CENGAGE

MATLAB

PROGRAMMING FOR ENGINEERS
SIXTH EDITION

Updated for MATLAB R2018a

STEPHEN J. CHAPMAN




MATLAB®

Programming
for Engineers






MATLAB®
Programming
for Engineers

Sixth Edition

Stephen J. Chapman

BAE Systems Australia

»  CENGAGE

stralia ® Brazil ® Mexico ® Singapore ¢ Spain ¢ United Kingdom e United States



CENGAGE

MATLAB Programming for Engineers,

Sixth Edition
Stephen J. Chapman

Product Director, Global Engineering:
Timothy L. Anderson

Senior Product Assistant: Alexander
Sham

Content Developer: MariCarmen
Constable

Associate Marketing Manager: Tori
Sitcawich

Content Manager: Marianne Groth
IP Analyst: Nancy Dillon
IP Project Manager: Jillian Shafer

Production Service: RPK Editorial
Services, Inc.

Compositor: MPS Limited
Senior Designer: Diana Graham

Cover Image: iStockPhoto.com/
Henrik5000

Manufacturing Planner: Doug Wilke

Printed in the United States of America
Print Number: 01

Print Year: 2018

© 2020, 2016, 2008 Cengage Learning, Inc.

Unless otherwise noted, all content is © Cengage

ALL RIGHTS RESERVED. No part of this work covered by the
copyright herein may be reproduced or distributed in any form
or by any means, except as permitted by U.S. copyright law,
without the prior written permission of the copyright owner.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706
or support.cengage.com.

For permission to use material from this text or product,
submit all
requests online at www.cengage.com/permissions.

Library of Congress Control Number: 2018965078

Student Edition:
ISBN: 978-0-357-03039-4

Loose-leaf Edition:
ISBN: 978-0-357-03051-6

Cengage

20 Channel Center Street
Boston, MA 02210

USA

Cengage is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and
sales in more than 125 countries around the world. Find your
local representative at www.cengage.com.

Cengage products are represented in Canada by Nelson
Education, Ltd.

To learn more about Cengage platforms and services, register
or access your online learning solution, or purchase materials
for your course, visit www.cengage.com.

MATLAB is a registered trademark of The MathWorks, Inc.,
1 Apple Hill Drive, Natick, MA 01760-2098



This book is dedicated with love to my youngest daughter Devorah,
who just finished high school. The last one!






Preface

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB language and provides an
extensive library of predefined functions to make technical programming tasks
easier and more efficient. This extremely wide variety of functions makes it much
easier to solve technical problems in MATLAB than in other languages such as
Fortran or C. This book introduces the MATLAB language as it is implemented in
version R2018a and shows how to use it to solve typical technical problems.

This book teaches MATLAB as a technical programming language, showing
students how to write clean, efficient, and documented programs. It makes no pre-
tense at being a complete description of all of MATLAB’s hundreds of functions.
Instead, it teaches the student how to use MATLAB as a computer language and
how to locate any desired function with MATLAB’s extensive on-line help facilities.

The first eight chapters of the text are designed to serve as the text for an
“Introduction to Programming/Problem Solving” course for freshman engineer-
ing students. This material should fit comfortably into a 9-week, 3-hour-per-week
course. The remaining chapters cover advanced topics such as I/O, object-oriented
programming, and graphical user interfaces (GUIs). These chapters may be covered
in a longer course or used as a reference by engineering students or practicing engi-
neers who use MATLAB as a part of their coursework or employment.

Changes in the Sixth Edition

The sixth edition of this book is specifically devoted to MATLAB R2018a. In
the four years since the last release, there have been many changes in MATLAB.

vii



viii | Preface

The most significant of these changes include the introduction of the App
Designer, which includes a whole new paradigm for creating MATLAB apps; a
new family of plotting functions; and strings. There have also been many smaller
improvements throughout the program. The book has been revised to reflect
these changes.

The major changes in this edition of the book include:

An increase in the number of MATLAB applications featured in the chapters,
with more end-of-chapter exercises using them.

More extensive coverage of plots in Chapter 3 and Chapter 8. The discussion
now includes most of the currently recommended plot types in MATLAB.
Older deprecated plot types have been dropped from coverage as the new ones
have been added.

Coverage of the new string data type, along with changes in the support for
character arrays.

Coverage of the time data types: dateTime, duration, and
calendarDuration.

Coverage of table arrays.

A completely rewritten Chapter 14 featuring the new App Designer and class-
based GUISs.

An extra on-line Chapter 15 featuring the older GUIDE-based GUIs; this
chapter can be downloaded from the book’s website.

The Advantages of MATLAB for Technical Programming

MATLAB has many advantages compared to conventional computer languages for
technical problem solving. Among them are:

1.

Ease of Use
MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to execute
large pre-written programs. Programs may be easily written and modified
with the built-in integrated development environment and debugged with the
MATLAB debugger. Because the language is so easy to use, it is ideal for
educational use and for the rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line documenta-
tion and manuals, a workspace browser, and extensive demos.

Platform Independence

MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the
language is supported on Windows 7/8/10, Linux, and the Mac. Programs
written on any platform will run on all of the other platforms, and data files
written on any platform may be read transparently on any other platform.



Preface | ix

As a result, programs written in MATLAB can migrate to new platforms
when the needs of the user change.

3. Predefined Functions

MATLAB comes complete with an extensive library of predefined functions
that provide tested and prepackaged solutions to many basic technical tasks.
For example, suppose that you are writing a program that must calculate the
statistics associated with an input data set. In most languages, you would
need to write your own subroutines or functions to implement calculations
such as the arithmetic mean, standard deviation, median, and so forth. These
and hundreds of other functions are built right into the MATLAB language,
making your job much easier.

In addition to the large library of functions built into the basic
MATLAB language, there are many special-purpose toolboxes available to
help solve complex problems in specific areas. For example, a user can buy
standard toolboxes to solve problems in Signal Processing, Control Sys-
tems, Communications, Image Processing, and Neural Networks, among
many others.

4. Device-Independent Plotting
Unlike other computer languages, MATLAB has many integral plotting and
imaging commands. The plots and images can be displayed on any graphi-
cal output device supported by the computer on which MATLAB is running.
This capability makes MATLAB an outstanding tool for visualizing techni-
cal data.

5. Graphical User Interface
MATLAB includes tools that allow a programmer to interactively construct a
GUI for his or her program. With this capability, the programmer can design
sophisticated data analysis programs that can be operated by relatively inex-
perienced users.

Features of This Book

Many features of this book are designed to emphasize the proper way to write reli-
able MATLAB programs. These features should serve a student well as he or she
is first learning MATLAB and should also be useful to the practitioner on the job.
These features include:

1. Emphasis on Top-Down Design Methodology
The book introduces a top-down design methodology in Chapter 4 and
then uses it consistently throughout the rest of the book. This methodology
encourages a student to think about the proper design of a program before
beginning to code. It emphasizes the importance of clearly defining the
problem to be solved and the required inputs and outputs before any other
work is begun. Once the problem is properly defined, the methodology
teaches the student to employ stepwise refinement to break the task down



X | Preface

into successively smaller sub-tasks, and to implement the sub-tasks as sepa-
rate subroutines or functions. Finally, it teaches the importance of testing
at all stages of the process, both unit testing of the component routines and
exhaustive testing of the final product.

The formal design process taught by the book may be summarized as
follows:

1. Clearly state the problem that you are trying to solve.

2. Define the inputs required by the program and the outputs to be pro-
duced by the program.

3. Describe the algorithm that you intend to implement in the program.
This step involves top-down design and stepwise decomposition,
using pseudocode or flow charts.

4. Turn the algorithm into MATLAB statements.

5. Test the MATLAB program. This step includes unit testing of specific
functions as well as exhaustive testing of the final program with many
different data sets.

. Emphasis on Functions

The book emphasizes the use of functions to logically decompose tasks
into smaller subtasks. It teaches the advantages of functions for data hid-
ing. It also emphasizes the importance of unit testing functions before
they are combined into the final program. In addition, the book teaches
about the common mistakes made with functions and how to avoid them.

. Emphasis on MATLAB Tools

The book teaches the proper use of MATLAB’s built-in tools to make
programming and debugging easier. The tools covered include the Editor/
Debugger, Workspace Browser, Help Browser, and GUI design tools.

. Good Programming Practice Boxes

These boxes highlight good programming practices when they are intro-
duced for the convenience of the student. In addition, the good programming
practices introduced in a chapter are summarized at the end of the chapter.
An example Good Programming Practice Box is as follows:

- Good Programming Practice

Always indent the body of an if construct by two or more spaces to improve the
readability of the code.

SV SIA /LA /0505100004400 0 05 /04000 04000 00000 090000 0000000 04000 000 04 1000 10000 400000 0000000000000

5. Programming Pitfalls Boxes

These boxes highlight common errors so that they can be avoided. An
example Programming Pitfalls Box is as follows:



Preface | xi

(x]| Programming Pitfalls

Make sure that your variable names are unique in the first 31 characters. Otherwise,
MATLAB will not be able to tell the difference between them.

6. Emphasis on Data Structures
Chapter 10 contains a detailed discussion of MATLAB data structures,
including sparse arrays, cell arrays, and structure arrays. The proper use
of these data structures is illustrated in the chapters on handle graphics
(Chapter 13) and graphical user interfaces (Chapter 14).

7. Emphasis on Object-Oriented MATLAB
Chapter 12 includes an introduction to object-oriented programming (OOP)
and describes the MATLAB implementation of OOP in detail. This informa-
tion is then applied in the discussion of App Designer GUISs.

Pedagogical Features

The first eight chapters of this book are specifically designed to be used in a fresh-
man “Introduction to Program/Problem Solving” course. It should be possible to
cover this material comfortably in a 9-week, 3-hour-per-week course. If there is
insufficient time to cover all of the material in a particular Engineering program,
Chapter 8 may be omitted, and the remaining material will still teach the fundamen-
tals of programming and using MATLAB to solve problems. This feature should
appeal to harassed engineering educators trying to cram ever more material into a
finite curriculum.

The remaining chapters cover advanced material that will be useful to the
engineer and engineering students as they progress in their careers. This material
includes advanced 1I/O, object-oriented programming, and the design of GUIs for
programs.

The book includes several features designed to aid student comprehension. A
total of 20 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix B. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 230 end-of-chapter exercises.
Answers to all exercises are included in the Instructor’s Solutions Manual. Good
programming practices are highlighted in all chapters with special Good Program-
ming Practice boxes, and common errors are highlighted in Programming Pitfalls
boxes. End-of-chapter materials include Summaries of Good Programming Practice
and Summaries of MATLAB Commands and Functions.

The book is accompanied by an Instructor’s Solutions Manual, which contains
the solutions to all end-of-chapter exercises. The source code for all examples in



xii | Preface

the book is available from the book’s website at https://login.cengage.com, and the
source code for all solutions in the Instructor’s Manual is available separately to
instructors.

A Final Note to the User

No matter how hard I try to proofread a document like this book, it is inevitable that
some typographical errors will slip through and appear in print. If you should spot
any such errors, please drop me a note via the publisher, and I will do my best to
get these errors eliminated from subsequent printings and editions. Thank you very
much for your help in this matter.

I will maintain a complete list of errata and corrections at the book’s website,
which is available through https://login.cengage.com. Please check that site for any
updates and/or corrections.

Acknowledgments

I would like to thank all my friends at Cengage Learning for the support they have
given me in getting this book to market.

In addition, I would like to thank my wife Rosa, and our children Avi, David,
Rachel, Aaron, Sarah, Naomi, Shira, and Devorah for their help and encouragement.

Stephen J. Chapman
Melbourne, Australia



Digital Resources

New Digital Solution for Your Engineering Classroom

WebAssign is a powerful digital solution designed by educators to enrich the engi-
neering teaching and learning experience. With a robust computational engine at
its core, WebAssign provides extensive content, instant assessment, and superior
support.

WebAssign’s powerful question editor allows engineering instructors to cre-
ate their own questions or modify existing questions. Each question can use any
combination of text, mathematical equations and formulas, sound, pictures, video,
and interactive HTML elements. Numbers, words, phrases, graphics, and sound or
video files can be randomized so that each student receives a different version of
the same question.

In addition to common question types such as multiple choice, fill-in-
the-blank, essay, and numerical, you can also incorporate robust answer entry
palettes (mathPad, chemPad, calcPad, physPad, pencilPad, Graphing Tool) to
input and grade symbolic expressions, equations, matrices, and chemical struc-
tures using powerful computer algebra systems. You can even use Camtasia to
embed “clicker” questions that are automatically scored and recorded in the
GradeBook.

Xiii



xiv | Digital Resources

WebAssign Offers Engineering Instructors the Following

m The ability to create and edit algorithmic and numerical exercises.

m The opportunity to generate randomized iterations of algorithmic and numeri-
cal exercises. When instructors assign numerical WebAssign homework exer-
cises (engineering math exercises), the WebAssign program offers them the
ability to generate and assign their students differing versions of the same
engineering math exercise. The computational engine extends beyond and
provides the luxury of solving for correct solutions/answers.

m The ability to create and customize numerical questions, allowing students to
enter units, use a specific number of significant digits, use a specific number of
decimal places, respond with a computed answer, or answer within a different
tolerance value than the default.

Visit https://www.webassign.com/instructors/features/ to learn more. To create an account,
instructors can go directly to the signup page at http://www.webassign.net/signup.html.

MindTap Reader

Available via WebAssign and our digital subscription service, Cengage Unlimited,
MindTap Reader is Cengage’s next-generation eBook for engineering students.

The MindTap Reader provides more than just text learning for the student. It
offers a variety of tools to help our future engineers learn chapter concepts in a way
that resonates with their workflow and learning styles.

m Personalize their experience

Within the MindTap Reader, students can highlight key concepts, add notes, and
bookmark pages. These are collected in My Notes, ensuring they will have their own
study guide when it comes time to study for exams.

29 Hierarchy of Operations

Often, many arithmetic operations are combined into a single expression.p” Highlight Text

consider the equation for the distance traveled by an object starting from re
Add Note

to a constant acceleration: Dictionary

Read Text

distance = 0.5 * accel * time ™ 2 Add Flashcard

There are two multiplications and an exponentiation in this expression. In such an
expression, it is important to know the order in which the operations are evaluated. If

exponentiation is evaluated before multiplication, this expression is equivalent to

distance = 0.5 * accel * (time " 2)



Digital Resources | xv

m Flexibility at their fingertips

With access to Merriam-Webster’s Dictionary and the book’s internal glossary,
students can personalize their study experience by creating and collating their own
custom flashcards. The ReadSpeaker feature reads text aloud to students, so they can
learn on the go—wherever they are.

12 of 65 | Flip Card

colon operator Next Card

Shuffle Deck

= Review concepts at point of use

Within WebAssign, a “Read It” button at the bottom of each question links students
to corresponding sections of the textbook, enabling access to the MindTap Reader
at the precise moment of learning. A “Watch It” button causes a short video to play.
These videos allow students to better understand and review the problem they need
to complete, enabling support at the precise moment of learning.

¥9on can be broken down into a series of triangles, as shown in the figure below. If this is an n-sided polygon, then It can be dvided into n — 2 triangles.
(1% ) . ¥y
273 (v
(x5, Vg
[ ] [F P ] @

Croae & furcticn that calculates the pefimeter of the polygon énd the area enclsed By the polygon. Conmider a function areadd that calculstes the ares of a tridnghe ghven the three bounding points
(3. Wale Uy Vol and (x5, i) using the following equation.

1 I,

A= ?[lltr,- = ¥al = =l = rad = wlvy = l]
Use fursction area2d 1o caleslato the area of the palygon. Weits & progeam that Becapts an cedered list of peints bounding & pelygon and exlis your function to raturn tha parimater and 3663 of the
pebygorn, (Submit & B with & masdeum size of 1 M0}

| Browsa

I This answor has not been graded yat
Then test your fanction by caliulating the perimeter and srea of a palygon bounded by the points (0. 0], (11, 0], (8 9], (3 13), and (-5, ).
perimator | ]
araa [

Noed Help? [[iReanl




xvi | Digital Resources

The MindTap Mobile App

-
*

CENGAGE

Available on iOS and Android smartphones, the MindTap Mobile App provides
convenience. Students can access their entire textbook anyplace and anytime. They
can take notes, highlight important passages, and have their text read aloud whether
they are on-line or off.

To download the mobile app, visit https://www.cengage.com/mindtap
/mobileapp.

UNLIMITED

All-You-Can-Learn Access with Cengage Unlimited

Cengage Unlimited is the first-of-its-kind digital subscription that gives students
total and on-demand access to all the digital learning platforms, eBooks, on-line
homework, and study tools Cengage has to offer—in one place, for one price. With
Cengage Unlimited, students get access to their WebAssign courseware, as well as
content in other Cengage platforms and course areas from day one. That’s 70 disci-
plines and 675 courses worth of material, including engineering.

With Cengage Unlimited, students get unlimited access to a library of more than
22,000 products. To learn more, visit https://www.cengage.com/unlimited.



Contents

Chapter |

Introduction to MATLAB I

Chapter 2

I.I The Advantages of MATLAB 2
1.2 Disadvantages of MATLAB 3
1.3 The MATLAB Environment 4
1.3.1 The MATLAB Desktop 4
1.3.2 The Command Window 6
1.3.3 The Toolstrip 7
1.3.4 The Command History Window 8
1.3.5 The Document Window 8
1.3.6 Figure Windows 11
1.3.7 Docking and Undocking Windows 12
1.3.8 The MATLAB Workspace 12
1.3.9 The Workspace Browser 14
1.3.10 The Current Folder Browser 14
1.3.11 Getting Help 15
1.3.12 A Few Important Commands 18
1.3.13 The MATLAB Search Path 19
.4 Using MATLAB as a Calculator 21
.5 MATLAB Script Files 23
1.5.1 Setting Up a Problem to Solve 24
1.5.2 Creating a Simple MATLAB Script File 24
1.6 Summary 28
1.6.1 MATLAB Summary 28
1.7 Exercises 29

MATLAB Basics 33

2.1 Variables and Arrays 33
xvii



xviii | Contents

2.2 Creating and Initializing Variables in MATLAB 37
2.2.1 Initializing Variables in Assignment Statements 37
2.2.2 Initializing with Shortcut Expressions 40
2.2.3 Initializing with Built-In Functions 41
2.2.4 Initializing Variables with Keyboard Input 41

2.3 Multidimensional Arrays 43
2.3.1 Storing Multidimensional Arrays in Memory 45
2.3.2 Accessing Multidimensional Arrays with One

Dimension 46

2.4 Subarrays 46
2.4.1 The end Function 47
2.4.2 Using Subarrays on the Left-Hand Side of an Assignment

Statement 47
2.4.3 Assigning a Scalar to a Subarray 49

2.5 Special Values 49

2.6 Displaying Output Data 51
2.6.1 Changing the Default Format 52
2.6.2 The disp Function 53
2.6.3 Formatted Output with the fprintf Function 54

2.7 Data Files 55

2.8 Scalar and Array Operations 58
2.8.1 Scalar Operations 58
2.8.2 Array and Matrix Operations 58

2.9 Hierarchy of Operations 62

2.10Built-in MATLAB Functions 65
2.10.1 Optional Results 65
2.10.2 Using MATLAB Functions with Array Inputs 65
2.10.3 Common MATLAB Functions 66

2.1 1 Introduction to Plotting 67
2.11.1 Using Simple xy Plots 68
2.11.2 Printing a Plot 69
2.11.3 Multiple Plots 70
2.11.4 Line Color, Line Style, Marker Style, and Legends 71

2.12Examples 75

2.13MATLAB Applications:Vector Mathematics 82
2.13.1 Vector Addition and Subtraction 84
2.13.2 Vector Multiplication 85

2.14MATLAB Applications: Matrix Operations
and Simultaneous Equations 90
2.14.1 The Matrix Inverse 91

2.15Debugging MATLAB Programs 92

2.16Summary 94
2.16.1 Summary of Good Programming Practice 95
2.16.2 MATLAB Summary 96

2.17Exercises 99



Contents | Xix

Chapter 3 Two-Dimensional Plots 11

3.1 Additional Plotting Features for Two-Dimensional Plots 111
3.1.1 Logarithmic Scales 111
3.1.2 Controlling x- and y-axis Plotting Limits 116
3.1.3 Plotting Multiple Plots on the Same Axes 117
3.1.4 Creating Multiple Figures 117
3.1.5 Subplots 121
3.1.6 Controlling the Spacing between Points on a Plot 122
3.1.7 Enhanced Control of Plotted Lines 126
3.1.8 Enhanced Control of Text Strings 127
3.2 Polar Plots 130
3.3 Annotating and Saving Plots 132
3.4 Additional Types of Two-Dimensional Plots 135
3.5 Using the plot Function with Two-Dimensional Arrays 140
3.6 Plots with Two y Axes 142
3.7 Summary 149
3.7.1 Summary of Good Programming Practice 150
3.7.2 MATLAB Summary 151
3.8 Exercises 151

