one is greater than the other? The
comparison begins with the first character in each string. If they are the same, then the
second two characters are compared. This process continues until the first difference is
found between the strings. For example, ' AAAAAB' > "AAAAAA'.

2 We will see later that there are special functions to allow comparisons to be done in a character-set
independent manner.

More about Character Variables 459

What happens if the strings are different lengths? The comparison begins with the
first letter in each string and progresses through each letter until a difference is found.
If the two strings are the same all the way to the end of one of them, then the other
string is considered the larger of the two. Therefore,

"AB' > 'AAAA" and 'AAAAAT > "AAAA'

EXAMPLE
10-1

Alphabetizing Words:

It is often necessary to alphabetize lists of character strings (names, places, etc.). Write
a subroutine that will accept a character array and alphabetize the data in the array.

SOLUTION

Since relational operators work for character strings the same way that they work for
real values, it is easy to modify the sorting subroutine that we developed in Chapter 7
to alphabetize an array of character variables. All we have to do is to substitute charac-
ter array declarations for the real declarations in the sorting routines. The rewritten
program is shown in Figure 10-1:

FIGURE 10-1
A program to alphabetize character strings using a version of the selection sort algorithm
adapted for character strings.

PROGRAM sort4

Purpose:
To read in a character input data set, sort it into ascending
order using the selection sort algorithm, and to write the
sorted data to the standard output device. This program calls
subroutine "sortc"” to do the actual sorting.

Date Programmer Description of change

11/28/15 S. J. Chapman Original code

|
|
|
|
|
|
|
I Record of revisions:
|
|
|
|
I

MPLICIT NONE

! Data dictionary: declare constants
INTEGER, PARAMETER :: MAX_SIZE = 10 ! Max number to sort

! Data dictionary: declare variable types & definitions
CHARACTER(1en=20), DIMENSION(MAX_SIZE) :: a

I Data array to sort
LOGICAL :: exceed = .FALSE. I Logical indicating that array
! limits are exceeded.
CHARACTER(1en=20) :: filename I Input data file name
INTEGER :: i I Loop index
|

CHARACTER(1en=80) :: msg Error message

(continued)

460 CHAPTER 10: More about Character Variables

(continued)

INTEGER :: nvals =0 I Number of data values to sort
INTEGER :: status 1 ' 1/0 status: 0 for success
CHARACTER(1en=20) :: temp ! Temporary variable for reading

I Get the name of the file containing the input data.
WRITE (*,*) 'Enter the file name with the data to be sorted: '
READ (*,'(A20)') filename

! Open input data file. Status is OLD because the input data must

I already exist.

OPEN (UNIT=9, FILE=filename, STATUS='OLD', ACTION='READ', &
I0STAT=status, IOMSG=msg)

! Was the OPEN successful?
fileopen: IF (status == 0) THEN ! Open successful

I The file was opened successfully, so read the data to sort
I from it, sort the data, and w