Chapter 4 Branching Statements and Program Design 157

4.1 Introduction to Top-Down Design Techniques 157
4.2 Use of Pseudocode 161
4.3 The logical DataType 162
4.3.1 Relational and Logic Operators 162
4.3.2 Relational Operators 163
4.3.3 A Caution About the == and ~= Operators 164
4.3.4 Logic Operators 165
4.3.5 Logical Functions 169
4.4 Branches 171
4.4.1 The if Construct 171
4.4.2 Examples Using if Constructs 173
4.4.3 Notes Concerning the Use of 1 £ Constructs 179
4.4.4 The switch Construct 182
4.4.5 The try/catch Construct 183
4.5 More on Debugging MATLAB Programs 189
4.6 Code Sections 196
4.7 MATLAB Applications: Roots of Polynomials 198
4.8 Summary 201
4.8.1 Summary of Good Programming Practice 201
4.8.2 MATLAB Summary 202
4.9 Exercises 203



xx | Contents

Chapter 5 Loops and Vectorization 207

Chapter 6

5.1
5.2

5.3

5.4
5.5
5.6
5.7
5.8

5.9

The while Loop 207

The for Loop 213

5.2.1 Details of Operation 220

5.2.2 Vectorization: A Faster Alternative to Loops 222

5.2.3 The MATLAB Just-In-Time (JIT) Compiler 223

5.2.4 The break and cont inue Statements 227

5.2.5 Nesting Loops 228

Logical Arrays and Vectorization 229

5.3.1 Creating the Equivalent of 1f/else Constructs
with Logical Arrays 230

The MATLAB Profiler 232

Additional Examples 235

The textread Function 250

MATLAB Applications: Statistical Functions 252

MATLAB Applications: Curve Fitting and Interpolation 255

5.8.1 General Least-Squares Fits 255

5.8.2 Cubic Spline Interpolation 262

5.8.3 Interactive Curve-Fitting Tools 267

Summary 271

5.9.1 Summary of Good Programming Practice 271

5.9.2 MATLAB Summary 272

5.10Exercises 272

Basic User-Defined Functions 283

Chapter 7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

Introduction to MATLAB Functions 284

Variable Passing in MATLAB:The Pass-by-Value Scheme 290
Optional Arguments 300

Sharing Data Using Global Memory 305

Preserving Data between Calls to a Function 313

Built-In MATLAB Functions: Sorting Functions 318

Built-In MATLAB Functions: Random Number Functions 320
Summary 320

6.8.1 Summary of Good Programming Practice 321

6.8.2 MATLAB Summary 321

Exercises 322

Advanced Features of User-Defined Functions 331

7.1
7.2

Function Functions 331
Function Handles 336



Contents | XXi

7.3 Functions eval and feval 34|
7.4 Local Functions, Private Functions, and Nested Functions 342
7.4.1 Local Functions 342
7.4.2 Private Functions 344
7.4.3 Nested Functions 345
7.4.4 Order of Function Evaluation 348
7.4.5 Function Handles and Nested Functions 348
7.4.6 The Significance of Function Handles 350
7.5 An Example Application: Solving Ordinary
Differential Equations 351
7.6 Anonymous Functions 358
7.7 Recursive Functions 359
7.8 Plotting Functions 360
7.9 Histograms 362
7.10 An Example Application: Numerical Integration 368
7.11 Summary 374
7.11.1 Summary of Good Programming Practice 374
7.11.2 MATLAB Summary 375
7.12Exercises 375

Chapter 8 Complex Numbers and Additional Plots 385

8.1 Complex Data 385

8.1.1 Complex Variables 387

8.1.2 Using Complex Numbers with Relational Operators 387

8.1.3 Complex Functions 388

8.1.4 Plotting Complex Data 394
8.2 Multidimensional Arrays 397
8.3 Gallery of MATLAB Plots 399
8.4 Line Plots 410

8.4.1 The plot3 Function 410

8.4.2 Changing the Viewpoint of Three-dimensional Plots 414

8.4.3 The fplot3 Function 414

8.4.4 The fimplicit Function 415
8.5 Discrete Data Plots 417

8.5.1 The stem3 Function 419

8.5.2 The scatter Function 420

8.5.3 The scatter3 Function 424
8.6 Polar Plots 426

8.6.1 The compass Function 429

8.6.2 The ezpolar Function 429
8.7 Contour Plots 431

8.7.1 Function contour 431

8.7.2 Function contourf 433



xxii | Contents

Chapter 9

8.7.3 Function contour3 435
8.7.4 Function fcontour 435
8.8 Surface and Mesh Plots 436
8.8.1 Creating Surface and Mesh Plots 437

8.8.2 Creating Three-Dimensional Objects using Surface

and Mesh Plots 442
8.8.3 Ribbon Plots 444
8.8.4 Function pcolor 445
8.8.5 Functions fsurf and fmesh 447
8.8.6 Function fimplicit3 448
8.9 Pie Charts, Bar Plots, and Histograms 450
8.9.1 The area Function 451
8.9.2 Bar Plots 452
8.9.3 Two-Dimensional Histograms 456
8.10Color Order, Color Maps, and Color Bars 457
8.10.1 Plot Color Order 457
8.10.2 Color Maps 459
8.10.3 Color Bars 459
8.11 Summary 463
8.11.1 Summary of Good Programming Practice 463
8.11.2 MATLAB Summary 463
8.12Exercises 464

Additional Data Types

471

9.1 Character Arrays versus Strings 472
9.1.1 Character Arrays 472
9.1.2 Strings 473

9.2 Character Arrays and Character Functions 473
9.2.1 Character Array Conversion Functions 474

9.2.2 Creating Two-Dimensional Character Arrays 475

9.2.3 Concatenating Character Arrays 476
9.2.4 Comparing Character Arrays 476

9.2.5 Searching/Replacing Characters within a Character Array 480

9.2.6 Uppercase and Lowercase Conversion 481
9.2.7 Trimming Whitespace from Strings 482
9.2.8 Numerical-to-Character Array Conversions 482
9.2.9 String-to-Numerical Conversions 484

9.3 The string DataType 490
9.3.1 Creating Strings 491
9.3.2 Converting Data into Strings 491
9.3.3 Converting Strings to Other Data Types 493
9.3.4 Concatenating Strings 494
9.3.5 Comparing Strings 494
9.3.6 Searching for Substrings within a String 495



9.4
9.5
9.6
9.7
9.8

9.9

9.10

Contents | xxiii

9.3.7 Extracting Substrings from a String 496

9.3.8 Inserting Strings into a String 497

9.3.9 Replacing Characters within a String 497

9.3.10 Erasing Characters in a String 498

9.3.11 Uppercase and Lowercase Conversion 499

9.3.12 Trimming Whitespace from Strings 499

Summary of Character Array and String Functions 499
The single DataType 503

Integer Data Types 504

Limitations of the single and Integer Data Types 505
The datetime and duration Data Types 507

9.8.1 The datetime Data Type 507

9.8.2 The duration Data Type 508

9.8.3 calendarDuration Arrays 508

9.8.4 Time Calculations 509

9.8.5 Using Time Data in MATLAB 511

Summary 513

9.9.1 Summary of Good Programming Practice 513

9.9.2 MATLAB Summary 513

Exercises 514

Chapter 10 Sparse Arrays, Cell Arrays, Structures,
and Tables

517

10.1

10.2

10.3

Sparse Arrays 517

10.1.1 The sparse Attribute 519

Cell Arrays 525

10.2.1 Creating Cell Arrays 527

10.2.2 Using Braces { } as Cell Constructors 528
10.2.3 Viewing the Contents of Cell Arrays 528

10.2.4 Extending Cell Arrays 529

10.2.5 Deleting Cells in Arrays 531

10.2.6 Using Data in Cell Arrays 532

10.2.7 Cell Arrays of Strings 532

10.2.8 The Significance of Cell Arrays 534

10.2.9 Summary of cell Functions 538

Structure Arrays 539

10.3.1 Creating Structure Arrays 539

10.3.2 Adding Fields to Structures 542

10.3.3 Removing Fields from Structures 542

10.3.4 Using Data in Structure Arrays 543

10.3.5 The getfield and setfield Functions 544
10.3.6 Dynamic Field Names 545

10.3.7 Using the size Function with Structure Arrays 546



xxiv | Contents

10.3.8 Nesting Structure Arrays 547
10.3.9 Summary of structure Functions 548
10.4 Table Arrays 548
10.4.1 Creating Table Arrays 548
10.4.2 Accessing Data in a Table 551
10.4.3 Table Metadata (Properties) 552
10.4.4 Examining the Contents and Properties of a Table 553
10.4.5 Table Summary 554
10.5 Summary 560
10.5.1 Summary of Good Programming Practice 560
10.5.2 MATLAB Summary 561
10.6 Exercises 561

Chapter || Input-Output Functions 565

I1.1 The textread Function 565
11.2 More about the 1oad and save Commands 567
11.3 An Introduction to MATLAB File Processing 570
11.4 File Opening and Closing 571
11.4.1 The fopen Function 571
11.4.2 The £close Function 574
11.5 Binary I/O Functions 575
11.5.1 The fwrite Function 575
11.5.2 The fread Function 575
11.6 Formatted I/O Functions 580
11.6.1 The fprintf Function 580
11.6.2 Understanding Format Conversion Specifiers 581
11.6.3 How Format Strings Are Used 583
11.6.4 The sprintf Function 585
11.6.5 The £scanf Function 587
11.6.6 The £getl Function 588
11.6.7 The £gets Function 589
11.7 Comparing Formatted and Binary I/O Functions 589
11.8 File Positioning and Status Functions 594
11.8.1 The exist Function 595
11.8.2 The ferror Function 597
11.8.3 The feof Function 598
11.8.4 The ftell Function 598
11.8.5 The frewind Function 598
11.8.6 The f£seek Function 598
11.9 The textscan Function 604
11.10 Function uiimport 606
I1.11 Summary 609
11.11.1 Summary of Good Programming Practice 610
11.11.2 MATLAB Summary 610
11.12 Exercises 611



Contents | XXV

Chapter |2 User-Defined Classes and
Object-Oriented Programming 615

12.1 An Introduction to Object-Oriented Programming 615
12.1.1 Objects 616
12.1.2 Messages 617
12.1.3 Classes 617
12.1.4 Static Methods 618
12.1.5 Class Hierarchy and Inheritance 620
12.1.6 Object-Oriented Programming 620
12.2 The Structure of a MATLAB Class 621
12.2.1 Creating a Class 622
12.2.2 Adding Methods to a Class 624
12.2.3 Listing Class Types, Properties, and Methods 628
12.2.4 Attributes 629
12.3 Value Classes versus Handle Classes 633
12.3.1 Value Classes 634
12.3.2 Handle Classes 635
12.4 Destructors: The delete Method 638
12.5 Access Methods and Access Controls 640
12.5.1 Access Methods 640
12.5.2 Access Controls 642
12.5.3 Example: Creating a Timer Class 642
12.5.4 Notes on the MyTimer Class 647
12.6 Static Methods 648
12.7 Defining Class Methods in Separate Files 649
12.8 Overriding Operators 650
12.9 Events and Listeners 655
12.9.1 Property Events and Listeners 658
12.10 Exceptions 659
12.10.1 Creating Exceptions in Your Own Programs 660
12.10.2 Catching and Fixing Exceptions 661
12.11 Superclasses and Subclasses 662
12.11.1 Defining Superclasses and Subclasses 663
12.11.2 Example Using Superclasses and Subclasses 668
12.12 Summary 678
12.12.1 Summary of Good Programming Practice 679
12.12.2 MATLAB Summary 679
12.13 Exercises 680

Chapter |3 Handle Graphics and Animation 685

13.1 Handle Graphics 685
13.2 The MATLAB Graphics System 686
13.3 Object Handles 688



xxvi | Contents

13.4 Examining and Changing Object Properties 689

13.5
13.6
13.7
13.8
13.9

13.4.1 Changing Object Properties at Creation Time 689
13.4.2 Changing Object Properties after Creation Time 689
13.4.3 Examining and Changing Properties
Using Object Notation 690
13.4.4 Examining and Changing Properties Using
get/set Functions 692
13.4.5 Examining and Changing Properties Using
the Property Editor 694
Using set to List Possible Property Values 698
User-Defined Data 700
Finding Objects 701
Selecting Objects with the Mouse 703
Position and Units 706
13.9.1 Positions of £igure Objects 706
13.9.2 Positions of axes and polaraxes Objects 707
13.9.3 Positions of text Objects 707

13.10 Printer Positions 710

13.11 Default and Factory Properties 711
13.12 Restoring Default Properties 713
13.13 Graphics Object Properties 713
13.14 Animations and Movies 714

13.14.1 Erasing and Redrawing 714
13.14.2 Creating a Movie 719

13.15 Summary 721

13.15.1 Summary of Good Programming Practice 721
13.15.2 MATLAB Summary 721

13.16 Exercises 722

Chapter 14 MATLAB Apps and Graphical User Interfaces

725

14.1
14.2

14.3

14.4

14.5

How a Graphical User Interface Works 726
Creating and Displaying a Graphical User Interface 732
14.2.1 The Structure of a Callback Function (Method) 738
14.2.2 Adding Application Data to a Figure 739

Object Properties 739

14.3.1 Key Properties of Numerical Components 741
14.3.2 Key Properties of Text Components 743
Additional Containers: Panels, Tab Groups,

and Button Groups 749

14.4.1 Panels 749

14.4.2 Tab Groups 752

14.4.3 Button Groups 752

Dialog Boxes 754

14.5.1 Alert Dialog Boxes 755



Chapter |5

14.6

14.7

14.8

Contents | xxvii

14.5.2 Confirmation Dialog Boxes 755

14.5.3 Input Dialog Boxes 757

14.5.4 The uigetfile,uisetfile, and uigetdir Dialog
Boxes 757

14.5.5 The uisetcolor and uisetfont Dialog Boxes 759

Menus 760

14.6.1 Creating Your Own Menus 763

14.6.2 Accelerator Keys and Keyboard Mnemonics 763

Summary 774

14.7.1 Summary of Good Programming Practice 775

14.7.2 MATLAB Summary 775

Exercises 777

A UTF-8 Character Set 779

B Answers to Quizzes 781

Index 807

Guide-Based Graphical User Interfaces (On-line Only)

15.1
15.2

15.3
15.4

15.5

15.6

How a Graphical User Interface Works
Creating and Displaying a Graphical User Interface
15.2.1 A Look Under the Hood

15.2.2 The Structure of a Callback Subfunction
15.2.3 Adding Application Data to a Figure
15.2.4 A Few Useful Functions

Object Properties

Graphical User Interface Components
15.4.1 Static Text Fields

15.4.2 Edit Boxes

15.4.3 Pushbuttons

15.4.4 Toggle Buttons

15.4.5 Checkboxes and Radio Buttons

15.4.6 Popup Menus

15.4.7 List Boxes

15.4.8 Sliders

15.4.9 Tables

Additional Containers: Panels and Button Groups
15.5.1 Panels

15.5.2 Button Groups

Dialog Boxes

15.6.1 Error and Warning Dialog Boxes

15.6.2 Input Dialog Boxes



xxviii | Contents

15.7

15.6.3 The uigetfile,uisetfile, and uigetdir Dialog Boxes
15.6.4 The uisetcolor and uiset font Dialog Boxes

Menus

15.7.1 Suppressing the Default Menu

15.7.2 Creating Your Own Menus

15.7.3 Accelerator Keys and Keyboard Mnemonics

15.7.4 Creating Context Menus

15.8 Tips for Creating Efficient GUIs

15.9

15.8.1 Tool Tips

15.8.2 Toolbars

15.8.3 Additional Enhancements

Summary

15.9.1 Summary of Good Programming Practice
15.9.2 MATLAB Summary

15.10 Exercises



Introduction to MATLAB

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB programming language and
provides a very extensive library of predefined functions to make technical pro-
gramming tasks easier and more efficient. This book introduces the MATLAB lan-
guage as it is implemented in MATLAB Version 2018A and shows how to use it to
solve typical technical problems.

MATLAB is a huge program with an incredibly rich variety of functions. Even the
basic version of MATLAB without any toolkits is much richer than other technical
programming languages. There are more than 1000 functions in the basic MATLAB
product alone, and the toolkits extend this capability with many more functions in
various specialties. Furthermore, these functions often solve very complex problems
(solving differential equations, inverting matrices, and so forth) in a single step, saving
large amounts of time. Doing the same thing in another computer language usually
involves writing complex programs yourself or buying a third-party software pack-
age (such as IMSL, the Intel® Math Kernel Library, or the NAG software libraries)
that contains the functions.

The built-in MATLAB functions are almost always better than anything that
an individual engineer could write on his or her own because many people have
worked on them, and they have been tested against many different data sets. These
functions are also robust, producing sensible results for wide ranges of input data
and gracefully handling error conditions.

This book makes no attempt to introduce users to all of MATLAB’s functions.
Instead, it teaches users the basics of how to write, debug, and optimize good MATLAB
programs, and it introduces a subset of the most important functions used to
solve common scientific and engineering problems. Just as importantly, it teaches



2 | Chapter | Introduction to MATLAB

the scientist or engineer how to use MATLAB’s own tools to locate the right
function for a specific purpose from the enormous variety of choices available.
In addition, it teaches how to use MATLAB to solve many practical engineering
problems, such as vector and matrix algebra, curve fitting, differential equations,
and data plotting.

The MATLAB program is a combination of a procedural programming language,an
integrated development environment (IDE) that includes an editor and debugger, and
an extremely rich set of functions that perform many types of technical calculations.

The MATLAB language is a procedural programming language, meaning that the
engineer writes procedures, which are effectively mathematical recipes for solving a
problem. This makes MATLAB very similar to other procedural languages such as
C or Fortran. However, the extremely rich list of predefined functions and plot-
ting tools makes it superior to these other languages for many engineering analysis
applications.

In addition, the MATLAB language includes object-oriented extensions that
allow engineers to write object-oriented programs.These extensions are similar to
other object-oriented languages such as C++ or Java.

.l The Advantages of MATLAB

MATLAB has many advantages compared to conventional computer languages for
technical problem solving. Among them are the following:

1. Ease of Use

MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to exe-
cute large prewritten programs. Programs may be easily written and modified
with the built-in integrated development environment and debugged with the
MATLAB debugger. Because the language is so easy to use, it is ideal for the
rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line documenta-
tion and manuals, a workspace browser, and extensive demos.

2. Platform Independence
MATLAB is supported on many different computer systems and thus enables
a large measure of platform independence. At the time of this writing, the
language is supported on Windows 7/8.1/10, Linux, and the Apple Mac oper-
ating system. Programs written on any platform will run on all of the other
platforms, and data files written on any platform may be read transparently
on any other platform. As a result, programs written in MATLAB can migrate
to new platforms when the needs of the user change.

3. Predefined Functions
MATLAB comes complete with an extensive library of predefined functions
that provide tested and prepackaged solutions to many basic technical tasks.
For example, suppose that you are writing a program that must calculate the



I.2 Disadvantages of MATLAB | 3

statistics associated with an input data set. In most languages, you would
need to write your own subroutines or functions to implement calculations
such as the arithmetic mean, standard deviation, median, and so forth. These
and hundreds of other functions are built right into the MATLAB language,
making your job much easier.

In addition to the large library of functions built into the basic MATLAB
language, there are many special-purpose toolboxes available to help solve
complex problems in specific areas. For example, you can buy standard tool-
boxes to solve problems in signal processing, control systems, communica-
tions, image processing, and neural networks, among many others. There is
also an extensive collection of free user-contributed MATLAB programs that
are shared through the MATLAB website.

4. Device-Independent Plotting
Unlike most other computer languages, MATLAB has many integral plot-
ting and imaging commands. The plots and images can be displayed on any
graphical output device supported by the computer on which MATLAB is
running. This capability makes MATLAB an outstanding tool for visualizing
technical data.

5. Graphical User Interface
MATLAB includes tools that allow an engineer to interactively construct a
graphical user interface (GUI) for his or her program, and also to produce
Web apps. With this capability, an engineer can design sophisticated data
analysis programs that can be operated by relatively inexperienced users.

6. MATLAB Compilers
MATLAB?’s flexibility and platform independence is achieved by compiling
MATLAB programs into a device-independent p-code, and then interpreting
the p-code instructions at run-time. This approach is similar to that used by
Microsoft’s Visual Basic language or by Java. Unfortunately, the resulting
programs sometimes executed slowly because the MATLAB code is inter-
preted rather than compiled. Newer versions of MATLAB have partially
overcome this problem by introducing just-in-time (JIT) compiler technol-
ogy. The JIT compiler compiles portions of the MATLAB code as it is exe-
cuted to increase overall speed.

A separate MATLAB Coder is also available. The MATLAB Coder gen-
erates portable and readable C and C++ code from MATLAB code. This
converted code can then be compiled and included in programs written in
other languages. In addition, legacy code written in other languages can be
compiled and used within MATLAB.

1.2 Disadvantages of MATLAB

MATLAB has two principal disadvantages. The first is that it is an interpreted lan-
guage and therefore can execute more slowly than compiled languages. This problem
can be mitigated by properly structuring the MATLAB program to maximize the
performance of vectorized code and by using the JIT compiler.



4 | Chapter | Introduction to MATLAB

The second disadvantage is cost: a full copy of MATLAB is 5 to 10 times more
expensive than a conventional C or Fortran compiler. This relatively high cost is
more than offset by the reduced time required for an engineer or scientist to create
a working program, so MATLAB is cost-effective for businesses. However, it is too
expensive for most individuals to consider purchasing. Fortunately, there is also an
inexpensive student edition of MATLAB, which is a great tool for students wishing
to learn the language. The student edition of MATLAB is essentially identical to the
full edition.

.3 The MATLAB Environment

The fundamental unit of data in any MATLAB program is the array. An array
is a collection of data values organized into rows and columns and known
by a single name. Individual data values within an array can be accessed
by including the name of the array followed by subscripts in parentheses
that identify the row and column of the particular value. Even scalars are
treated as arrays by MATLAB—they are simply arrays with only one row and
one column. We will learn how to create and manipulate MATLAB arrays in
Section 1.4.

When MATLAB executes, it can display several types of windows that accept
commands or display information. The three most important types of windows are
Command Windows, where commands may be entered; Figure Windows, which dis-
play plots and graphs; and Edit Windows, which permit a user to create and modify
MATLAB programs. We will see examples of all three types of windows in this
section.

In addition, MATLAB can display other windows that provide help and that
allow the user to examine the values of variables defined in memory. We will exam-
ine some of these additional windows here, and examine the others when we discuss
how to debug MATLAB programs.

1.3.1 The MATLAB Desktop

When you start MATLAB Version 2018A, a special window called the MATLAB
desktop appears. The desktop is a window that contains other windows showing
MATLAB data, plus toolbars and a “Toolstrip” or “Ribbon Bar” similar to that used
by Windows 10 or Microsoft Office. By default, most MATLAB tools are “docked”
to the desktop, so that they appear inside the desktop window. However, the user can
choose to “undock” any or all tools, making them appear in windows separate from
the desktop.

The default configuration of the MATLAB desktop is shown in Figure 1.1.
It integrates many tools for managing files, variables, and applications within the
MATLAB environment.



1.3 The MATLAB Environment | 5

Current Folder
Browser
shows a list
of the files in the
current directory

This control allow
a user to view
or change the

current directory

Launch the MATLAB
Help Browser Editor

\
Details Window
dlsp}ays the MATLAB Command Workspz_lce Browser
properties of a file . shows variables defined
. Window .
selected in the in workspace
Current Folder Browser

Figure .1 The default MATLAB desktop. The exact appearance of the
desktop may differ slightly on different types of computers.

The major tools within or accessible from the MATLAB desktop are:

® The Command Window

m The Toolstrip

® The Documents Window, including the Editor/Debugger and Array Editor
® Figure Windows

m The Workspace

Browser

m The Current Folder Browser, with the Details Window
m The Help Browser
m The Path Browser

m A Popup Command History Window



6 | Chapter | Introduction to MATLAB

Table I.1: Tools and Windows Included in the MATLAB
Desktop

Tool Description

Command Window A window where the user can type commands and see immediate
results, or where the user can execute scripts or functions

Toolstrip A strip across the top of the desktop containing icons to select func-
tions and tools, arranged in tabs and sections of related functions

Command History A window that displays recently used commands, accessed by click-

Window ing the up arrow when typing in the Command Window

Document Window A window that displays MATLAB files and allows the user to edit or
debug them

Figure Window A window that displays a MATLAB plot

Workspace Browser A window that displays the names and values of variables stored in
the MATLAB workspace

Current Folder A window that displays the names of files in the current directory. If

Browser a file is selected in the Current Folder Browser, details about the file
will appear in the Details Window

Help Browser A tool to get help for MATLAB functions, accessed by clicking the
“Help” button on the Toolstrip

Path Browser A tool to display the MATLAB search path, accessed by clicking the

“Set Path” button on the Home tab of the Toolstrip

The functions of these tools are summarized in Table 1.1. We will discuss them in
later sections of this chapter.

1.3.2 The Command Window

The bottom center of the default MATLAB desktop contains the Command
Window. A user can enter interactive commands at the command prompt (») in the
Command Window, and they will be executed on the spot.

As an example of a simple interactive calculation, suppose that you wanted to cal-
culate the area of a circle with a radius of 2.5 m. The equation for this area of a circle is

A= (1.1)

where 7 is the radius of the circle and A is the area of the circle. This equation can be
evaluated in the MATLAB Command Window by typing:

» area = pi * 2.5%2
area =
19.6350

where * is the multiplication symbol and * is the exponential symbol. MATLAB
calculates the answer as soon as the Enter key is pressed, and stores the answer
in a variable (really a 1 X 1 array) called area. The contents of the variable are



1.3 The MATLAB Environment | 7

[ O T i TS, ar | L 5 O e G ML

Result is added
to the workspace

User input

Balact 3 406 10 vitw detals

Result of
calculation

Figure 1.2 The Command Window appears in the center of the desktop.
You enter commands and see responses here.

displayed in the Command Window as shown in Figure 1.2, and the variable can be
used in further calculations. (Note that 77 is predefined in MATLAB, so we can just
use pi without first declaring it to be 3.141592 ...).

If a statement is too long to type on a single line, it may be continued on succes-
sive lines by typing an ellipsis (. . .) at the end of the first line and then continuing
on the next line. For example, the following two statements are identical.

xl1 =1+ 1/2 + 1/3 + 1/4 + 1/5 + 1/6
and

xl =1+ 1/2 + 1/3 + 1/4
+ 1/5 + 1/6

Instead of typing commands directly in the Command Window, a series of com-
mands can be placed into a file, and the entire file can be executed by typing its
name in the Command Window. Such files are called script files. Script files (and
functions, which we will see later) are also known as M-files because they have a file

2

extension of “.m”.

1.3.3 The Toolstrip

The Toolstrip (see Figure 1.3) is a bar of tools that appears across the top of the
desktop. The controls on the Toolstrip are organized into related categories of func-
tions, first by tabs, and then by groups. For example, the tabs visible in Figure 1.3 are



8 | Chapter | Introduction to MATLAB

Quick Access Toolbar

Figure 1.3 The Toolstrip, which allows you to select from a wide variety
of MATLAB tools and commands.

“Home”, “Plots”, “Apps”, “Editor”, and so forth. When one of the tabs is selected,
a series of controls grouped into sections is displayed. In the Home tab, the sections
are “File”, “Variable”, “Code”, and so forth. With practice, the logical grouping of
commands helps the user to quickly locate any desired function.

In addition, the upper-right corner of the Toolstrip contains the Quick Access
Toolbar, which is where you can customize the interface and display the most com-
monly used commands and functions at all times. To customize the functions dis-
played there, right-click on the toolbar and select the Customize option from the
popup menu.

1.3.4 The Command History Window

The Command History Window displays a list of the commands that a user has
previously entered in the Command Window. The list of commands can extend
back to previous executions of the program. Commands remain in the list until
they are deleted. To display the Command History Window, press the up arrow
key while typing in the Command Window. To reexecute any command, simply
double-click it with the left mouse button. To delete one or more commands from
the Command History Window, select the commands and right-click them with the
mouse. A popup menu will be displayed that allows the user to delete the items (see
Figure 1.4).

1.3.5 The Document Window

A Document Window (also called an Edit/Debug Window) is used to create new
M-files or to modify existing ones. An Edit/Debug Window is created automati-
cally when you create a new M-file or open an existing one. You can create a new



1.3 The MATLAB Environment | 9

| Current Folder @ | [ Editor - C:\Data\bookimatlab\6e\chap1\calc_area.m ® x|
[ | Name « [ clcaream %[ + |
1) ~$captt.docx ~1 le calculates the area of a circle, O
~fchapi.dock ‘ 2
1) ~$ig1-02.docx 3=
E] ~5ig1-04.docx 4 - area = pi * 2.5%2:
= calc_aream ‘5 = string = ['The area of the circle is ' num2str{area)]:
capl. docx =| 6-  disp(string):
chap1.docx i
&) dockpng
] fig1-01.doex |
@ fig1-01.png
] fig1-02 docx |
& fig1-02.png
1 fig1-02.docx
&) fig1-03 png ‘
] ig1-04.doc ‘ — - =
fig1-04.pn. “
215t one S \
] fig1-05 docx | 4l
sl fig1-05a.ng clec ‘
& fig1-05b.png | calc_area ‘
[8] fig1-05¢png | commandnistory
& fia1-05d ona bl T —
W cle
calc_area o i
cle Copy Ctr+C
Cleac Delete Delete =
Select a file to view details cLC Undo Delcte Gtz
area = pi * 2.5% -
Evaluate Selection F9
fx 5> calc area
ST - Create Script
calc_ared Create Live Script
- Create Favorite
Set Error Indicator

Figure 1.4 The Command History Window, showing three commands
being deleted.

M-file with the “New Script” command from the “File” group on the Toolstrip
(Figure 1.5a), or by clicking the New icon and selecting Script from the popup
menu (Figure 1.5b). You can open an existing M-file file with the Open command
from the “File” section on the Toolstrip.

An Edit/Debug Window displaying a simple M-file called calc_area.m
is shown in Figure 1.5. This file calculates the area of a circle given its radius
and displays the result. By default, the Edit Window is docked to the desktop, as
shown in Figure 1.5c. The Edit Window can also be undocked from the MATLAB
desktop. In that case, it appears within a container called the Documents Window,
as shown in Figure 1.5d. We will learn how to dock and undock a window later in
this chapter.

The Edit Window is essentially a programming text editor, with the MATLAB
language’s features highlighted in different colors. Comments in an M-file file appear
in green, variables and numbers appear in black, complete character strings appear in
magenta, incomplete character strings appear in red, and language keywords appear
in blue.

After an M-file is saved, it may be executed by typing its name in the Command
Window. For the M-file in Figure 1.5, the results are:

» calc_area
The area of the circle is 19.635

The Edit Window also doubles as a debugger, as we shall see in Chapter 2.



10 | Chapter | Introduction to MATLAB

HOME

Script Ctrl=N

< » 0

__Currer'!.ft Fuiﬁler

Live Script

il =

D Mame =
Live Function H

~$capt1.dog |
~fchap1.do
~$ig1-05.do Has
calc_area.m
Figure

captl.docx
L=l 3 21 v C» Data » book » matlab chap.docx

Current Folder @
D Mame &

>
[ Edil dock.png Ann

£ T Build MATLAE
K 1 fig1-01.docx : s
() (b)

ool [ @ & @) R

“omotn e wa by b |

EDTOR PUBLISH

=R 3 50| | » C b Data b book b matlab » 6e b chapl

 Current Folder ® E Editor - C:\Data\book\matlab\Ge\chap1\calc_area.m @ ?\ n
i ]
[~ % This m-file calculates the area of a circle,
% % and displays the result.
= radius = 2.5
b= area = pi * 2.5%2;
5= string = ['The area of the circle is ' num2scr(area)];
=|]86 - disp(string):
7
fig1-03.png
1] fig1-04 docx
fig1-04.png
fig1-05d.png -
B0 fin1-06 docx b
~ || Command Window @
.ﬁ_ >>

(©)



1.3 The MATLAB Environment | |1

% This m-file calculates the area of a circle,
% and displays the result.
radius = 2.5;

area = pi * 2.5"2;

string = ['The area of the circle is ' num2scr{area)];
disp(string):

(d)

Figure 1.5 (a) Creating a new M-file with the “New Script” command. (b) Creating
a new M-file with the “New >> Script” selection from the Toolbar. (c) The MATLAB
Editor, docked to the MATLAB desktop. (See color insert.) (d) The MATLAB Editor,
displayed as an independent window.

1.3.6 Figure Windows

A Figure Window is used to display MATLAB graphics. A figure can be a two- or
three-dimensional plot of data, an image, or a GUI. A simple script file that calculates
and plots the function sin x is as follows:

o\

sin x.m: This M-file calculates and plots the
function sin(x) for 0 <= x <= 6.

o\

x = 0:0.1:6
y = sin(x)
plot (x,v)

If this file is saved under the name sin_x.m, then a user can execute the file by typ-
ing “sin_x” in the Command Window. When this script file is executed, MATLAB
opens a figure window and plots the function sin x in it. The resulting plot is shown
in Figure 1.6.



12 | Chapter | Introduction to MATLAB

File Edit View Insert Tools Desktop Window Help

DOde||RRODEL- |2 |0HE 8O

1

0.8

06

04

021

0f

£0.2r

04

06

Figure 1.6 MATLAB plot of sin x versus x.

1.3.7 Docking and Undocking Windows

MATLAB windows such as the Command Window, the Edit/Debugging Window, and
Figure Windows can either be docked to the desktop, or they can be undocked. When
a window is docked, it appears as a pane within the MATLAB desktop. When it is
undocked, it appears as an independent window on the computer screen separate from
the desktop. When a window is docked to the desktop, it can be undocked by selecting
the small down arrow in the upper-right corner and selecting the “Undock™ option
from the popup menu (see Figure 1.7a). When a window is an independent window,
it can be docked to the desktop by selecting the small down arrow in the upper-right
corner and selecting the “Dock” option from the popup menu (see Figure 1.7b).

1.3.8 The MATLAB Workspace

A statement like
z = 10

creates a variable named z, stores the value 10 in it, and saves it in a part of computer
memory known as the workspace. A workspace is the collection of all the variables
and arrays that can be used by MATLAB when a particular command, M-file, or
function is executing. All commands executed in the Command Window (and all



1.3 The MATLAB Environment | 13

()N Search Documentation Pl Login

Show Code Analyzer Report
1 % This m-file calculates the area of a circle, Show Dependency Report
2 % and displays the result. —
3 - radius = 2.5; e
4 - area = pi * 2.5%2;
5= string = ['The area of the circle is ' num2str(area)l: # Undock Ctrl+Shift+U
6 - disp(string): TR
: 2
X Close

Show Code Analyzer Report

Show Dependency Report
~ Dock Editor Ctrl+Shift+D,
7 U calc_area.m

L % This m-file calculates the area of a circle, O

2 % and displays the result.

- o radius = 2.5;

o area = pi * 2.5"2;

- string = ['The area of the circle is ' num2Zstr(area)l:

= disp(string);

Figure 1.7 (a) Selecting the “Undock” option from the menu displayed after clicking the
small down arrow in the upper-right corner of a pane. (b) Selecting the “Dock’” option
after clicking the small down arrow in the upper-right corner of an undocked window.

script files executed from the Command Window) share a common workspace, so
they can all share variables. As we will see later, MATLAB functions differ from
script files in that each function has its own separate workspace.

A list of the variables and arrays in the current workspace can be generated with
the whos command. For example, after M-files calc_area and sin_x are exe-
cuted, the workspace contains the following variables.

» whos
Name Size Bytes Class Attributes
area 1x1 8 double
radius 1x1 8 double
string 1x32 64 char
X 1x61 488 double

v 1x61 488 double



14 | Chapter | Introduction to MATLAB

Script file calc _area created variables area, radius, and string, while
script file sin_x created variables x and y. Note that all of the variables are in the
same workspace, so if two script files are executed in succession, the second script
file can use variables created by the first script file.

The contents of any variable or array may be determined by typing the appro-
priate name in the Command Window. For example, the contents of string can be
found as follows:

» string
string =
The area of the circle is 19.635

A variable can be deleted from the workspace with the clear command. The
clear command takes the form

clear varl var2

where varl and var2 are the names of the variables to be deleted. The com-
mand clear variables or simply clear deletes all variables from the current
workspace.

1.3.9 The Workspace Browser

The contents of the current workspace can also be examined with a GUI-based
Workspace Browser. The Workspace Browser appears by default in the right side
of the desktop. It provides a graphic display of the same information as the whos
command, and it also shows the actual contents of each array if the information is
short enough to fit within the display area. The Workspace Browser is dynamically
updated whenever the contents of the workspace change.

A typical Workspace Browser window is shown in Figure 1.8. As you can see, it
displays the same information as the whos command. Double-clicking on any vari-
able in the window will bring up the Array Editor, which allows the user to modify
the information stored in the variable.

One or more variables may be deleted from the workspace by selecting them in
the Workspace Browser with the mouse and pressing the delete key, or by right-click-
ing with the mouse and selecting the delete option.

1.3.10 The Current Folder Browser

The Current Folder Browser is displayed on the upper-left side of the desktop. It
shows all the files in the currently selected folder, and allows the user to edit or exe-
cute any desired file. You can double-click on any M-file to open it in the MATLAB
editor, or you can right-click it and select “Run” to execute it. The Current Folder
Browser is shown in Figure 1.9. A toolbar above the browser is used to select the
current folder to display.



1.3 The MATLAB Environment | 15

Array Editor allows the Workspace Browser
user to edit any variable shows a list of the
or array selected in the variables defined
Workspace Browser in the workspace

VARIABLE

oo oo
[=ww) [} o
s o=
 Insert Delete ﬂl
.
| EDIT
matlab » e » chapl
Editor - calc_area.m
I Nagne + Value
EH 1x61 double rea 19,6350
jus 25000
1 o) 3 4 5 6 7 3 f
ring “The area of the circl...
[ 0.1000. 0.2000. 0.3000. 0.4000. 0.5000. 0.6000 o~ | BEx 161 double

Ix61 double

[ >

Figure 1.8 The Workspace Browser and Array Editor. The Array Editor
is invoked by double-clicking a variable in the Workspace Browser. It allows
you to change the values contained in a variable or array.

1.3.11 Getting Help

There are three ways to get help in MATLAB. The preferred method is to use the

Help Browser. The Help Browser can be started by selecting the icon from the
Toolstrip or by typing doc or helpwin in the Command Window. A user can get
help by browsing the MATLAB documentation, or he or she can search for the details
of a particular command. The Help Browser is shown in Figure 1.10.

There are also two command-line-oriented ways to get help. The first way is to
type help or help followed by a function name in the Command Window. If you
just type help, MATLAB will display a list of possible help topics in the Command
Window. If a specific function or a toolbox name is included, help will be provided
for that particular function or toolbox.

The second way to get help is the 1lookfor command. The lookfor com-
mand differs from the help command in that the help command searches for
an exact function name match, while the 1lookfor command searches the quick
summary information in each function for a match. This makes 1lookfor slower
than help, but it improves the chances of getting back useful information. For
example, suppose that you were looking for a function to take the inverse of a
matrix. Since MATLAB does not have a function named inverse, the command



16 | Chapter | Introduction to MATLAB

HOME PLOTS

urrent Folder
D MNarme =
ﬂ calc_area.m "~
capti.docx
chapi.docx ||
fig1-01.docx
@ fig1-01.png
fig1-02.docx
@ fig1-02.png
fig1-03.docx Selecting the
@ fig1-03.png current folder
fig1-04.docx

& fig1-04.png \
fig1-05.docx

@ fig1-05a.png
[&d| fig1-050.png
@ fig1-05¢c.png Current Folder
@ fig1-05d.png Browser
fig1-06.docx
@ fig1-06.png
fig1-07.docx
@ fig1-07a.png
fin1.N7h nnn

This m—file calct
and displays the

o disp(scXing);

B I T S e R o
|

/v | Command Window

Figure 1.9 The Current Folder Browser.

“help inverse” will produce nothing. On the other hand, the command “look -
for inverse” will produce the following results:

» lookfor inverse

ifft
ifft2
ifftn
ifftshift
acos
acosd
acosh
acot
acotd
acoth

- Inverse discrete Fourier transform.

- Two-dimensional inverse discrete Fourier transform.
- N-dimensional inverse discrete Fourier transform.
- Inverse FFT shift.

- Inverse cosine, result in radians.

- Inverse cosine, result in degrees.

- Inverse hyperbolic cosine.

- Inverse cotangent, result in radian.

- Inverse cotangent, result in degrees.

- Inverse hyperbolic cotangent.



1.3 The MATLAB Environment | 17

acsc - Inverse cosecant, result in radian.

acscd - Inverse cosecant, result in degrees.

acsch - Inverse hyperbolic cosecant.

asec - Inverse secant, result in radians.

asecd - Inverse secant, result in degrees.

asech - Inverse hyperbolic secant.

asin - Inverse sine, result in radians.

asind - Inverse sine, result in degrees.

asinh - Inverse hyperbolic sine.

atan - Inverse tangent, result in radians.

atan2 - Four quadrant inverse tangent.

atan2d - Four quadrant inverse tangent, result in degrees.

atand - Inverse tangent, result in degrees.

atanh - Inverse hyperbolic tangent.

invhilb - Inverse Hilbert matrix.

ipermute - Inverse permute array dimensions.

dramadah - Matrix of zeros and ones with large determinant
or inverse.

invhess - Inverse of an upper Hessenberg matrix.

inv - Matrix inverse.

pinv - Pseudoinverse.

From this list, we can see that the function of interest is named inv.

48 ke B || Langusge Fundamentsin 0 | MATLAR Fie ek Dl Topes 3¢ | 4 | HOg Ol
Documentation -
4 Dt it W (i) Confidential Preveloase — Subsjs i gt |
CMATLAB L

Language Fundamentals
Swfiog Steried el LATLAR Syrtxn, oparatons, data types. amwy indexing and manipulation
Language Fundamentals

73 o fox oy W [ - *
c e MATLAD i an abbiwviation for "matrx laboratory.” While other programming lasguages usually work with numbin one al & e, MATLAB® cpetate

o whole matrices and amays. Language hundamantals include basic cparations, such as creating vasiables, amary indexing, arithmetic, and data
Marices and Amays types
Operaiary and EMmentary Operalns Enring Commands
Data Trpas Buld and run MATLAS statements
Mamematcs Matrices and Arrays
Oraptec AdTay Creation, combining. Teshaping. reamanging. and indexing
Data Impoet and Anatysis Opetators and Elomentary Oporations.
Ficamming Aedpm i Puscions Askheratic, relational, and loghcal operstors. special charscters, munding. set functions
Ap Ruiding Dla Types
e —— Humeric amays, chasacters. and sirings. tables, structures, and cell amays; data type comersion
Daskiop Ervirenmant
Supporied Kistware s this tepic helpha? | Yoa | | e |
Esampies
Functan
Fesase o
POF Docunenuton

Figure 1.10 The Help Browser.



18 | Chapter | Introduction to MATLAB

1.3.12 A Few Important Commands

If you are new to MATLAB, a few demonstrations may help to give you a feel for its
capabilities. To run MATLAB’s built-in demonstrations, type demo in the Command
Window.

The contents of the Command Window can be cleared at any time using the c1c
command, and the contents of the current Figure Window can be cleared at any time
using the c1f command. The variables in the workspace can be cleared with the
clear command. As we have seen, the contents of the workspace persist between
the executions of separate commands and M-files, so it is possible for the results of
one problem to have an effect on the next one that you may attempt to solve. To avoid
this possibility, it is a good idea to issue the c1ear command at the start of each new
independent calculation.

Another important command is the abort command. If an M-file appears to
be running for too long, it may contain an infinite loop, and it will never terminate.
In this case, the user can regain control by typing control-c (abbreviated “c) in the
Command Window. This command is entered by holding down the control key while
typing a “c”. When MATLAB detects a “c, it interrupts the running program and
returns a command prompt.

There is also an auto-complete feature in MATLAB. If a user starts to type a
command and then presses the Tab key, a popup list of recently typed commands
and MATLAB functions that match the string will be displayed (see Figure 1.11).
The user can complete the command by selecting one of the items from the list.

calc binomial dist

calc prob

caldays
calendar
calendarDur
] callallopti
w callallCptimPl
= fr »= cal
v |
List of possible commands to
complete the string
Figure I.11 If you type a partial command and then hit the Tab key, MATLAB will

pop up a window of suggested commands or functions that match the string.



1.3 The MATLAB Environment | 19

The exclamation point (!) is another important special character. Its special
purpose is to send a command to the computer’s operating system. Any characters
after the exclamation point will be sent to the operating system and executed as
though they had been typed at the operating system’s command prompt. This fea-
ture lets you embed operating system commands directly into MATLAB programs.

Finally, it is possible to keep track of everything done during a MATLAB ses-
sion with the diary command. The form of this command is

diary filename

After this command is typed, a copy of all input and most output typed in the Com-
mand Window is echoed in the diary file. This is a great tool for re-creating events
when something goes wrong during a MATLAB session. The command “diary
of£” suspends input into the diary file, and the command “diary on” resumes
input again.

1.3.13 The MATLAB Search Path

MATLAB has a search path that it uses to find M-files. MATLAB’s M-files are orga-
nized in directories on your file system. Many of these directories of M-files are pro-
vided along with MATLAB, and users may add others. If a user enters a name at the
MATLAB prompt, the MATLAB interpreter attempts to find the name as follows:

1. It looks for the name as a variable. If it is a variable, MATLAB displays the
current contents of the variable.

2. It checks to see if the name is an M-file in the current directory. If it is,
MATLAB executes that function or command.

3. It checks to see if the name is an M-file in any directory in the search path.
If it is, MATLAB executes that function or command.

Note that MATLAB checks for variable names first, so if you define a variable
with the same name as a MATLAB function or command, that function or command
becomes inaccessible. This is a common mistake made by novice users.

[x]] Programming Pitfalls

Never use a variable with the same name as a MATLAB function or command. If you
do so, that function or command will become inaccessible.

Also, if there is more than one function or command with the same name, the
first one found on the search path will be executed, and all of the others will be
inaccessible. This is a common problem for novice users, as they sometimes create
M-files with the same names as standard MATLAB functions, making the standard
functions inaccessible.



20 | Chapter | Introduction to MATLAB

(x]| Programming Pitfalls

Never create an M-file with the same name as a MATLAB function or command.

MATLAB includes a special command (which) to help you find out just
which version of a file is being executed and where it is located. This can be
useful in finding filename conflicts. The format of this command is which
functionname, where functionname is the name of the function that you
are trying to locate. For example, the cross-product function cross.m can be
located as follows:

» which cross
C:\Program
Files\MATLAB\R2018a\toolbox\matlab\specfun\cross.m

The MATLAB search path can be examined and modified at any time by
selecting the “Set Path” tool from the Environment section of the Home tab on
the Toolstrip, or by typing pathtool in the Command Window. The Path Tool is
shown in Figure 1.12. It allows you to add, delete, or change the order of directories
in the path.

All changes take effect immediately.
: MATLAB search path:
H z z m .
z rogram Files\MATLAB\R2018altoolboximatlabldatafun
C:\Program Files\MATLAB\R2018altoolboximatiab\datatypes
C\Program Files\MATLAB\R2018aktoolboximatiabielfun
C\Program Files\MATLAB\R2018a%toolboximatiabielmat

C\Program Files\MATLAB\R2018aktoolboxdimatiabifunfun
C\Program Files\MATLAB\R2018a%toolboximatiabigeneral

Move to Top C\Program Files\MATLAB\R:2018a\toolboximatiabliofun

C\Program Files\MATLAB\R2018a%toolboximatiabilang

Mave Up | C\Program Files\MATLAB\R2018altoolboximatiabimatfun
C\Program Files\MATLAB\R2018atoolboximatiabimvm
C\Program Files\MATLAB\R2018a\toolboximatiablops
C:\Program Files\MATLAEI\RzmBa\toolboﬂmatlab\polyfun
C\Program Files\MATLAB\R2018a%toolboximatiabirandfun
C\Program Files\MATLAB\R2018a%toolboximatiabisparfun
C\Program Files\MATLAB\R2018atoolboximatiabispecfun

C\Program Files\MATLAB\R2018altoolboximatiabistriun
C\Program Files\MATLAB\R2018altoolboximatiabitimefun

[ Remoe ] |

Save | | Close | | Revert | | Default | |

Figure 1.12 The Path Tool.



1.4 Using MATLAB as a Calculator | 21

Other path-related functions include the following:

®m addpath Add directory to MATLAB search path.

® path Display MATLAB search path.

® savepath Save the entire current MATLAB path to pathdef .m.
® rmpath Remove directory from MATLAB search path.

1.4 Using MATLAB as a Calculator

In its simplest form, MATLAB can be used as a calculator to perform mathematical
calculations. The calculations to be performed are typed directly into the Command
Window, using the symbols +, -, *, /, and * for addition, subtraction, multiplication,
division, and exponentiation, respectively. After an expression is typed, the results of
the expression will be automatically calculated and displayed. If an equal sign is used
in the expression, then the result of the calculation is saved in the variable name to
the left of the equal sign.

For example, suppose that we would like to calculate the volume of a cylinder
of radius r and length /. The area of the circle at the base of the cylinder is given by
the equation

A = a7’ (1.2)
and the total volume of the cylinder will be
V=Al (1.3)

If the radius of the cylinder is 0.1 m and the length is 0.5 m, then the volume of
the cylinder can be found using the following MATLAB statements (user inputs are
shown in boldface):

» A = pi * 0.1"2

A =

0.0314
» V = A * 0.5
V =

0.0157

Note that pi is predefined to be the value 3.141592 ... .

When the first expression is typed, the area at the base of the cylinder is calcu-
lated, stored in variable A, and displayed to the user. When the second expression is
typed, the volume of the cylinder is calculated, stored in variable V, and displayed
to the user. Note that the value stored in A was saved by MATLAB and reused when
we calculated V.

If an expression without an equal sign is typed into the Command Window,
MATLAB will evaluate it, store the result in a special variable called ans, and
display the result.



22 | Chapter | Introduction to MATLAB

» 200 / 7
ans =
28.5714

The value in ans can be used in later calculations, but be careful! Every time a
new expression without an equal sign is evaluated, the value saved in ans will be
overwritten.

» ans * 6
ans =
171.4286

The value stored in ans is now 171.4286, not 28.5714.
If you want to save a calculated value and reuse it later, be sure to assign it to a
specific name instead of using the default name ans.

[x]] Programming Pitfalls

If you want to reuse the result of a calculation in MATLAB, be sure to include a vari-
able name to store the result. Otherwise, the result will be overwritten the next time
that you perform a calculation.

Predefined MATLAB functions can also be used in the calculations. A few com-
mon ones are given in Table 1.2. They can be combined with the basic addition,
subtraction, multiplication, division, and exponentiation to evaluate mathematical
equations.

Table 1.2: Selected MATLAB Functions

Function Description

Mathematical Functions

abs (x) Calculates the absolute value lxl.

acos (x) Calculates cos™'x (results in radians).

asin (x) Calculates sin~'x (results in radians).

atan (x) Calculates tan™'x (results in radians).

cos (x) Calculates cos x, with x in radians.

logl0 (x) Calculates the logarithm to the base 10 log,x.
sin(x) Calculates sin x, with x in radians.

sqgrt (x) Calculates the square root of x.

tan (x) Calculates tan x, with x in radians.




[.5 MATLAB Script Files | 23

For example, from basic trigonometry we know that the square root of the sine
of an angle squared plus the cosine of the angle squared will always add up to 1:

V/(sin 6) + (cos 6)? = 1 (1.4)

We can evaluate the expression \/(sin 6)2 + (cos 6)? for the case of = g:

» sqgrt( (sin(pi/2))”2 + (cos(pi/2))72 )
ans =
1

As expected, the result is 1.0.

1.5 MATLAB Script Files

In the previous examples in this chapter, we have executed MATLAB commands
by typing them directly into the Command Window and observing the results in
the Command Window. While this works, it is a very poor way to perform complex
calculations.

For example, suppose that an engineer wanted to make a series of calculations
where the results of some calculations depended on the values derived from previous
calculations. This could be done by typing each equation in by hand, but there are
three disadvantages to this approach:

m [f the calculation has to be performed more than once, the user would have
to reenter the entire set of equations each time with the appropriate input
data.

m [f an error occurs in entering the equations or data, the user would need to
retype everything from scratch.

® The manner in which the results are calculated is not saved, and so it would
not be easy to reconstruct exactly how a solution was arrived at.

A MATLAB script file is a much better solution for performing series of calcu-
lations and reusing those calculations later. A script file is a file containing a series of
MATLAB commands or equations, exactly as they would have been typed into the
Command Window. If the series of commands is saved in a file with the extension
“.m” (for example, test .m), and the filename without the extension is typed in the
Command Window (for example, test), then all of the commands in the file will
be executed one after another, with the results of all the commands displayed in the
Command Window. The series of commands in the file is the simplest example of a
MATLAB program.

Script files are also called M-files, because the filename has a file extension of “.m”.

When the lines of a script file are executed, the input values for the calculations
come from the MATLAB workspace, and the results of all the calculations are stored
in the MATLAB workspace. If a line in a script file is terminated by a semicolon,
the results calculated by that line are stored at the workspace but are not displayed



24 | Chapter | Introduction to MATLAB

in the Command Window. If there is no semicolon at the end of a line, the results
calculated by that line are both stored at the workspace and displayed in the Com-
mand Window.

In this section, we will introduce some very simple script files. We will learn
much, much more about them in later chapters.

1.5.1 Setting Up a Problem to Solve

Suppose that for a project we wanted to calculate the following values:

1. The area of the circle of radius r

2. The circumference of a circle of radius r
3. The volume of a sphere of radius r

4. The surface area of a sphere of radius r

We will write a single script file that calculates all four values for a given input
radius, and we will test the script using a radius of 5 m.

The required data for this project can be calculated from Equations (1.5) to (1.8).
The area of a circle is given by the equation

A = ar? (1.5)
The circumference of a circle is given by the equation

C =2mr (1.6)
The surface area of a sphere is given by the equation

A = 4mr? (1.7)

The volume of a sphere is given by the equation
4
V= 3 ar? (1.8)

Each of the preceding equations can be calculated on one line in a script file, where
the value r is predefined in the Workspace. When the program is executed, the four
values will be calculated.

1.5.2 Creating a Simple MATLAB Script File

The programmer creating this script would start by changing the current folder to the

desired location and then clicking on the “New Script” button (| ) on the Home
I
toolbar (see Figure 1.5a). This will create a blank Editor Window for a new script

called “Untitled” (see Figure 1.13a). The programmer would then assign the new

=
script a name and save it to disk by clicking the “Save” button (s ) on the Home
|

toolbar. Figure 1.13b shows the result after the user saves the script and assigns it the
name circle and sphere.m.



1.5 MATLAB Script Files | 25

4 Mame = Value

Gelect 3 file o view delails

(@)

drcle_and_sphere m -
Bg101 docx

#9101 phg
figt-02 docx
= ngi-o2ong
] 5103 docx 5
éww:nw
£21:04 dock
& #g104 png
9105 docx
Bar0Rapng
#g1:050 png
& fgtdbopng
= ngi-05d.ong
Pig1-06 docx
108,009
g1.07 docx
= tgt07apng B -

S

Tras m-fle calculates e aea of 3 orde,

(b)

Figure 1.13 (a) Creating a new script with the “New Script” command. (b) After
saving the new script with the name circle and_ sphere.m.



26 | Chapter | Introduction to MATLAB

Next, the user would type in the lines that evaluate the four equations. Note that any
line with a % character is a comment, which is not executed:

% Calculate the area and circumference of a circle
% if radius r, and the volume and surface area of a
% sphere of radius r

r =5

area circle = pi * r"2

circumference_circle = 2 * pi * r

volume sphere = 4 / 3 * pi * r"3
area sphere = 4 * pi * r"2

After the lines of the script are entered, save the file by clicking the “Save” button

(2), and click the “Run” button (ﬁ) to execute the script.

When the “Run” button is clicked, MATLAB types the name of the script into
the Command Window and executes it. The results of running the script are shown in
Figure 1.14. Note that all of the data calculated is stored in the Workspace. In addi-
tion, the outputs from the equations are displayed in the Command Window.

We will learn much more about script files in the rest of this book, including how
to format the output data for good understanding.

Mame = Value
{1 ares_circle 78.5390
of 8 ] area_sphere 3141503
i cicumienince o, 31.4150

e
| 1] vobume_sphess 5335988

8= cin teele = 2 ¢ py v

J= volume spheze m 4/ 3 * pic z°3
8= azea_sphere ® 4 ¢ pi ¢ 2

{ i} P |

?mmm " g e All data now in
) ag1.05.00cx >3 circie_snd_sphere
_3}.“05, i ares_cizele = workspace
S ng1-050.png 78,5390
| fg105epag circumference circle =
& Batvd oo v 31.4160

w || volume_sphere =

| 523.5588
azea_spheze =
314.1%83
So o
Results printed in

Command Window

Salect 3 file b vew delalls

I — ind a1

Figure 1.14 After execution, the data is saved in the Workspace, and the results
are printed in the Command Window.



I.5 MATLAB Script Files | 27

This quiz provides a quick check to see if you have understood the concepts
introduced in Chapter 1. If you have trouble with the quiz, reread the sections,
ask your instructor for help, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

I.

2.
3.

What is the purpose of the MATLAB Command Window? The Edit Win-
dow? The Figure Window?

List the different ways that you get help in MATLAB.

What is a workspace? How can you determine what is stored in a MATLAB
Workspace?

How can you clear the contents of a Workspace?

The distance traveled by a ball falling in the air is given by the equation

— 1 2
x—x0+v0t+5at

Use MATLARB to calculate the position of the ball at time 7 = 5 s if X ) = 10 m,
v, = 15m/s,anda = —9.81 m/s.
Suppose that x = 3 and y = 4. Use MATLAB to evaluate the following
expression:
x2y3

(=)
The following questions are intended to help you become familiar with
MATLAB tools.
Execute the M-files calc_area.mand sin_x.min the Command Win-
dow (these M-files are available from the book’s website). Then use the
Workspace Browser to determine what variables are defined in the current
Workspace.

. Load the M-files calc_area.m and sin_x.m into the MATLAB Edi-

tor Window, and then execute them from the MATLAB desktop using the
>4
“Run” button (*). Then use the Workspace Browser to determine what

variables are defined in the current Workspace. How does the output from
the script files compare when the files are run directly in the Command Win-
dow versus when they are run from the MATLAB desktop?

. Use the Array Editor to examine and modify some of the values in

variable x in the Workspace. Then type the command plot (x,y) in
the Command Window. What happens to the data displayed in the Figure
Window?



28 | Chapter | Introduction to MATLAB

1.6 Summary

In this chapter, we learned about the MATLAB integrated development environment
(IDE). We learned about basic types of MATLAB windows, the workspace, and how
to get help. The MATLAB desktop appears when the program is started. It integrates
many of the MATLAB tools in a single location. These tools include the Command
Window, the Command History Window, the Toolstrip, the Document Window, the
Workspace Browser, and Array Editor, and the Current Folder viewer. The Command
Window is the most important of the windows. It is the one in which all commands
are typed and results are displayed.

The Document Window (or Edit/Debug Window) is used to create or modify
M-files. It displays the contents of the M-file with the contents of the file color-coded
according to function: comments, keywords, strings, and so forth.

The Figure Window is used to display graphics.

A MATLAB user can get help by either using the Help Browser or the com-
mand-line help functions help and lookfor. The Help Browser allows full
access to the entire MATLAB documentation set. The command-line function help
displays help about a specific function in the Command Window. Unfortunately,
you must know the name of the function in order to get help with it. The function
lookfor searches for a given string in the first comment line of every MATLAB
function and displays any matches.

When you type a command in the Command Window, MATLAB searches for
that command in the directories specified in the MATLAB path. It will execute the
first M-file in the path that matches the command, and any further M-files with the
same name will never be found. The Path Tool can be used to add, delete, or modify
directories in the MATLAB path.

MATLAB can be used as a simple calculator to evaluate expressions typed in
the Command Window. In addition, it can be used to execute script files, which are a
series of MATLAB expressions stored in a text file (an M-file) and executed in order
when the name of the file is typed into the Command Window.

1.6. MATLAB Summary

The following summary lists all of the MATLAB special symbols, commands, and
functions described in this chapter, along with a brief description of each one.

Special Symbols

+ Addition

- Subtraction

* Multiplication
/ Division

Exponentiation




I.7 Exercises | 29

Commands and Functions

addpath Add a directory to the MATLAB search path.

clc

Clear the contents of the Command Window.

clear Clear the contents of the specified variables in the workspace. If no

variables are specified, clear the entire workspace.

clf Clear the contents of the current Figure Window.

diary Echo the contents in the Command Window to a diary file for perma-
nent recording.

doc Display help for a function in the MATLAB Help Window. If no
function is specified, display the initial page of the MATLAB Help
Window.

help Print help documentation for a MATLAB function to the Command
Window.

helpwin Display the MATLAB Help Window.

lookfor Search through the MATLAB path for files whose description con-
tains the specified word.

pathtool Display a GUI containing the current MATLAB path.

path Display the MATLAB search path in the Command Window.

rmpath Remove a directory to the MATLAB search path.

savepath Save the entire current MATLAB path to file pathdef . m.

which Show the location of the first file in the MATLAB path that has the
specified name.

whos List the variables currently defined in the MATLAB workspace,

together with their sizes and types.

|.7 Exercises

The following MATLAB statements plot the function y(x) = 4e % for the
range 0 = x = 10.

X = 0:0.1:10;
y =4 * exp( -0.3 * x);
plot(x,vy);

Use the MATLAB Edit/Debug Window to create a new empty script, type
these statements into the script, and save the file with the name testl.m.
Then, execute the program by typing the name test1 in the Command Win-
dow or clicking the “Run” button. What result do you get?

Get help on the MATLAB function exp using: (a) the “help exp” command
typed in the Command Window, (b) “doc exp” to display the help for exp
directly in the Help Browser, and (c) the helpwin command to open the Help
Browser and look up the exp command from there.

Use the 1ookfor command to determine how to take the base-10 logarithm of
a number in MATLAB.



30 | Chapter | Introduction to MATLAB

1.4

Calculate the results of the following expressions using the MATLAB Command
Window:

1 3 -3
(a) §+57T—1
(b) 27 — 7%3
()l-l-l-}—l-l-l-i-l
c T T T
2 2 33 24

Suppose that u = 1 and v = 3. Evaluate the following expressions using the
MATLAB Command Window:

du
@ 5

2y
(u +v)?

(b)

V3

© 5

(d)i 2
37TV

(e uVv+1

+
® tog 4]

Evaluate the expressions in Exercise 1.5 by creating a single script file that
calculates and displays all six results. Execute the script file and observe
the results.

Suppose that x = 2 and y = —1. Evaluate the following expressions using
MATLAB.
(a) V2x
(b) V2y°
Note that MATLAB evaluates expressions with complex or imaginary answers
transparently.
The equation of an ellipse centered at the origin is
x2 y2

where a and b are distances from the center along the x and y axes, respectively.
The area of this ellipse can be calculated from the equation

A = mab (1.10)

Use MATLAB as a calculator to calculate the area of an ellipse with @ = 5 and
b = 10.



I.7 Exercises | 31

X

LN
N

Figure 1.15 An ellipse centered at the origin (0, 0).

1.9

1.10

1.12

The circumference (perimeter) of an ellipse like the one defined in Figure 1.15
can be approximated by calculating an intermediate parameter /:

_(a— by

= G (1.11)

The approximate circumference can be found from a, b, and £ as:

3h
C=m(a+ b)(l + 04 m) (1.12)
Create a script file that defines @ and b, calculates 4, and then calculates the
final circumference. Assume that a and b are the same values as in the previous
exercise.

Modify the script file circle and sphere.m created in Section 1.5.2 by
removing the line r = 5, and save the script file with a new name. After this
change, the script will only work if r is predefined in the Workspace before the
script is executed. If r is set to a different value before the script is executed, then
the calculations will be performed for a different radius. Take advantage of this
fact to calculate the four circle and sphere parameters for radii of 1, 5, 10, and 20.
Type the following MATLAB statements into the Command Window:

4 * 5

a ans * pi
b ans / pi
ans

What are the results in a, b, and ans? What is the final value saved in ans?
Why was that value retained during the subsequent calculations?

Use the MATLAB Help Browser to find the command required to show
MATLAB’s current directory. What is the current directory when MATLAB
starts up?



32 | Chapter | Introduction to MATLAB

1.13

1.14

Use the MATLAB Help Browser to find out how to create a new directory from
within MATLAB. Then, create a new directory called mynewdir under the
current directory. Add the new directory to the top of MATLAB’s path.

Change the current directory to mynewdir. Then open an Edit/Debug Window
and add the following lines:

% Create an input array from -2*pi to 2*pi
= -2%pi:pi/10:2%pi;

o+

o°

Calculate |sin(t) |
= abs(sin(t));

X

% Plot result
plot (t,x) ;

Save the file with the name test2 .m, and execute it by typing test2 in the
Command Window. What happens?

Close the Figure Window, and change back to the original directory that
MATLAB started up in. Next, type “test2” in the Command Window. What
happens, and why?



Chapter

MATLAB Basics

In this chapter, we will introduce some basic elements of the MATLAB language.
By the end of the chapter, you will be able to write simple but functional MATLAB
programs.

2.1 Variables and Arrays

The fundamental unit of data in any MATLAB program is the array. An array is a
collection of data values organized into rows and columns and known by a single
name. Individual data values within an array are accessed by including the name of
the array followed by subscripts in parentheses that identify the row and column of
the particular value. Even scalars are treated as arrays by MATLAB—they are simply
arrays with only one row and one column (see Figure 2.1).

Arrays can be classified as either vectors or matrices. The term “vector”
is usually used to describe an array with only one dimension, while the term
“matrix” is usually used to describe an array with two or more dimensions. In
this text, we will use the term “vector” when discussing one-dimensional arrays,
and the term “matrix” when discussing arrays with two or more dimensions. If
a particular discussion applies to both types of arrays, we will use the generic
term “array.”

The size of an array is specified by the number of rows and the number of col-
umns in the array, with the number of rows mentioned first. The total number of
elements in the array will be the product of the number of rows and the number of
columns. For example, here are some arrays and sizes.

33



34 | Chapter 2 MATLAB Basics

Array Size
1 This is a 3 X 2 matrix containing
a=|3 4 6 elements.
5
b=[1 2 3 4] This is a 1 X 4 array containing 4 elements; it is
known as a row vector.
l . . .. . .
c=|2 This is a3 X 1 array containing 3 elements; it is
- 5 known as a column vector.

Individual elements in an array are addressed by the array name followed by the
row and column of the particular element. If the array is a row or column vector, then
only one subscript is required. For example, in the preceding arrays, a (2, 1) is 3 and
c(2) is2.

A MATLAB variable is a region of memory containing an array; the array is
known by a user-specified name. The contents of the array may be used or modified
at any time by including its name in an appropriate MATLAB command.

MATLAB variable names must begin with a letter, followed by any combination
of letters, numbers, and the underscore (_) character. Only the first 63 characters are
significant; if more than 63 are used, the remaining characters will be ignored. If two
variables are declared with names that only differ in the 64th character, MATLAB
will treat them as the same variable. MATLAB will issue a warning if it has to trun-
cate a long variable name to 63 characters.

Row | —P»

Row 2 —P

Row 3 —p

Row 4 — P

rr 1

Coll Col2 Col3 Cold (Cols
Array arr

Figure 2.1 An array is a collection of data values organized into rows and columns.



2.1 Variables and Arrays | 35

[x]| Programming Pitfalls

Make sure that your variable names are unique in the first 63 characters. Otherwise,
MATLAB will not be able to tell the difference between them.

When writing a program, it is important to pick meaningful names for the
variables. Meaningful names make a program much easier to read and to maintain.
Names such as day, month, and year are clear even to a person seeing a pro-
gram for the first time. Since spaces cannot be used in MATLAB variable names,
underscore characters can be substituted to create meaningful names. For example,
exchange rate might become exchange rate.

- Good Programming Practice

Always give your variables descriptive and easy-to-remember names. For example, a
currency exchange rate could be given the name exchange rate. This practice
will make your programs clearer and easier to understand.

i

It is also important to include a data dictionary in the header of any program
that you write. A data dictionary lists the definition each variable used in a program.
The definition should include both a description of the contents of the item and the
units in which it is measured. A data dictionary may seem unnecessary while the
program is being written, but it is invaluable when you or another person have to go
back and modify the program at a later time.

- Good Programming Practice

Create a data dictionary for each program to make program maintenance easier.
W

The MATLAB language is case sensitive, which means that uppercase and low-
ercase letters are not the same. Thus the variables name, NAME, and Name are all
different in MATLAB. You must be careful to use the same capitalization every time
that variable name is used.

- Good Programming Practice

Be sure to capitalize a variable exactly the same way each time that it is used. It is
good practice to use only lowercase letters in variable names.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000



36 | Chapter 2 MATLAB Basics

Many MATLAB programmers use the convention that variable names use all
lowercase letters, with underscores between words. The variable exchange rate
mentioned previously is an example of this convention. It is used in this book.

Other MATLAB programmers use the convention common in Java and C++,
where underscores are not used, the first word is all lowercase, and all subsequent
words are capitalized. The same variable written in this convention would be
exchangeRate. This convention is known as “Camel Case.” Either convention is
fine, but be consistent throughout your programs.

- Bl Good Programming Practice

Adopt a standard naming and capitalization convention, and use it consistently
throughout your programs.

i

The most common types of MATLAB variables are double and char. Vari-
ables of type double consist of scalars or arrays of 64-bit double-precision float-
ing-point numbers. They can hold real, imaginary, or complex values. The real and
imaginary components of each variable can be positive or negative numbers in the
range 1073% to 10°%, with 15 to 16 significant decimal digits of accuracy. They are
the principal numerical data type in MATLAB.

A variable of type double is automatically created whenever a numerical value
is assigned to a variable name. The numerical values assigned to double variables
can be real, imaginary, or complex. A real value is just a number. For example, the
following statement assigns the real value 10.5 to the double variable var:

var = 10.5

An imaginary number is defined by appending the letter 1 or j to a number.! For
example, 101 and -4 7 are both imaginary values. The following statement assigns
the imaginary value 4i to the double variable var:

var = 41

A complex value has both a real and an imaginary component. It is created by add-
ing a real and an imaginary number together. For example, the following statement
assigns the complex value 10 + 10i to variable var:

var = 10 + 101

Variables of type char consist of scalars or arrays of 16-bit values, each rep-
resenting a single character. Arrays of this type are called character arrays. They
are automatically created whenever a single character or a string of characters is
assigned to a variable name. For example, the following statement creates a variable
of type char whose name is comment, and stores the specified string in it. After the
statement is executed, comment will be a 1 X 26 character array.

comment = 'This is a character string'

'An imaginary number is a number multiplied by \V —1. The letter i is the symbol for V' —1 used by most
mathematicians and scientists. The letter j is the symbol for V' —1 used by electrical engineers, because
the letter i is usually reserved for currents in that discipline.



2.2 Creating and Initializing Variables in MATLAB | 37

In a language such as C, the type of every variable must be explicitly declared
in a program before it is used. These languages are said to be strongly typed. In
contrast, MATLAB is a weakly typed language. Variables may be created at any
time by simply assigning values to them, and the type of data assigned to the variable
determines the type of variable that is created.

2.2 Creating and Initializing Variables in MATLAB

MATLAB variables are automatically created when they are initialized. There are
three common ways to initialize a variable in MATLAB:

1. Assign data to the variable in an assignment statement.
2. Input data into the variable from the keyboard.
3. Read data from a file.

The first two ways will be discussed here, and the third approach will be discussed
in Section 2.6.

2.2.1 Initializing Variables in Assignment Statements

The simplest way to initialize a variable is to assign it one or more values in an
assignment statement. An assignment statement has the general form

var = expression;

where var is the name of a variable, and expression is a scalar constant, an
array, or a combination of constants, other variables, and mathematical operations
(+, —, etc.). The value of the expression is calculated using the normal rules of math-
ematics, and the resulting values are stored in named variables. The semicolon at the
end of the statement is optional. If the semicolon is absent, the value assigned to var
will be echoed in the Command Window. If it is present, nothing will be displayed in
the Command Window even though the assignment has occurred.
Simple examples of initializing variables with assignment statements include

var = 401;

var2 = var / 5;
x=1; v =2;
array = [1 2 3 4];

The first example creates a scalar variable of type double and stores the imaginary
number 40i in it. The second example creates a scalar variable and stores the result
of the expression var/5 in it. The third example creates a variable and stores a 4-
element row vector in it. The third example shows that multiple assignment state-
ments can be placed on a single line, provided that they are separated by semicolons.
Note that if any of the variables had already existed when the statements were exe-
cuted, then their old contents would have been lost.

The last example shows that variables can also be initialized with arrays of data.
Such arrays are constructed using brackets ([ ]) and semicolons. All of the elements
of an array are listed in row order. In other words, the values in each row are listed
from left to right, with the topmost row first and the bottommost row last. Individual



38 | Chapter 2 MATLAB Basics

values within a row are separated by blank spaces or commas, and the rows them-
selves are separated by semicolons or new lines. The following expressions are all
legal arrays that can be used to initialize a variable:

[3.4]

[1.0 2.0 3.0]

This expression creates a 1 X 1 array (a scalar) containing the value 3.4.
The brackets are not required in this case.

This expression creates a 1 X 3 array containing the row vector

[1 2 3]
.
[1.0; 2.0; 3.0] This expression creates a 3 X 1 array containing the column vector | 2
3
1 3]
[1, 2, 3; 4, 5, 6] This expression creates a 2 X 3 array containing the matrix [4 6l
1 3]
[1, 2, 3 This expression creates a 2 X 3 array containing the matrix [4 s 6l
4, 5, 6] The end of the first line terminates the first row.

This expression creates an empty array, which contains no rows and no
columns. (Note that this is not the same as an array containing zeros.)

The number of elements in every row of an array must be the same, and the number
of elements in every column must be the same. An expression such as

[1 2 3; 4 5];

is illegal because row 1 has three elements while row 2 has only two elements.

[x)| Programming Pitfalls

The number of elements in every row of an array must be the same, and the number
of elements in every column must be the same. Attempts to define an array with
different numbers of elements in its rows or different numbers of elements in its
columns will produce an error when the statement is executed.

The expressions used to initialize arrays can include algebraic operations and
all or portions of previously defined arrays. For example, the assignment statements

a [0 1+7];
b = [a(2) 7 al;

will define anarraya = [0 8 ] andanarrayb=[8 7 0 8 1.



2.2 Creating and Initializing Variables in MATLAB | 39

Also, not all of the elements in an array must be defined when it is created. If a
specific array element is defined and one or more of the elements before it are not,
then the earlier elements will automatically be created and initialized to zero. For
example, if ¢ is not previously defined, the statement

c(2,3) = 5;
0

0
specifying a value for an element beyond the currently defined size. For example,
suppose that array d = [1 2]. Then the statement

0 0
will produce the matrix ¢ = [0 5}. Similarly, an array can be extended by

d(4) = 4;

will produce the arrayd = [1 2 0 4].

The semicolon at the end of each assignment statement shown has a special pur-
pose: it suppresses the automatic echoing of values that normally occurs whenever
an expression is evaluated in an assignment statement. If an assignment statement is
typed without the semicolon, the result of the statement is automatically displayed in
the Command Window:

» e = [1, 2, 3; 4, 5, 6]
e =

1 2 3

4 5 6

If a semicolon is added at the end of the statement, the echoing disappears. Echoing
is an excellent way to quickly check your work, but it seriously slows down the exe-
cution of MATLAB programs. For that reason, we normally suppress echoing at all
times by ending each line with a semicolon.

However, echoing the results of calculations makes a great quick-and-dirty
debugging tool. If you are not certain what the results of a specific assignment state-
ment are, just leave off the semicolon from that statement and the results will be
displayed in the Command Window as the statement is executed.

- Good Programming Practice

Use a semicolon at the end of all MATLAB assignment statements to suppress
echoing of assigned values in the Command Window. This greatly speeds program
execution.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000

- Good Programming Practice

If you need to examine the results of a statement during program debugging, you
may remove the semicolon from that statement only so that its results are echoed in
the Command Window.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000



40 | Chapter 2 MATLAB Basics

2.2.2 Initializing with Shortcut Expressions

It is easy to create small arrays by explicitly listing each term in the array, but what
happens when the array contains hundreds or even thousands of elements? It is not
practical to write out each element in the array separately.

MATLAB provides a special shortcut notation for these circumstances using the
colon operator. The colon operator specifies a whole series of values by specifying
the first value in the series, the stepping increment, and the last value in the series.
The general form of a colon operator is

first:incr:last

where £ irst is the first value in the series, incr is the stepping increment, and 1ast is
the last value in the series. If the increment is one, it may be omitted. This expression will
generate an array containing the values first, first+incr, first+2*incr,
first+3*incr, and so forth as long as the values are less than or equal to 1ast. The
list stops when the next value in the series is greater than the value of last.

For example, the expression 1:2:10 is a shortcut for a 1 X 5 row vector contain-
ing the values 1, 3, 5, 7, and 9. The next value in the series would be 11, which is
greater than 10, so the series terminates at 9.

» x = 1:2:10

X =
1 3 5 7 9
. . P T 2w
With colon notation, an array can be initialized to have the hundred values -~ -
3
%, ..., m as follows:

angles = (0.01:0.01:1.00) * pi;

Shortcut expressions can be combined with the transpose operator (') to ini-
tialize column vectors and more complex matrices. The transpose operator swaps the
row and columns of any array that it is applied to. Thus the expression

f = [1:4]1"';

generates a 4-element row vector [1 2 3 4] and then transposes it into the

2 .
4-element column vector f = 5 | Similarly, the expressions
4
g = 1:4;
h = [g' g'];

will produce the matrix h =

N TCR R
AW N R



2.2 Creating and Initializing Variables in MATLAB | 41

2.2.3 Initializing with Built-In Functions

Arrays can also be initialized using built-in MATLAB functions. For example, the
function zeros can be used to create an all-zero array of any desired size. There are
several forms of the zeros function. If the function has a single scalar argument,
it will produce a square array using the single argument as both the number of rows
and the number of columns. If the function has two scalar arguments, the first argu-
ment will be the number of rows, and the second argument will be the number of
columns. Since the size function returns two values containing the number of rows
and columns in an array, it can be combined with the zeros function to generate an
array of zeros that is the same size as another array. Some examples using the zeros
function follow:

zeros (2) ;
zeros (2, 3)

= [1 2; 3 4]
zeros (size

I

Q0 oo
]

(c));

These statements generate the following arrays:
0 O 0O 0 O
a = b
{o o} [o 0 o}
1 2
c =
3 4

Similarly, the ones function can be used to generate arrays containing all ones,
and the eye function can be used to generate arrays containing identity matrices,
in which all on-diagonal elements are one, while all off-diagonal elements are zero.
Table 2.1 contains a list of common MATLAB functions useful for initializing
variables.

Q.
I
I
o o
o o
[

2.2.4 Initializing Variables with Keyboard Input

It is also possible to prompt a user and initialize a variable with data that he or she
types directly at the keyboard. This option allows a script file to prompt a user for
input data values while it is executing. The input function displays a prompt string
in the Command Window and then waits for the user to type in a response. For exam-
ple, consider the following statement:

my val = input ('Enter an input value:');

When this statement is executed, MATLAB prints out the string ' Enter an input
value:', and then waits for the user to respond. If the user enters a single number,
it may just be typed in. If the user enters an array, it must be enclosed in brackets. In
either case, whatever is typed will be stored in variable my val when the return key
is entered. If only the return key is entered, then an empty matrix will be created and
stored in the variable.



42 | Chapter 2 MATLAB Basics

Table 2.1: MATLAB Functions Useful for Initializing Variables

Function Purpose

zeros (n) Generates ann x 1 matrix of zeros.

zeros (m, n) Generates an m x 1 matrix of zeros.

zeros (size (arr)) Generates a matrix of zeros of the same size as arr.

ones (n) Generates ann x n matrix of ones.

ones (m,n) Generates anm x 1n matrix of ones.

ones (size(arr)) Generates a matrix of ones of the same size as arr

eye (n) Generates an n x n identity matrix.

eye (m,n) Generates anm x n identity matrix.

length(arr) Returns the length of a vector, or the longest dimension of a two-dimensional
array.

numel (arr) Returns the total number of elements in an array, which is the product of the

number of rows times the number of columns.

size(arr) Returns two values specifying the number of rows and columns in arr.

If the input function includes the character 's' as a second argument,
then the input data is returned to the user as a character array. Thus, the statement

» inl = input('Enter data: ');
Enter data: 1.23

stores the numeric value 1.23 into in1, while the statement

» in2 = input('Enter data: ','s');
Enter data: 1.23

stores the character array '1.23 "' into in2.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 2.1 and 2.2. If you have trouble with the quiz,
reread the sections, ask your instructor for help, or discuss the material
with a fellow student. The answers to this quiz are found in the back of
the book.

1. What is the difference between an array, a matrix, and a vector?
2. Answer the following questions for the array shown below.

1.1 -3.2 3.4 0.6
c =10.6 1.1 -0.6 3.1
1.3 0.6 5.5 0.0



2.3 Multidimensional Arrays | 43

(a) What is the size of c?

(b) What is the value of c (2, 3) ?

(c) List the subscripts of all elements containing the value 0.6.
(d) What is the result of numel (c) ?

3. Determine the size of the following arrays. Check your answers by entering
the arrays into MATLAB and using the whos command or the Workspace
Browser. Note that the later arrays may depend on the definitions of arrays
defined earlier in this exercise.

(@ u = [10 20*1 10+20];

(b) v [-1; 20; 31;
©)w=[10-9; 2 -2 0; 12 3];

(d x = [u' v];

(e) y(3,3) = -7;

(f) z = [zeros(4,1) ones(4,1) zeros(l,4)']l;
(@ v(4) = x(2,1);

4. What is the value of w (2, 1) after the lines in item 3 have been
entered?

5. What is the value of x (2, 1) after the lines in item 3 have been
entered?

6. What is the value of y (2, 1) after the lines in item 3 have been entered?

7. What is the value of v (3) after statement (g) is executed?

2.3 Multidimensional Arrays

As wehave seen, MATLAB arrays can have one or more dimensions. One-dimensional
arrays can be visualized as a series of values laid out in a row or column, with a single
subscript used to select the individual array elements (Figure 2.2a). Such arrays are
useful to describe data that is a function of one independent variable, such as a series
of temperature measurements made at fixed intervals of time.

Some types of data are functions of more than one independent variable. For
example, we might wish to measure the temperature at five different locations at
four different times. In this case, our 20 measurements could logically be grouped
into five different columns of four measurements each, with a separate column for
each location (Figure 2.2b). In this case, we will use two subscripts to access a given
element in the array: the first one to select the row and the second one to select the
column. Such arrays are called two-dimensional arrays. The number of elements in
a two-dimensional array will be the product of the number of rows and the number
of columns in the array.

MATLAB allows us to create arrays with as many dimensions as necessary for
any given problem. These arrays have one subscript for each dimension, and an indi-
vidual element is selected by specifying a value for each subscript. The total number



44 | Chapter 2 MATLAB Basics

Row | —p Row 1| —p
Row 2 —p Row 2 —Pp
Row 3 —p Row 3 —Pp
Row 4 —p Row 4 —p
T Col4 €13
Col 3
Col 2
Col 1
al (irow) a2 (irow,icol)
(a) (b)
One-Dimensional Array Two-Dimensional Array

Figure 2.2 Representations of one- and two-dimensional arrays.

of elements in the array will be the product of the maximum value of each subscript.
For example, the following two statements create a 2 X 3 X 2 array c:

» c(:,:,1)=[1 2 3; 4 5 6];
» c(:,:,2)=[7 8 9; 10 11 12];
» whos c¢

Name Size Bytes Class Attributes
c 2x3x2 96 double

This array contains 12 elements (2 X 3 X 2). Its contents can be displayed just like
any other array.

» C
c(:,:,1) =
1 2 3
4 5 6
c(:,:,2) =
7 8 9

Note that the size function of this array would return three values representing
lengths of the array in each dimension:

» size(c)
ans =
2 3 2



2.3 Multidimensional Arrays | 45

and the numel function would return the total number of elements in the array:

» numel (c)
ans =
12

2.3.1 Storing Multidimensional Arrays in Memory

A two-dimensional array with m rows and n columns will contain m x n elements,
and these elements will occupy m x n successive locations in the computer’s memory.
How are the elements of the array arranged in the computer’s memory? MATLAB
always allocates array elements in column major order. That is, MATLAB allo-
cates the first column in memory, then the second, then the third, and so forth until
all of the columns have been allocated. Figure 2.3 illustrates this memory allocation
scheme for a 4 X 3 array a. As we can see, element a (1, 2) is really the fifth ele-
ment allocated in memory. The order in which elements are allocated in memory will
become important when we discuss single-subscript addressing in the next section,
and low-level input-output (I/O) functions in Chapter 8.

1 2 3 .
4 | 5| 6 )
1 a(l,1)
7 8 9
4 a(2,1)
10| 11| 12 [
10 a(4,1)
(a) 2 a(l,2)
5 a(2,2)
Arrangement
in Computer 8 a(3,2)
Memory
11 a(4,2)
3 a(l,3)
6 a(2,3)
9 a(3,3)
12 a(4,3)
(b)

Figure 2.3 (a) Data values for array a. (b) Layout of values in memory for array a.



46 | Chapter 2 MATLAB Basics

This same allocation scheme applies to arrays with more than two dimensions.
The first array subscript is incremented most rapidly, the second subscript is incre-
mented less rapidly, and so forth, and the last subscript is incremented most slowly.
For example, in a2 X 2 X 2 array, the elements would be allocated in the following
order: (1,1, 1), (2,1, 1), (1,2, 1), (2,2, 1), (1, 1,2), (2, 1, 2), (1, 2, 2), (2, 2, 2).2

2.3.2 Accessing Multidimensional Arrays with One Dimension

One of MATLAB'’s peculiarities is that it will permit a user or programmer to treat
a multidimensional array as though it were a one-dimensional array whose length is
equal to the number of elements in the multidimensional array. If a multidimensional
array is addressed with a single dimension, then the elements will be accessed in the
order in which they were allocated in memory.

For example, suppose that we declare the 4 X 3 element array a as follows:

»a=[123; 456; 78 9; 10 11 12]

a =
1 2 3
4 5 6
7 8 9
10 11 12

Then the value of a (5) will be 2, which is the value of element a (1, 2), because
a(1,2) was allocated fifth in memory.

Under normal circumstances, you should never use this feature of MATLAB.
Addressing multidimensional arrays with a single subscript is a recipe for confusion.

- Good Programming Practice

Always use the proper number of dimensions when addressing a multidimensional
array.

W

2.4 Subarrays

It is possible to select and use subsets of MATLAB arrays as though they were sep-
arate arrays. To select a portion of an array, just include a list of all of the elements
to be selected in the parentheses after the array name. For example, suppose array
arrl is defined as follows:

arrl = [1.1 -2.2 3.3 -4.4 5.5];

2This is the same memory allocation scheme used by Fortran, which MATLAB was originally modeled on.
By contrast, C++ and Java use a row major memory allocation scheme, where the data in the first row is
allocated first, then all the data in the second row, and so on.



2.4 Subarrays | 47

Then arrl (3) isjust 3, arrl ([1 4]) isthearray [1.1 -4.4], and arrl
(1:2:5) isthearray [1.1 3.3 5.5].

For a two-dimensional array, a colon can be used in a subscript to select all of
the values of that subscript. For example, suppose

arr2 = [1 2 3; -2 -3 -4; 3 4 5];

1 2 3
This statement would create an array arr2 containing the values | —2  —3  —4
3 4 5

With this definition, the subarray arr2 (1, : ) wouldbe [1 2 3], and the subarray

1 3
arr2(:,1:2:3) wouldbe |—2 —4
3 5

2.4.1 The end Function

MATLAB includes a special function named end that is very useful for creating array
subscripts. When used in an array subscript, end returns the highest value taken on
by that subscript. For example, suppose that array arr3 is defined as follows:

arr3 = [1 2 3 4 5 6 7 8];

Then arr3 (5:end) would be the array [5 6 7 8], and array (end) would
be the value 8.

The value returned by end is always the highest value of a given subscript. If
end appears in different subscripts, it can return different values within the same
expression. For example, suppose that the 3 X 4 array arr4 is defined as follows:

arrd = [1 2 3 4; 56 7 8; 9 10 11 12];

. 6 7 8
Then the expression arr4 (2 :end, 2 :end) would return the array [1 o 11 12].

Note that the first end returned the value 3, while the second end returned the
value 4!

2.4.2 Using Subarrays on the Left-Hand Side
of an Assignment Statement

It is also possible to use subarrays on the left-hand side of an assignment statement to
update only some of the values in an array, as long as the shape (the number of rows
and columns) of the values being assigned matches the shape of the subarray. If the



48 | Chapter 2 MATLAB Basics

shapes do not match, then an error will occur. For example, suppose that the 3 X 4
array arr4 is defined as follows:

» arr4d = [1 2 3 4; 56 7 8; 9 10 11 12]

arr4 =
1 2 3 4
5 6 7 8
9 10 11 12

Then the following assignment statement is legal, since the expressions on both sides
of the equal sign have the same shape (2 X 2):

» arr4(1:2, [1 4]1) = [20 21; 22 23]

arr4 =
20 2 3 21
22 6 7 23
9 10 11 12

Note that the array elements (1,1), (1,4), (2,1), and (2,4) were updated. In
contrast, the following expression is illegal because the two sides do not have the
same shape.

» arr5(1:2,1:2) = [3 4]

??? In an assignment A(matrix,matrix) = B, the number
of rows in B and the number of elements in the A row
index matrix must be the same.

[x]] Programming Pitfalls

For assignment statements involving subarrays, the shapes of the subarrays on
either side of the equal sign must match. MATLAB will produce an error if they do
not match.

There is a major difference in MATLAB between assigning values to a subarray
and assigning values to an array. If values are assigned to a subarray, only those val-
ues are updated, while all other values in the array remain unchanged. On the other
hand, if values are assigned to an array, the entire contents of the array are deleted
and replaced by the new values. For example, suppose that the 3 X 4 array arr4 is
defined as follows:

» arr4d = [1 2 3 4; 56 7 8; 9 10 11 12]
arr4

o U=
[&))
<
[e¢]



2.5 Special Values | 49

Then the following assignment statement replaces the specified elements of arr4:

» arr4(1l:2,[1 4]1) = [20 21; 22 23]
arr4 =
20 2 3 21
22 6 7 23
9 10 11 12

In contrast, the following assignment statement replaces the entire contents of arr4
with a 2 X 2 array:

» arr4 = [20 21; 22 23]
arr4 =

20 21

22 23

Good Programming Practice

Be sure to distinguish between assigning values to a subarray and assigning values to
an array. MATLAB behaves differently in these two cases.

SIS HA WAL/ 00 0050000500005 00 000 0000 0005 0005 0000 000 00 00000 4 0 00 190 00 100 00 90 0 190 00 000 00 100 00 100 00 0000

2.4.3 Assigning a Scalar to a Subarray

A scalar value on the right-hand side of an assignment statement always matches the
shape specified on the left-hand side. The scalar value is copied into every element
specified on the left-hand side of the statement. For example, assume that the 3 X 4
array arr4 is defined as follows:

arr4d = [1 2 3 4; 56 7 8; 9 10 11 12];
Then the following expression assigns the value 1 to four elements of the array.

» arr4(1:2,1:2) = 1

arr4 =
1 1 3 4
1 1 7 8
9 10 11 12

2.5 Special Values

MATLAB includes a number of predefined special values. These predefined values
may be used at any time in MATLAB without initializing them first. A list of the
most common predefined values is given in Table 2.2.

These predefined values are stored in ordinary variables, so they can be over-
written or modified by a user. If a new value is assigned to one of the predefined
variables, then that new value will replace the default one in all later calculations.



50 | Chapter 2 MATLAB Basics

Table 2.2:

Predefined Special Values

Function

Purpose

pi
i, j

Inf

NaN

clock

date

eps

ans

Contains 7 to 15 significant digits.

Contain the value i (V —1).

This symbol represents machine infinity. It is usually generated as
a result of a division by 0.

This symbol stands for Not-a-Number. It is the result of an
undefined mathematical operation, such as the division of zero
by zero.

This special variable contains the current date and time in the
form of a 6-element row vector containing the year, month, day,
hour, minute, and second.

Contains the current data in a character string format, such as
24 -Nov-1998.

This variable name is short for “epsilon.” It is the smallest differ-
ence between two numbers that can be represented on

the computer.

A special variable used to store the result of an expression

if that result is not explicitly assigned to some other
variable.

For example, consider the following statements, which calculate the circumference

of a 10-cm circle:

circl

pi = 3;

circ2

I

2 * pi * 10

2 * pi * 10

In the first statement, pi has its default value of 3.14159 ... ,so circlis 62.8319,
which is the correct circumference. The second statement redefines pi to be 3, so
in the third statement circ?2 is 60. Changing a predefined value in the program
has created an incorrect answer, and also introduced a subtle and hard-to-find
bug. Imagine trying to locate the source of such a hidden error in a 10,000-line

program!

[x)| Programming Pitfalls

Never redefine the meaning of a predefined variable in MATLAB. It is a recipe for
disaster and produces subtle and hard-to-find bugs.



2.6 Displaying Output Data | 51

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.3 through 2.5. If you have trouble with the quiz, reread
the sections, ask your instructor for help, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.
1. Assume that array c is defined as shown, and determine the contents of the
following subarrays:

1.1 —3.2 3.4 .6
—0.8 .3 —0.4 .1
c =

—2.1 .6 2.2 .0
1.1 .1 11.1 —0.9

(@ c(2,:)

(b) c(:,end)

(¢) c(1:2,2:end)

(d) c(6)

(e) c(4:end)

f) c(1:2,2:4)

(g) c(l1 3],2)

(h) c([2 21,13 31)

2. Determine the contents of array a after the following statements are executed.
(@ a =1[123; 456; 78 9];
a([3 1],:) = a(ll 31,:);
b)a =1[1223; 456; 78 9];
a([1 3],:) = a(l2 2],:);
(c)a =1[123; 45 6; 78 9];
a=af(l22],:);
3. Determine the contents of array a after the following statements are executed.
(a) a = eye(3,3);
b= [12 3];
a(2,:) = b;
(b) a = eye(3,3);
b= 1[4 5 6];
a(:,3) = b';
(c) a = eye(3,3);
b= [7 8 9];
a(3,:) = b([3 1 2]);

2.6 Displaying Output Data

There are several ways to display output data in MATLAB. The simplest way is one
we have already seen—just leave the semicolon off the end of a statement, and it
will be echoed to the Command Window. We will now explore a few other ways to
display data.



52 | Chapter 2 MATLAB Basics

2.6.1 Changing the Default Format

When data is echoed in the Command Window, integer values are always displayed
as integers, character values are displayed as strings, and other values are printed
using a default format. The default format for MATLAB shows four digits after the
decimal point, and it may be displayed in scientific notation with an exponent if the
number is too large or too small. For example, the statements

X 100.11

y = 1001.1
z = 0.00010011

produce the following output:

X =
100.1100

'y:
1.0011e+003

zZ =
1.0011e-004

This default format can be changed in one of two ways: from the main MATLAB
Window menu or using the format command. You can change the format by selecting the
“Preferences” icon on the Toolstrip. This option will pop up the Preferences Window, and
the format can be selected from the “Variables™ item in the preferences list (see Figure 2.4).

Programming Tools
Command History
Command Window
Comparison
Current Folder
Editor/Debugger
Display
Tab
Language
Code Folding
Backup Files
Autoformatting
Autocoding
Figure Copy Template
Copy Options
Fonts
Customn
General
MAT-Files

Confirmation Dialogs

Source Contrel
Java Heap Memory
GUIDE
Help
Keyboard
Shertcuts
Toolbars

Figure 2.4 Selecting the desired numerical format within the Command Window
preferences.



2.6 Displaying Output Data | 53

Table 2.3: Output Display Formats

Format Command Results Example'

format short 4 digits after decimal (default format) 12.3457

format long 14 digits after decimal 12.34567890123457

format short e 5 digits plus exponent 1.2346e+001

format shortE

format short eng 5 digits plus exponent digits plus expo- 12.347e+000

format shortEng nent with exponent being powers of 1000

format short g 5 total digits with or without exponent 12.346

format long e 15 digits plus exponent 1.234567890123457e+001

format longE

format long eng 15 digits plus exponent with exponent 12.34567890123457e+000
being powers of 1000

format longEng

format long g 15 total digits with or without exponent 12.3456789012346

format longG

format bank “dollars and cents” format 12.35

format hex hexadecimal display of bits 4028b0fcd32£707a

format rat approximate ratio of small integers 1000/81

format compact suppress extra line feeds

format loose restore extra line feeds

format

+

Only signs are printed +

'The data value used for the example is 12.345678901234567 in all cases.

Alternately, you can use the format command to change the preferences.
The format command changes the default format according to the values given in
Table 2.3. The default format can be modified to display more significant digits of
data, to force the display to be in scientific notation, to display data to two decimal
digits, or to eliminate extra line feeds to get more data visible in the Command Win-
dow at a single time. Experiment with the commands in Table 2.3 for yourself.

Which of these ways to change the data format is better? If you are working
directly at the computer, it is probably easier to use the Toolbar. On the other hand, if
you are writing programes, it is probably better to use the format command, because
it can be embedded directly into a program.

2.6.2 The disp Function

Another way to display data is with the disp function. The disp function accepts
an array argument and displays the value of the array in the Command Window. If the
array is of type char, then the character string contained in the array is printed out.
This function is often combined with the functions num2str (convert a number to
astring) and int2str (convert an integer to a string) to create messages to be displayed



54 | Chapter 2 MATLAB Basics

in the Command Window. For example, the following MATLAB statements will display
“The value of pi = 3.1416” inthe Command Window. The first statement cre-
ates a string array containing the message, and the second statement displays the message.

str = ['The value of pi = ' num2str(pi)];
disp (str);

2.6.3 Formatted Output with the fprintf Function

An even more flexible way to display data is with the fprintf function. The
fprintf function displays one or more values together with related text, and lets
the programmer control the way that the displayed value appears. The general form
of this function when it is used to print to the Command Window is:

fprintf (format,data)

where format is a string describing the way the data is to be printed and data is
one or more scalars or arrays to be printed. The format is a character string con-
taining text to be printed plus special characters describing the format of the data.
For example, the function

fprintf ('The value of pi is %$f \n',6pi)

will print out 'The wvalue of pi is 3.141593' followed by a line feed.
The characters % £ are called conversion characters; they indicate that a value in the
data list should be printed out in floating-point format at that location in the format
string. The characters \n are escape characters; they indicate that a line feed should
be issued so that the following text starts on a new line. There are many types of con-
version characters and escape characters that may be used in an fprintf function.
A few of them are listed in Table 2.4, and a complete list can be found in Chapter 11.
It is also possible to specify the width of the field in which a number will be
displayed and the number of decimal places to display. This is done by specifying
the width and precision after the % sign and before the £. For example, the function

fprintf ('The value of pi is %6.2f \n',6pi)

Table 2.4: Common Special Characters in fprintf
Format Strings

Format String Results

(o}

Display value as an integer.

Display value in exponential format.

o o° o° o°
D

£ Display value in floating-point format.
g Display value in either floating-point or exponential
format, whichever is shorter.
\n Skip to a new line.




2.7 Data Files | 55

will print out 'The value of pi is 3.14' followed by a line feed. The
conversion characters $6.2f indicate that the first data item in the function should
be printed out in floating-point format in a field six characters wide, including two
digits after the decimal point.

The fprintf function has one very significant limitation: it only displays the
real portion of a complex value. This limitation can lead to misleading results when
calculations produce complex answers. In those cases, it is better to use the disp
function to display answers.

For example, the following statements calculate a complex value x and display
it using both fprintf and disp.

x =2%* (1 - 2% )"3;

str = ['disp: x = ' num2str(x)];
disp(str) ;

fprintf (' fprintf: x = %8.4f\n',x);

The results printed out by these statements are

disp: x = -22+41
fprintf: x = -22.0000

Note that the fprint £ function ignored the imaginary part of the answer.

[x]| Programming Pitfalls

The fprintf function only displays the real part of a complex number, which can
produce misleading answers when working with complex values.

2.7 Data Files

There are many ways to load and save data files in MATLAB, most of which will
be addressed in Chapter 11. For the moment, we will consider only the 1oad and
save commands, which are the simplest ones to use.

The save command saves data from the current MATLAB workspace into a
disk file. The most common form of this command is

save filename varl var2 var3

where £ilename is the name of the file where the variables are saved, and varl,
var2, and so forth are the variables to be saved in the file. By default, the filename
will be given the extension “mat”, and such data files are called MAT-files. If no
variables are specified, then the entire contents of the workspace are saved.
MATLAB saves MAT-files in a special compact format which preserves many
details, including the name and type of each variable, the size of each array, and all



56 | Chapter 2 MATLAB Basics

data values. A MAT-file created on any platform (PC, Mac, Unix, or Linux) can be
read on any other platform, so MAT-files are a good way to exchange data between
computers if both computers run MATLAB. Unfortunately, the MAT-file is in a for-
mat that cannot be read by other programs. If data must be shared with other pro-
grams, then the -ascii option should be specified, and the data values will be
written to the file as ASCII character strings separated by spaces. However, the spe-
cial information, such as variable names and types, is lost when the data is saved in
ASCII format, and the resulting data file will be much larger.
For example, suppose the array x is defined as

x = [1.23 3.14 6.28; -5.1 7.00 0];

The command “save x.dat x -ascii” will produce a file named x.dat
containing the following data:

1.2300000e+000 3.1400000e+000 6.2800000e+000
-5.1000000e+000 7.0000000e+000 0.0000000e+000

This data is in a format that can be read by spreadsheets or by programs written in
other computer languages, so it makes it easy to share data between MATLAB pro-
grams and other applications.

- Good Programming Practice

If data must be exchanged between MATLAB and other programs, save the
MATLAB data in ASCII format. If the data will only be used in MATLAB, save the
data in MAT-file format.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000

MATLAB doesn’t care what file extension is used for ASCII files. However, it
is better for the user if a consistent naming convention is used, and an extension of
“dat” is a common choice for ASCII files.

Good Programming Practice

Save ASCII data files with a “dat” file extension to distinguish them from MAT-
files, which have a “mat” file extension.

L e
The 1oad command is the opposite of the save command. It loads data from

a disk file into the current MATLAB workspace. The most common form of this
command is

load filename

where £ilename is the name of the file to be loaded. If the file is a MAT-file, then
all of the variables in the file will be restored, with the names and types the same as
before. If a list of variables is included in the command, then only those variables



2.7 Data Files | 57

will be restored. If the given £ilename has no extension, or if the file extension
is.mat, then the load command will treat the file as a MAT-file.

MATLAB can load data created by other programs in comma- or space-separated
ASCII format. If the given £ilename has any file extension other than .mat, then
the 1oad command will treat the file as an ASCII file. The contents of an ASCII file
will be converted into a MATLAB array having the same name as the file (without
the file extension) that the data was loaded from. For example, suppose that an ASCII
data file named x.dat contains the following data:

1.23 3.14 6.28
-5.1 7.00 O

Then the command “load x.dat” will create a2 X 3 array named x in the cur-
rent workspace that will contain these data values.

The 1oad statement can be forced to treat a file as a MAT-file by specifying the
-mat option. For example, the statement

load -mat x.dat

would treat file x.dat as a MAT-file even though its file extension is not .mat.
Similarly, the 1oad statement can be forced to treat a file as an ASCII file by speci-
fying the —ascii option. These options allow the user to load a file properly even if
its file extension doesn’t match the MATLAB conventions.

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.6 and 2.7. If you have trouble with the quiz, reread the
sections, ask your instructor for help, or discuss the material with a fellow stu-
dent. The answers to this quiz are found in the back of the book.
1. How would you tell MATLAB to display all real values in exponential for-
mat with 15 significant digits?
2. What do the following sets of statements do? What is the output from them?

(a) radius = input ('Enter circle radius:\n');
area = pi * radius™2;
str = ['The area is ' num2str(area)];
disp(str) ;

(b) value = int2str (pi);
disp(['The value is ' value '!']);

3. What does the following set of statements do? What is the output from these

statements?
value = 123.4567e2;
fprintf ('value = %e\n',value) ;
fprintf ('value = %f\n',value) ;
fprintf ('value = %g\n',value) ;
fprintf ('value = %12.4f\n',value) ;



58 | Chapter 2 MATLAB Basics

2.8 Scalar and Array Operations

Calculations are specified in MATLAB with an assignment statement, whose general
form is

variable name = expression;

The assignment statement calculates the value of the expression to the right of the
equal sign and assigns that value to the variable named on the left of the equal sign.
Note that the equal sign does not mean equality in the usual sense of the word.
Instead, it means: store the value of expression into location variable name.
For this reason, the equal sign is called the assignment operator. A statement like

ii = ii + 1;
is complete nonsense in ordinary algebra but makes perfect sense in MATLAB. It

means: take the current value stored in variable i1, add one to it, and store the result
back into variable 11.

2.8.1 Scalar Operations

The expression to the right of the assignment operator can be any valid combina-
tion of scalars, arrays, parentheses, and arithmetic operators. The standard arithmetic
operations between two scalars are given in Table 2.5.

Parentheses may be used to group terms whenever desired. When parentheses are
used, the expressions inside the parentheses are evaluated before the expressions outside
the parentheses. For example, the expression 2 * ( (8+2) /5) is evaluated as follows:

2 7~ ((8+2)/5) =2 * (10/5)
=2 %2
= 4

2.8.2 Array and Matrix Operations
MATLAB supports two types of operations between arrays, known as array oper-

ations and matrix operations. Array operations are operations performed between
arrays on an element-by-element basis. That is, the operation is performed on

Table 2.5: Arithmetic Operations between Two Scalars

Operation Algebraic Form MATLAB Form
Addition a+b a+ b
Subtraction a—b a-b
Multiplication aXxXb a *b
Division a a /b

b
Exponentiation a a’b




2.8 Scalar and Array Operations | 59

1 2
corresponding elements in the two arrays. For example, if a = [ } andb =

-2 1
number of rows and columns in the arrays must be compatible. If the arrays are not
compatible, MATLAB will generate an error message.

When are arrays compatible for array (element-by-element) operations? They are
compatible if the number of rows and the number of columns in each of the arrays are
either the same or 1. If a row or column dimension is 1, then MATLAB automatically
expands the single element to be the same number of elements as the corresponding
dimension in the other array. Some legal examples of array operations follow:

-1 3 0 b5
{ J, thena + b = [ 5}. Note that for these operations to work, the

1 2 3 -1 3 3 . .
1. Add a ={ andb = .Inthis case,aisa2 X 3
3 4 5 -2 1 4
array and b is a 2 X 3 array. Since the dimensions of these arrays are equal,
0O 5 &6
they are compatible,anda + b = .
1 5 9
1 2 3 . .
2. Adda = L . 5}andb =[-1 3 3]. In this case, a is a

2 X 3 array and b is a 1 X 3 array. The second dimensions match, and one
of the first dimensions is 1. In this case, MATLAB automatically expands
array b to be the same size as a by repeating the single row twice. Array b

. -1 3 3 0 5 6
is expanded to be[ },anda + b = [ }
-1 3 3 2 7 8

1 2 3
3. Adda = L . 5}andb=5.Inthiscase,aisaZ><Sarrayandbisa

1 X 1 array. Both dimensions of b are 1. In this case, MATLAB automati-
cally expands array b to be the same size as a by repeating the single value

5 5 5
in both rows and columns. Array b is expanded to be - 5], and

6 7 8 Lo .
a + b = [8 5 10}' In other words, any array operation is compati-

ble if one of the two arrays is a scalar.
-1

-2
aisa?2 X 2array and b is a 2 x 3 array. The first dimensions match here, but the

1 2 3
‘What about the case where a = [3 4} andb = [ 4}? In this case,

second dimensions are different and neither of them is 1. This is an illegal operation
that will cause an error in MATLAB.?

’Before Release 2016b, array operations were only legal between arrays of the same dimensions, or

1 2 3
between scalars and arrays. The addition of a = 3 4 s andb= [-1 3 3]would be illegal

in earlier versions of MATLAB. This can cause differences in program behavior when M-files written in
older versions of MATLAB are used in R2016b and later.



60 | Chapter 2 MATLAB Basics

In contrast, matrix operations follow the normal rules of linear algebra, such as
matrix multiplication. In linear algebra, the product ¢ = a x b is defined by the equation

c(i,j) = D ali, k) b (k, j) (2.1
k=1
. 1 2 -1 3 -5 5
For example, ifa = { }andb = [ ],thena x b = [ }
3 4 -2 1 -11 13

Note that for matrix multiplication to work, the number of columns in matrix a must
be equal to the number of rows in matrix b.

MATLAB uses a special symbol to distinguish array operations from matrix
operations. In the cases where array operations and matrix operations have a dif-
ferent definition, MATLAB uses a period before the symbol to indicate an array
operation (for example, .*). A list of common array and matrix operations is given
in Table 2.6.

New users often confuse array operations and matrix operations. In some cases,
substituting one for the other will produce an illegal operation, and MATLAB will
report an error. In other cases, both operations are legal, and MATLAB will per-
form the wrong operation and come up with a wrong answer. The most common
problem happens when working with square matrices. Both array multiplication
and matrix multiplication are legal for two square matrices of the same size, but the
resulting answers are totally different. Be careful to specify exactly what you want!

Table 2.6: Common Array and Matrix Operations

Operation

MATLAB Form

Comments

Array Addition
Array Subtraction
Array Multiplication

Matrix Multiplication

Array Right Division

Array Left Division

Matrix Right Division
Matrix Left Division

Array Exponentiation

Array addition and matrix addition are identical.
Array subtraction and matrix subtraction are identical.

Element-by-element multiplication of a and b. Both arrays
must be the same shape, or one of them must be a scalar.

Matrix multiplication of a and b. The number of columns in
a must equal the number of rows in b.

Element-by-element division of a and b: a (i,3) /
b (i, 7). Both arrays must be the same shape, or one of
them must be a scalar.

Element-by-element division of a and b, but with b in the
numerator: b (i,3) / a(i,j).Both arrays must be the
same shape, or one of them must be a scalar.

Matrix division defined by a * inv (b), where inv (b)
is the inverse of matrix b.

Matrix division defined by inv (a) * b, where inv (a)
is the inverse of matrix a.

Element-by-element exponentiation of a andb: a (i, 3)
* b (i, j).Both arrays must be the same shape, or one of
them must be a scalar.




2.8 Scalar and Array Operations | 61

(x]| Programming Pitfalls

Be careful to distinguish between array operations and matrix operations in your
MATLAB code. It is especially common to confuse array multiplication with matrix
multiplication.

P> Example 2.|—Assume that a, b, c,and d are defined as follows

1 0
a= b

Il
1
I
o
=N
I

What is the result of each of the following expressions?

(@ a +Db (e) a + c
(b) a .* b ) a + d
c)a*b (g a .*x d
d a * c (h)y a * 4
Solution 0 2
(a) This is array or matrix addition: a + b = [2 2].

-1 0
(b) This is element-by-element array multiplication: a.* b = [ 0 ]
.. . T -1 2
(c) This is matrix multiplication: a * b = { ]

3
(d) This is matrix multiplication: a * ¢ = [ ]

(e) This operation is illegal, since a and ¢ have different numbers of columns.

6 5
(f) This is addition of an array to a scalar: a + d = [7 6}

5 0
(g) This is array multiplication: a. * d = [10 5].

5 0
(h) This is matrix multiplication: a * d = [10 5].




62 | Chapter 2 MATLAB Basics

The matrix left division operation has a special significance that we must under-
stand. A 3 X 3 set of simultaneous linear equations takes the form

allxl + a12x2 + a13x3 = bl
a,x, +a,x, +a,.x = b2 2.2)
a31x1 + a32x2 + a33x3 = b3

which can be expressed as

Ax=B (2.3)
a, 4, da; b] X
where A =|a, ay, da,|,B=|b,|,andx=|x,
a;, Ay dg b3 Xy

Equation (2.3) can be solved for x using linear algebra. The result is
x=A"'B (2.4)

Since the left division operator A\B is defined to be inv (A) * B, the left division
operator solves a system of simultaneous equations in a single statement!

- Bl Good Programming Practice

Use the left division operator to solve systems of simultaneous equations.
L e

2.9 Hierarchy of Operations

Often, many arithmetic operations are combined into a single expression. For exam-
ple, consider the equation for the distance traveled by an object starting from rest and
subjected to a constant acceleration:

distance = 0.5 * accel * time * 2

There are two multiplications and an exponentiation in this expression. In such an
expression, it is important to know the order in which the operations are evaluated.
If exponentiation is evaluated before multiplication, this expression is equivalent to

distance = 0.5 * accel * (time * 2)
But if multiplication is evaluated before exponentiation, this expression is equivalent to
distance = (0.5 * accel * time) * 2

These two equations have different results, and we must be able to unambiguously
distinguish between them.

To make the evaluation of expressions unambiguous, MATLAB has established
a series of rules governing the hierarchy or order in which operations are evaluated
within an expression. The rules generally follow the normal rules of algebra. The
order in which the arithmetic operations are evaluated is given in Table 2.7.



2.9 Hierarchy of Operations | 63

Table 2.7: Hierarchy of Arithmetic Operations

Precedence  Operation

1 The contents of all parentheses are evaluated, starting from the
innermost parentheses and working outward.

All exponentials are evaluated, working from left to right.

3 All multiplications and divisions are evaluated, working from left
to right.
4 All additions and subtractions are evaluated, working from left to right.

P> Example 2.2—Variables a, b, c,and d have been initialized
to the following values

a = 3; b = 2; c =5; d = 3;

Evaluate the following MATLAB assignment statements:

(a) output = a*b+c*d;

(b) output = a* (b+c)*d;
(c) output = (a*b)+(c*d);
(d) output = a*b*d;

(e) output = a” (b™d);

Solution

(a) Expression to evaluate: output = a*b+c*d;
Fill in numbers: output = 3*2+5%*3;
First, evaluate multiplications
and divisions from left to right: output = 6 +5%3;

output = 6 + 15;
Now evaluate additions: output = 21

(b) Expression to evaluate: output = a* (b+c) *d;
Fill in numbers: output = 3*(2+5)*3;
First, evaluate parentheses: output = 3*7*3;

Now, evaluate multiplications
and divisions from left to right: output = 21%3;
output = 63;

(c) Expression to evaluate: output = (a*b)+ (c*d);
Fill in numbers: output = (3*2)+(5*3);
First, evaluate parentheses: output = 6 + 15;
Now evaluate additions: output = 21

(d) Expression to evaluate: output = a”"b”*d;

Fill in numbers: output = 372°3;
Evaluate exponentials
from left to right: output = 973;

output = 729;



64 | Chapter 2 MATLAB Basics

(e) Expression to evaluate: output = a” (b*d);
Fill in numbers: output = 3%(2%3);
First, evaluate parentheses: output = 378;

Now, evaluate exponential: output = 6561;

As we see in Example 2.2, the order in which operations are performed has a major
effect on the final result of an algebraic expression.

It is important that every expression in a program be made as clear as possible.
Any program of value must not only be written but also be maintained and modi-
fied when necessary. You should always ask yourself: “Will I easily understand this
expression if I come back to it in six months? Can another programmer look at my
code and easily understand what I am doing?” If there is any doubt in your mind, use
extra parentheses in the expression to make it as clear as possible.

- Rl Good Programming Practice

Use parentheses as necessary to make your equations clear and easy to understand.
W

If parentheses are used within an expression, then the parentheses must be bal-
anced. That is, there must be an equal number of open parentheses and close paren-
theses within the expression. It is an error to have more of one type than the other.
Errors of this sort are usually typographical, and they are caught by the MATLAB
interpreter when the command is executed. For example, the expression

(2 + 4) / 2)

produces an error when the expression is executed.

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.8 and 2.9. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The

answers to this quiz are found in the back of the book.
1. Assume that a, b, ¢, and d are defined as follows, and calculate the results
of the following operations if they are legal. If an operation is, explain why

it is illegal.
o -1
3 1

S
-3 |

1l
1
N
W
o Ul
I



2.10 Built-in MATLAB Functions | 65

(a) result = a .* c;

(b) result = a * [c c];

(c) result = a .* [c c];

(d) result = a + b * c;

(e) result = a .* d; 1 2 1

2. Solve for x in the equation Ax = B, where A = 2 3 2

1 -1 0 1

andB=|1
0

2.1 0 Built-in MATLAB Functions

In mathematics, a function is an expression that accepts one or more input values
and calculates a single result from them. Scientific and technical calculations usu-
ally require functions that are more complex than the simple addition, subtraction,
multiplication, division, and exponentiation operations that we have discussed so
far. Some of these functions are very common and are used in many different tech-
nical disciplines. Others are rarer and specific to a single problem or a small number
of problems. Examples of very common functions are the trigonometric functions,
logarithms, and square roots. Examples of rarer functions include the hyperbolic
functions, Bessel functions, and so forth. One of MATLAB’s greatest strengths is
that it comes with an incredible variety of built-in functions ready for use.

2.10.1 Optional Results

Unlike mathematical functions, MATLAB functions can return more than one result
to the calling program. The function max is an example of such a function. This func-
tion normally returns the maximum value of an input vector, but it can also return
a second argument containing the location in the input vector where the maximum
value was found. For example, the statement

maxval = max ([1 -5 6 -3])

returns the result maxval = 6. However, if two variables are provided to store
results in, the function returns both the maximum value and the location of the max-
imum value. The statement

[maxval, index] = max ([1 -5 6 -3])

produces the results maxval = 6 and index = 3.

2.10.2 Using MATLAB Functions with Array Inputs

Many MATLAB functions are defined for one or more scalar inputs and produce
a scalar output. For example, the statementy = sin (x) calculates the sine of x



66 | Chapter 2 MATLAB Basics

and stores the result in y. If these functions receive an array of input values, then
they will calculate an array of output values on an element-by-element basis. For
example,ifx = [ 0 pi/2 pi 3*pi/2 2*pi], then the statement

y = sin(x)

will produce theresulty = [0 1 0 -1 O0].
2.10.3 Common MATLAB Functions

A few of the most common and useful MATLAB functions are shown in Table 2.8.
These functions will be used in many examples and homework problems. If you need
to locate a specific function not on this list, you can search for the function alphabet-
ically or by subject using the MATLAB Help Browser.

Note that unlike most computer languages, many MATLAB functions work
correctly for both real and complex inputs. MATLAB functions automatically cal-
culate the correct answer, even if the result is imaginary or complex. For example,
the function sgrt (-2) will produce a run-time error in languages such as C+ +,
Java, and Fortran. In contrast, MATLAB correctly calculates the imaginary answer:

» sqrt(-2)

ans =

0 + 1.41421

Table 2.8: Common MATLAB Functions

Function Description

Mathematical Functions

abs (x) Calculates the absolute value |x].
acos (x) Calculates cos™'x (results in radians).
acosd (x) Calculates cos™'x (results in degrees).
angle (x) Returns the phase angle of the complex value x, in radians.
asin(x) Calculates sin~'x (results in radians).
asind (x) Calculates sin™'x (results in degrees).
atan (x) Calculates tan'x (results in radians).
atand (x) Calculates tan~'x (results in degrees).
atan2 (y, x) Calculates 6 = tan™! X over all four quadrants of the circle
X
(results in radians in the range —7m = 6 = ).
atan2d (y, x) Calculates 6 = tan™! X over all four quadrants of the circle
X
(results in degrees in the range —180° = 6 = 180°).
cos (x) Calculates cos x, with x in radians.
cosd (x) Calculates cos x, with x in degrees.
exp (x) Calculates e*.
log (x) Calculates the natural logarithm log x.
logl0 (%) Calculates the logarithm to the base 10 log,, x.

(continued)



2.11 Introduction to Plotting | 67

Table 2.8: Common MATLAB Functions (Continued)

[value, index]

[value, index]

= max (x) Returns the maximum value in vector x, and optionally the
location of that value.

min (x) Returns the minimum value in vector x, and optionally the
location of that value.

mod (x,V) Remainder or modulo function.

sin(x) Calculates sin x, with x in radians.

sind (x) Calculates sin x, with x in degrees.

sgrt (x) Calculates the square root of x.

tan (x) Calculates tan x, with x in radians.

tand (x) Calculates tan x, with x in degrees.

Rounding Functions

ceil (x) Rounds x to the nearest integer toward positive infinity:
ceil(3.1) = 4 and ceil(-3.1) = -3.

fix(x) Rounds x to the nearest integer toward zero: £ix (3.1) = 3
and fix(-3.1) = -3.

floor (x) Rounds x to the nearest integer toward minus infinity:
floor(3.1) = 3and
floor(-3.1) = -4.

round (x) Rounds x to the nearest integer.

Character Array Conversion Functions

char (x) Converts a matrix of numbers into a character array. For ASCII
characters the matrix should contain numbers < 127.

double (x) Converts a character array into a matrix of numbers.

int2str (x)

num2str (x)

str2num(c)

Converts the value of x into an character array representing the
nearest integer.

Converts the value of x into a character array representing the number.

Converts character array ¢ into a numeric array.

2.1 1 Introduction to Plotting

MATLAB’s extensive, device-independent plotting capabilities are one of its most pow-
erful features. They make it very easy to plot any data at any time. To plot a data set, just
create two vectors containing the x and y values to be plotted, and use the plot function.

For example, suppose that we wish to plot the function y = x> — 10x + 15 for
values of x between 0 and 10. It takes only three statements to create this plot. The
first statement creates a vector of x values between 0 and 10 using the colon oper-
ator. The second statement calculates the y values from the equation (note that we
are using array operators here so that this equation is applied to each x value on an
element-by-element basis). Finally, the third statement creates the plot.

X 0:1:10;

y = x.72 - 10.*x + 15;

plot (x,v);



68 | Chapter 2 MATLAB Basics

File Edit View Insert Tools Desktop Window Help

DEde | MARAODEL-|G|0EH | D

15

Figure 2.5 Plot ofy = x> — 10x + 15 from 0 to 10.

When the plot function is executed, MATLAB opens a Figure Window and
displays the plot in that window. The plot produced by these statements is shown in
Figure 2.5.

2.11.1 Using Simple xy Plots

As we just saw, plotting is very easy in MATLAB. Any pair of vectors can be plotted
versus each other as long as both vectors have the same length. However, the result is
not a finished product, since there are no titles, axis labels, or grid lines on the plot.

Titles and axis labels can be added to a plot with the title, xlabel, and
ylabel functions. Each function is called with a string containing the title or label to
be applied to the plot. Grid lines can be added or removed from the plot with the grid
command: grid on turns on grid lines, and grid off turns off grid lines. For
example, the following statements generate a plot of the function y = x> — 10x + 15
with titles, labels, and grid lines. The resulting plot is shown in Figure 2.6.

x = 0:1:10;

vy = x.72 - 10.*x + 15;

plot (x,v) ;

title ('Plot of vy = x.72 - 10.*x + 15');

xlabel ('x');

ylabel ('y');

grid on;



2.11 Introduction to Plotting | 69

File Edit View Insert Tools Desktop Window Help

D8 de | b|RRATDEL-|2 |0 |aD

Plotofy=x2-10.*x + 15

15

Figure 2.6 Plot of y = x* — 10x + |5 with a title, axis labels, and grid lines.

2.11.2 Printing a Plot

Once created, a plot may be printed on a printer with the print command by click-
ing on the “print” icon in the Figure Window or by selecting the “File/Print” menu
option in the Figure Window.

The print command is especially useful because it can be included in a
MATLAB program, allowing the program to automatically print graphical images.
The most common forms of the print command are:

print (filename, formattype, formatoptions)
print (-Pprinter)

The first form of the print command prints the Figure Window to a file, where
formattype specifies the format of the file. Some common file formats are given
in Table 2.9; the complete list is available in the MATLAB on-line documentation
of the print function. For example, the following command will print the current
figure in PNG format to the file 'x.png':

print ('x.png', '-dpng');

The second form of the pr int command prints the Figure Window on the specified printer.

In addition, the “File/Save As” menu option in the Figure Window can be used
to save a plot as a graphical image. In this case, the user selects the filename and the
type of image from a standard dialog box (see Figure 2.7).



70 | Chapter 2 MATLAB Basics

Table 2.9: Common Print File Formats

Option Description File Extension
-djpeg 24-bit JPEG format Jjpg

-dpng 24-bit PNG format .png

-dtiff 24-bit TIFF compressed format tif

-dtiffn 24-bit TIFF uncompressed format tif

-dpdf PDF format .pdf

-deps Encapsulated Postscript (B&W) .eps

-depsc Encapsulated Postscript (Color) .eps

2.11.3 Multiple Plots

It is possible to plot multiple functions on the same graph by simply including more
than one set of (x,y) values in the plot function. For example, suppose that we wanted
to plot the function f{x) = sin 2x and its derivative on the same plot. The derivative
of f(x) = sin 2x is:

File Edit View Insert Tools Desktop Window Help ~
A= Y T A REE |
Plotofy =x.2 - 10.*x + 15
15 - - . . .
10 o
« 4 [« SYSTEM(C) » Data » book » matleb » 6e » chap2 v O] [ search chap2 A
5r Organize New folder Bz w (7]
= [ This PC [~ Name : Date medified Type Size
ol 8 30 Objects [ fig2-04.png 1/2/20183:02PM PG File 34KB
I Desktop & fig2-05.png 1/2/2018 501 PM  PNG File 20 kB
- ] fig2-06.png 122018409 PM  PNG File 24K8
bsenis [ fig2-07.png 8/24/20145:10PM  PNG File 60 KB
5 owmeats || & fig2-08.png 8/24/20145:11PM PG File 27KB
B Music & fig2-09.png 8/24/20145:13PM  PNG File 20KE
=] Pictures [ fig2-11.png 2/24/20147:12PM  PNG File 30 KB
10— B Videos [ fig2-12.png 8/24/2014 T1TPM  PNG File 33KB
o i SYSTEM (C) = [ fig2-14png 87242014 T:19PM  PNG File 28KB
= DATA (D)
s Elements (E)
= photos (\Netwe |
SYSTEM_BACKU
= Media (\NETW
= Public (ANETW¢

File name: | fig2-07.png vl
Saveas type: | Portable Network Graphics file (*.png) Y|
-

Figure 2.7 Exporting a plot as an image file using the “File/Save As” menu item.



2.11 Introduction to Plotting | 71

d
u sin 2x = 2 cos 2x (2.5)

To plot both functions on the same axes, we must generate a set of x values and the
corresponding y values for each function. Then, to plot the functions, we would sim-
ply list both sets of (x,y) values in the plot function as follows:

X = 0:pi/100:2%pi;
vyl = sin(2*x) ;

y2 = 2*cos(2*x);
plot(x,vy1l,x,vy2);

The resulting plot is shown in Figure 2.8.
2.11.4 Line Color, Line Style, Marker Style, and Legends
MATLAB allows a programmer to select the color of a line to be plotted, the style of

the line to be plotted, and the type of marker to be used for data points on the line.
These traits may be selected by adding an extra argument called LineSpec to the

File Edit View Insert Tools Desktop Window Help

AEF DN EIE

Figure 2.8 Plot of f(x) = sin2x and f (x) = 2 cos 2x on the same axes.



72 | Chapter 2 MATLAB Basics

plot function after the x and y vectors. LineSpec is a character array after the x
and y vectors that specifies the color, markers, and style of the line to plot.

plot (x,y,LineSpec)

The character array can have up to three characters, with the first character spec-
ifying the color of the line, the second character specifying the style of the marker,
and the last character specifying the style of the line. The characters for various col-
ors, markers, and line styles are shown in Table 2.10.

The attribute characters may be mixed in any combination, and more than one
attribute string may be specified if more than one pair of (x,y) vectors is included
in a single plot function call. For example, the following statements will plot the
function y = x> — 10x + 15 with a dashed red line and will include the actual data
points as blue circles (see Figure 2.9).

X = 0:1:10;
y = x.%2 - 10.*x + 15;
plot (x,y,'r--"',x,y,'bo");

Legends may be created with the 1egend function. The basic form of this
function is

legend ('stringl', 'string2', ..., 'Legend', pos)

where stringl, string2, and so forth are the labels associated with the lines
plotted, and pos is a string specifying where to place the legend. The possible values
for pos are given in Table 2.11 and are shown graphically in Figure 2.10.

Table 2.10: Table of Plot Colors, Marker Styles,
and Line Styles

Color Marker Style Line Style

Yy yellow . point - solid
m magenta o circle : dotted
c cyan x x-mark -. dash-dot
r red + plus -- dashed
g green * star <none> no line
b blue s square
w white d diamond
k black v triangle (down)

* triangle (up)

< triangle (left)

> triangle (right)

P pentagram

h hexagram

<none> no marker




2.11 Introduction to Plotting | 73

File Edit View Insert Tools Desktop Window Help

NOEL|L|RAUDE L 208/ ad

Figure 2.9 Plot of the function y = x> — 10x + |5 with a dashed red line, show-
ing the actual data points as blue circles.

The command legend of £ will remove an existing legend.

An example of a complete plot is shown in Figure 2.11, and the statements
to produce that plot are shown at the end of this paragraph. They plot the function
f(x) = sin2x and its derivative f'(x) = 2 cos2x on the same axes, with a solid black
line for f{x) and a dashed red line for its derivative. The plot includes a title, axis
labels, a legend in the top left corner of the plot, and grid lines.

X = 0:pi/100:2%pi;

yl = sin(2*x);

y2 = 2*cos (2*x) ;

plot (x,v1l, 'k-',x,y2,'b--");

title ('Plot of f(x) = sin(2x) and its derivative') ;
xlabel ('x');
ylabel ('y');

( 1
legend ('f(x)',6'd/dx f(x)', 'Location', 'northwest")
grid on;



74 | Chapter 2 MATLAB Basics

Table 2.11: Values of pos in the 1legend Command

Value Short Form Legend Location
'north' Inside top of axes
'south' Inside bottom of axes
'east' Inside right of axes
'west' Inside left of axes
'northeast’ 'NE' Inside top-right of axes (default for
2D plots)
'northwest' 'NW!' Inside top-left of axes
'southeast' 'SE' Inside bottom-right of axes
'southwest' 'SW! Inside bottom-left of axes
'northoutside’ Above the axes
'southoutside’ Below the axes
'eastoutside’ To the right of the axes
'westoutside' To the left of the axes
'northeastoutside’ Outside top-right corner of the axes
'northwestoutside’ Outside top-left corner of the axes
'southeastoutside’ Outside bottom-right corner of
the axes
'southwestoutside'’ Outside bottom-left corner of
the axes
'best’ Inside axes where least conflict with data
in plot
'bestoutside’ To the right of the axes
Limits of plot
northwestoutside \ northoutside northeastoutside

northwest north northeast

westoutside |west east| eastoutside

southwest south southeast

southwestoutside southoutside southeastoutside

Figure 2.10 Possible locations for a plot legend.



2.12 Examples | 75

File Edit View Insett Tools Desktop Window Help
NoHe BRI OBEL-|B|0EHnDO

Plot of f(x) = sin(2x} and its derivative
T }I '\‘ T T T \

fix)
— — —didx fi{x)

Figure 2.11 A complete plot with title, axis labels, legend, grid, and multiple line styles.

2.12 Examples

The following examples illustrate problem solving with MATLAB.

P> Example 2.3—Temperature Conversion

Design a MATLAB program that reads an input temperature in degrees Fahrenheit,
converts it to an absolute temperature in kelvin, and writes out the result.

Solution The relationship between temperature in degrees Fahrenheit (°F) and tem-
perature in kelvin (K) can be found in any physics textbook. It is
5
T (in kelvin) = [9T(in °F) — 32.0} + 273.15 (2.6)
The physics books also give us sample values on both temperature scales, which we
can use to check the operation of our program. Two such values are:

The boiling point of water 212°F 373.15K
The sublimation point of dry ice —110°F 194.26 K



76 | Chapter 2 MATLAB Basics

Our program must perform the following steps:

1. Prompt the user to enter an input temperature in °F.

2. Read the input temperature.

3. Calculate the temperature in kelvin from Equation (2.6).
4. Write out the result and stop.

We will use function input to get the temperature in degrees Fahrenheit and func-
tion fprintf to print the answer. The resulting program is as follows:

Script file: temp conversion
Purpose:

To convert an input temperature from degrees Fahrenheit to
an output temperature in kelvin.

o o o° o o

% Record of revisions:

% Date Programmer Description of change
% 01/03/18 S. J. Chapman Original code

% Define variables:

% temp f -- Temperature in degrees Fahrenheit

% temp k -- Temperature in kelvin

% Prompt the user for the input temperature.
temp f = input ('Enter the temperature in degrees Fahrenheit: ');

% Convert to kelvin.
temp k = (5/9) * (temp £ - 32) + 273.15;

% Write out the result.
fprintf ('%6.2f degrees Fahrenheit = %6.2f kelvin.\n',
temp f,temp k) ;

To test the completed program, we will run it with the known input values given
in the example in the solution description. Note that user inputs appear in boldface.

» temp conversion

Enter the temperature in degrees Fahrenheit: 212
212.00 degrees Fahrenheit = 373.15 kelvin.

» temp conversion

Enter the temperature in degrees Fahrenheit: -110
-110.00 degrees Fahrenheit = 194.26 kelvin.

The results of the program match the values from the physics book.




2.12 Examples | 77

In the preceding program, we echoed the input values and printed the output val-
ues together with their units. The results of this program only make sense if the units
(degrees Fahrenheit and kelvin) are included together with their values. As a general
rule, the units associated with any input value should always be printed along with
the prompt that requests the value, and the units associated with any output value
should always be printed along with that value.

Good Programming Practice

Always include the appropriate units with any values that you read or write in a
program.

i

The preceding program exhibits many of the good programming practices that
we have described in this chapter. It includes a data dictionary defining the meanings
of all of the variables in the program. It also uses descriptive variable names, and
appropriate units are attached to all printed values.

P> Example 2.4—Electrical Engineering: Maximum Power Transfer
to a Load

Figure 2.12 shows a voltage source V = 120 V with an internal resistance R, of 50 ()
supplying a load of resistance R,. Find the value of load resistance R, that will result
in the maximum possible power being supplied by the source to the load. How much
power will be supplied in this case? Also, plot the power supplied to the load as a
function of the load resistance R,.

R; Load

O
~

Voltage Source

Figure 2.12 A voltage source with a voltage V and an internal resistance R,
supplying a load of resistance R..



78 | Chapter 2 MATLAB Basics

Solution In this program, we need to vary the load resistance R, and compute the
power supplied to the load at each value of R,. The power supplied to the load resis-
tance is given by the equation

P, =IR, 2.7

where [ is the current supplied to the load. The current supplied to the load can be
calculated by Ohm’s law:

VoV
R, R,+R,

TOT

(2.8)

The program must perform the following steps:

1. Create an array of possible values for the load resistance R, . The array will
vary R, from 1 () to 100 €2 in 1 €} steps.

2. Calculate the current for each value of R,.

Calculate the power supplied to the load for each value of R,.

4. Plot the power supplied to the load for each value of R, and determine the
value of load resistance resulting in the maximum power.

bt

The final MATLAB program is as follows:

Script file: calc power.m

o° o o

Purpose:
To calculate and plot the power supplied to a load as
as a function of the load resistance.

o° o o

o°

Record of revisions:
Date Programmer Description of change

o°

o°

o°
o
s
~ |
o
w
~ |
=
[e0]

S. J. Chapman Original code

o°

o

Define variables:

% amps -- Current flow to load (amps)

% pl -- Power supplied to load (watts)

% rl -- Resistance of the load (ohms)

% rs -- Internal resistance of the power source (ohms)
% volts -- Voltage of the power source (volts)

o

Set the values of source voltage and internal resistance
volts = 120;
rs = 50;

% Create an array of load resistances
rl = 1:1:100;



2.12 Examples | 79

% Calculate the current flow for each resistance
amps = volts ./ ( rs + rl );

% Calculate the power supplied to the load
pl = (amps .~ 2) .* rl;

% Plot the power versus load resistance

plot (rl,pl);

title('Plot of power versus load resistance');
xlabel ('Load resistance (ohms) ') ;

ylabel ('Power (watts)');

grid on;

When this program is executed, the resulting plot is as shown in Figure 2.13.
From this plot, we can see that the maximum power is supplied to the load when the
load’s resistance is 50 €). The power supplied to the load at this resistance is 72 watts.

File Edit View Insert Tools Desktop Window Help
A PP E L P A EE =

Plot of power versus load resistance

80

]
=

8

g

W
B
3
w. 40
1K)
g
o

8

40 50 60
Load resistance (ohms)

Figure 2.13 Plot of power supplied to load versus load resistance.




80 | Chapter 2 MATLAB Basics

Note the use of the array operators . *, .”,and ./ in the preceding program.
These operators cause the arrays amps and pl to be calculated on an element-by-
element basis.

P Example 2.5—Carbon 14 Dating

A radioactive isotope of an element is a form of the element, which is not stable.
Instead, it spontaneously decays into another element over a period of time. Radio-
active decay is an exponential process. If O is the initial quantity of a radioactive
substance at time ¢ = 0, then the amount of that substance, which will be present at
any time ¢ in the future is given by

0@) = Qe ™ (2.9)

where A is the radioactive decay constant.

Because radioactive decay occurs at a known rate, it can be used as a clock to
measure the time since the decay started. If we know the initial amount of the radio-
active material Q present in a sample and the amount of the material Q left at the
current time, we can solve for ¢ in Equation (2.9) to determine how long the decay
has been going on. The resulting equation is

_ 1 0
Liccay = —X logea) (2.10)

Equation (2.10) has practical applications in many areas of science. For exam-
ple, archaeologists use a radioactive clock based on carbon 14 to determine the time
that has passed since a once-living thing died. Carbon 14 is continually taken into
the body while a plant or animal is living, so the amount of it present in the body at
the time of death is assumed to be known. The decay constant A of carbon 14 is well
known to be 0.00012097/year, so if the amount of carbon 14 remaining now can be
accurately measured, then Equation (2.10) can be used to determine how long ago
the living thing died. The amount of carbon 14 remaining as a function of time is
shown in Figure 2.14.

Write a program that reads the percentage of carbon 14 remaining in a sample,
calculates the age of the sample from it, and prints out the result with proper units.

Solution Our program must perform the following steps:

1. Prompt the user to enter the percentage of carbon 14 remaining in the
sample.
Read in the percentage.

Convert the percentage into the fraction g
0
Calculate the age of the sample in years using Equation (2.10).

Write out the result, and stop.

w

oo



o o o o o o° o° o°® o°® o° o° o° o° o° o° o o?

2.12 Examples | 81

Decay of Carbon 14
100 T T T T T T T T T

90

50

Carbon 14 remaining (%)

o i i 1 i i i i 1 i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Years

Figure 2.14 The radioactive decay of carbon 14 as a function of time. Notice that
50 percent of the original carbon 14 is left after about 5730 years have elapsed.

The resulting code is as follows:
Script file: cl4 date.m

Purpose:
To calculate the age of an organic sample from the percentage
of the original carbon 14 remaining in the sample.

Record of revisions:
Date Programmer Description of change

01/05/18 S. J. Chapman Original code

Define variables:

age -- The age of the sample in years
lambda -- The radioactive decay constant for carbon-14,
in units of 1/years.
percent -- The percentage of carbon 14 remaining at the time

of the measurement



82 | Chapter 2 MATLAB Basics

o\

ratio -- The ratio of the carbon 14 remaining at the time
of the measurement to the original amount of
carbon 14.

o\

o\

% Set decay constant for carbon-14
lambda = 0.00012097;

% Prompt the user for the percentage of C-14 remaining.

percent = input ('Enter the percentage of carbon 14 remaining:\n'

% Perform calculations
ratio = percent / 100; % Convert to fractional ratio

[}

age = (-1.0 / lambda) * log(ratio); % Get age in years

% Tell the user about the age of the sample.
string = ['The age of the sample is ' num2str(age) ' years.'];
disp(string) ;

) i

To test the completed program, we will calculate the time it takes for half of the

carbon 14 to disappear. This time is known as the half-life of carbon 14.

» cl4 date

Enter the percentage of carbon 14 remaining:
50

The age of the sample is 5729.9097 years.

The CRC Handbook of Chemistry and Physics states that the half-life of carbon

14 is 5730 years, so the output of the program agrees with the reference book.

<

2.13 MATLAB Applications: Vector Mathematics

A vector is a mathematical quantity that has both a magnitude and a direction. This
stands in contrast to a scalar, which is a quantity that has a magnitude only. We see
examples of vectors and scalars all the time in everyday life. The velocity of a car is
an example of a vector (it has both a speed and a direction), while the temperature
in a room is a scalar (it has a magnitude only). Many physical phenomena are repre-

sented by vectors, such as force, velocity, and displacement.

In a two-dimensional Cartesian coordinate system, there are two axes, usually
labeled x and y. The location of any point on the plane can be represented by a dis-
placement along the x axis and a displacement along the y axis (see Figure 2.15a). In
this coordinate system, the line from one point P, to another point P, is a vector con-
sisting of the difference between the x-positions of the two points and the difference

between the y-positions of the two points.

v = (Ax, Ay) .11



2.13 MATLAB Applications: Vector Mathematics | 83

or
v=Axi+Ayj (2.12)

where i and j are the unit vectors in the x and y directions. The magnitude of the
vector v can be calculated from Pythagorean theorem.

v =V(Ax) + (Ay)? (2.13)

The angle of the vector v (as shown in Figure 2.15) can be calculated from the
expression.

ang == (2.14)
an _Ax .

Therefore, the angle of the vector becomes

0=t *1& 2.15
= tan Ar (2.15)

In MATLAB, this angle is evaluated using the function atan2 (for radians) or
atan2d (for degrees).

In a three-dimensional coordinate system, there are three axes, usually labeled x,
v, and z. The location of any point on the plane can be represented by a displacement
along the x axis, a displacement along the y axis, and a displacement along the 7 axis.
In this coordinate system, the line from one point P, to another point P, is a vector
consisting of the difference between the x-positions of the two points, the difference

y axis 3 axis

|
1
|
1
|
i X xaxis

X axis

(a)

(b)

Figure 2.15 (a) Any point in a two-dimensional Cartesian coordinate system can
be represented by a displacement along the x axis and a displacement along the

y axis. (b) A vector v represents the difference in location between two points in
the plane, so it is characterized by a Ax along the x axis and a Ay along the y axis.



84 | Chapter 2 MATLAB Basics

between the y-positions of the two points, and the difference between the z-positions
of the two points.

v = (Ax, Ay, A7) (2.16)
or
v=Axi + Ayj + Azk (2.17)

where i, j, and Kk are the unit vectors in the X, y, and z directions. The magnitude of
the vector v can be calculated from a generalization of the Pythagorean theorem.

v="V(Ax)? + (Ay? + (Az)? (2.18)

The angle of the vector v can be calculated using the equations given in Exercise 2.16
at the end of the chapter.

2.13.1 Vector Addition and Subtraction

To add two vectors, simply add the components of the vectors separately. To
subtract two vectors, simply su‘ptractAthe components of theA vectors sepAarately.
For example, if vector v, =3i +4j + 5k and v, = —4i +3j + 2k then
the sum of the vectors v, + v, = —i + 7j + 7k, and the difference of the vectors
v, —v,=7i+j+ 3k

y axis

X axis

z axis

Figure 2.16 A three-dimensional vector v represents the difference in location
between two points in the three-dimensional space, so it is characterized by a Ax
along the x axis, a Ay along the y axis,and a Az along the z axis.



2.13 MATLAB Applications: Vector Mathematics | 85

2.13.2 Vector Multiplication

Vectors can be multiplied in two different ways, known as the dot product and the
cross product.

The dot product is indicated by a dot (+) between two vectors. The dot product of
two vectors is a scalar value that is calculated by multiplying the corresponding X, Y,
and z components together and then summing the products. If v, = x;i + yj + z, k
andv, =x,1+y,j+z k, then the dot product is
VoV, =xx, T yy, + 2.2 (2.19)

1

This operation is performed in MATLAB by the function dot, as follows:

» a = [1 3 -5];
» b = [-2 1 -11;
» dot (a,b)
ans =

6

The cross product is indicated by a cross ( X ) between two vectors. The cross
product of two vectors is a vector value that is calculated from the definition given
in Equation (2.20). If v, = xi + y j + z k and v, = x,i + y,j + Kk, then the cross
product is

v, X v, =z, =y + (gx, —zx)j + (xy, — x,y)k (2.20)
This operation is performed in MATLAB by the function cross, as follows:

» a = [1 3 -5];

» b = [-2 1 -11;

» cross(a,b)

ans =
2 11 7

All of these vector operations occur regularly in engineering problems, as we
will see in the following examples.

P> Example 2.6—Net Force and Acceleration on an Object

According to Newton’s law, the net force on an object is equal to its mass times its
acceleration.

F = ma 2.21)

net

Suppose that a 2.0 kg ball has been released in the air, and that the ball is subject
to an applied force F .= 101 + 20j + 5k N, and also to the force of gravity (see
Figure 2.17).

(a) What is the net force on this ball?
(b) What is the magnitude of the net force on this ball?
(c) What is the instantaneous acceleration of this ball?



86 | Chapter 2 MATLAB Basics

o o o° o° o° o o° o° o° o° o° o o° o° o°

o\°

Fpp = 10i +20j + 5k N

F,= —mgkN

Figure 2.17 The forces on a ball.

Solution The net force will be the vector sum of the applied force and the force due
to gravity.

F,=F +F (2.22)

The force due to gravity is straight down, and the magnitude of the acceleration due
to gravity is 9.81 m/s?, so

F = —mgk = —(2.0kg)(9.81 m/s)k = —19.62k N (2.23)

The final acceleration can be found by solving Newton’s law for acceleration.

(2.24)

A MATLAB script that calculates the net force on the ball, the magnitude of that
force, and the net acceleration of the ball is as follows:

Script file: force-on ball.m

Purpose:

To calculate the net force on a ball and the corresponding
acceleration.

Record of revisions:

Date

Programmer Description of change

01/05/18 S. J. Chapman Original code

Define variables:

fapp
fg
fnet

-- Applied force (N)
-- Force due to gravity (N)
-- Net force (N)

fnet mag -- Magntitude of net force (N)



2.13 MATLAB Applications: Vector Mathematics | 87

s g -- Acc due to gravity (m/s”2)

% m -- Mass of ball (kg)

% Constants

g = [0 0 -9.81]; % Acceleration due to gravity (m/s”2)
m= 2.0; % Mass (kg)

% Get the forces applied to the ball
fapp = [10 20 5]; % Applied force

[)

fg=m .* g; % Force due to gravity

% Calculate the net force on the ball

[

fnet = fapp + fg; % Net force

% Tell the user

disp(['The net force on the ball is ' num2str(fnet) ' N.']);

% Get the magnitude of the net force
fnet mag = sgrt(fnet(1)”2 + fnet(2)”"2 + fnet(3)"2);

disp(['The magnitude of the net force is ' num2str (fnet mag) ' N.']);

% Get the acceleration
a = fnet ./ m;

disp(['The acceleration of the ball is ' num2str(a) ' m/s*2.']);

When this script is executed, the results are

» force on ball

The net force on the ball is 10 20 -14.62 N.
The magnitude of the net force is 26.716 N.
The acceleration of the ball is 5 10 -7.31 m/s”2.

Simple hand calculations show that these results are correct.

A

P> Example 2.7—Work Done Moving an Object

The work done by a force moving an object through a given displacement is given

by the equation
W=F-d

(2.25)

where F is the vector force on the object and d is the vector displacement through which
the object moves. If the force is given in newtons and the displacement is in meters,
then the resulting work is in joules. Calculate the work done on the object shown in
Figure 2.18 when the force F = 10i — 4j N is applied though displacement d = 5im.



88 | Chapter 2 MATLAB Basics

\ d

Figure 2.18 Application of a force on an object through a displacement.

Solution The work done will be given by Equation (2.25):
W=F-d=(10i — 4j) - (5i) =507 (2.26)

This can be calculated in MATLAB as follows:

» F = [10 -4];
» d = [5 0];
» W = dot(F,d)
W =

50

A

P> Example 2.8—Torque on a Motor Shaft

Torque is the “twisting force” that makes the shafts of rotating objects turn. For
example, pulling the handle of a wrench connected to a nut or bolt produces a torque
(a twisting force) that loosens or tightens the nut or bolt. Torque in the rotational
world is the analogue of force in linear space.

The torque applied to a bolt or to a machine shaft is a function of the force
applied, the moment arm (which is the distance from the rotating point to the location
where the force is applied), and the sine of the angle between the two of them (see
Figure 2.19). The greater the force applied, the greater the twisting action that results.
The greater the moment arm, the greater the twisting action that results. We are all
familiar with this concept: when tightening and loosening nuts, a bigger wrench
requires less force to get the nuts to the desired tightness.

This relationship can be expressed in an equation as follows:

T = rFsind (2.27)

where r is the radius of the moment arm, F is the magnitude of the force, and 0 is the
angle between r and F. In vector terms, this relationship is

T=rXF (2.28)



2.13 MATLAB Applications: Vector Mathematics | 89

Note: The z axis is positive
out of the page.

<Y

Figure 2.19 The torque on an object is a product of the force applied to the
object and the perpendicular distance between the line of the force and the
point of rotation.

where r is the vector radius of the moment arm and F is the vector force. The vec-
tor direction of the resulting torque is given by the right-hand rule: if the thumb of
the right hand points in the direction of the first term in a cross product (r) and the
pointer finger points in the direction of the second term (F), then the third finger will
point in the direction of the resulting cross product (see Figure 2.20).

Figure 2.20 The right-hand rule: if the thumb of the right hand points in the
direction of the first term in a cross product (r) and the pointer finger points in
the direction of the second term (F), then the third finger will point in the
direction of the resulting cross product.



90 | Chapter 2 MATLAB Basics

Calculate the torque applied to the object shown in Figure 2.19 if the moment
armr = 0.8661 — 0.5jmand F = 5j N.

Solution The torque on the object is given as:
T=rXF (2.29)
This value can be calculated in MATLAB as follows:

» r = [0.866 -0.5 0];
» F = [0 5 0];
» tau = cross(r,F)
tau =

0 0 4.3300

The torque is 4.33 N-m, oriented in the z direction, which is out of the page.

2.14 MATLAB Applications: Matrix Operations
and Simultaneous Equations

The matrix operations in MATLAB provide a very powerful way to represent and
solve systems of simultaneous equations. A set of simultaneous equations usually
consists of m equations in n unknowns, and these equations are solved simultane-
ously to find the values of the unknown values. We all learned how to do this in high
school: by substitution and similar methods.

A system of simultaneous equations is usually expressed as a series of separate
equations; for example,

2x, + 5x, = 11

2.30
3xl — 2x2 =-—12 ( )

However, it is possible to represent these equations as a single matrix equation and
then use the rules of matrix algebra to manipulate them and solve for the unknowns.
Equations (2.30) can be represented in matrix form as

2 5 11
Yl = (2.31)
3 2] |x, —12
which in turn can be represented in matrix notation as

Ax=b (2.32)

where the matrices and vectors A, x, and b are defined as follows:

S R S



2.14 MATLAB Applications: Matrix Operations and Simultaneous Equations | 91

In general, a set of m equations in n unknowns can be expressed in the form of
Equation (2.32), where A has m rows and n columns, and x and b are column vectors
with m values.

2.14.1 The Matrix Inverse

In ordinary algebra, the solution of an equation of the form ax = b is found by mul-
tiplying both sides of the equation by the reciprocal or multiplicative inverse of a:

a Yax) = a '(b) (2.33)
or
l(ax) = l(b) (2.34)
a a
b
x=" (2.35)

as long as a # 0.
This same idea can be extended to matrix algebra. The solution of Equation (2.32)
is found by multiplying both sides of the equation by the inverse of A:

A'Ax=A"'b (2.36)

where A~! is the inverse of matrix A. The inverse of a matrix is a matrix with the
property that

ATA =AA =1 (2.37)

where I is the identity matrix, a matrix whose diagonal values are all 1 and whose
off-diagonal values are all 0. The identity matrix has the special property that any
matrix multiplied by I is just the original matrix.

TA=AI=A (2.38)

This is similar in concept to the multiplicative inverse of a scalar, where

1 1
(a>(a) = (a)(a) = 1, and any value multiplied by 1 is just the original value. Apply-

ing Equation 2.37 to Equation 2.36 produces the final solution to the system of equations:

x=A"b (2.39)

The inverse of a matrix A is defined if and only if the A is square and nonsingu-
lar. A matrix is singular if the determinant |A| is zero. If |A| is zero, then there is no
unique solution to the system of equations defined by Equation (2.32). The inverse
of a matrix is computed by the MATLAB function inv (A), and the determinant of
a matrix is computed by the MATLAB function det (A). If the inverse is calculated
for a singular matrix, MATLAB will issue a warning and return floating-point infin-
ity as the answer.



92 | Chapter 2 MATLAB Basics

A set of equations whose inverse is nearly singular is called ill-conditioned. For
such equations, the accuracy of the answers will depend on the number of significant
digits used in the calculation. If there is not enough precision to calculate an answer
accurately, MATLAB will issue a warning to the user.

P> Example 2.9—Solving Systems of Simultaneous Equations

Solve the system of simultaneous equations given by Equations (2.30) using the
matrix inverse.

2x, + 5x, =11

(2.30)
3x, = 2x, = —12

Solution For this system of equations,

2 5 11
A= =
R B
The solution can be calculated in MATLAB as follows:

» A
» b

» X

[2 5; 3 -2];
[11; -121;
inv(aA) * b

X =
-2.0000
3.0000

Note that from Table 2.6, A \ b is defined to be inv (A) * b, so this answer
can also be calculated as

»x =A\D

2.15 Debugging MATLAB Programs

There is an old saying that the only sure things in life are death and taxes. We can add
one more certainty to that list: if you write a program of any significant size, it won’t
work the first time you try it! Errors in programs are known as bugs, and the process
of locating and eliminating them is known as debugging. Given that we have written
a program and it is not working, how do we debug it?



2.15 Debugging MATLAB Programs | 93

Three types of errors are found in MATLAB programs. The first type of error
is a syntax error. Syntax errors are errors in the MATLAB statement itself, such
as spelling errors or punctuation errors. These errors are detected by the MATLAB
compiler the first time that an M-file is executed. For example, the statement

x = (y +3) / 2);

contains a syntax error because it has unbalanced parentheses. If this statement
appears in an M-file named test.m, the following message appears when test is
executed.

» test
??2? x = (y + 3) / 2)

Missing operator, comma, or semi-colon.

Error in ==> d:\book\matlab\chap2\test.m
On line 2 ==>

The second type of error is the run-time error. A run-time error occurs when an
illegal mathematical operation is attempted during program execution (for example,
attempting to divide by 0). These errors cause the program to return Inf or NaN,
which is then used in further calculations. The results of a program that contains
calculations using Inf or NaN are usually invalid.

The third type of error is a logical error. Logical errors occur when the program
compiles and runs successfully but produces the wrong answer.

The most common mistakes made during programming are typographical
errors. Some typographical errors create invalid MATLAB statements. These errors
produce syntax errors that are caught by the compiler. Other typographical errors
occur in variable names. For example, the letters in some variable names might have
been transposed, or an incorrect letter might have been typed. The result will be a
new variable, and MATLAB simply creates the new variable the first time that it is
referenced. MATLAB cannot detect this type of error. Typographical errors can also
produce logical errors. For example, if variables vell and vel2 are both used for
velocities in the program, then one of them might be inadvertently used instead of the
other one at some point. You must check for that sort of error by manually inspecting
the code.

Sometimes a program will start to execute, but run-time errors or logical errors
occur during execution. In this case, there is either something wrong with the input
data or something wrong with the logical structure of the program. The first step in
locating this sort of bug should be to check the input data to the program. Either
remove semicolons from input statements or add extra output statements to verify
that the input values are what you expect them to be.

If the variable names seem to be correct and the input data is correct, then you are prob-
ably dealing with a logical error. You should check each of your assignment statements.

1. If an assignment statement is very long, break it into several smaller assign-
ment statements. Smaller statements are easier to verify.



94 | Chapter 2 MATLAB Basics

2. Check the placement of parentheses in your assignment statements. It is a very
common error to have the operations in an assignment statement evaluated in
the wrong order. If you have any doubts as to the order in which the variables
are being evaluated, add extra sets of parentheses to make your intentions clear.

3. Make sure that you have initialized all of your variables properly.

4. Be sure that any functions you use are in the correct units. For example, the
input to trigonometric functions must be in units of radians, not degrees.

If you are still getting the wrong answer, add output statements at various points
in your program to see the results of intermediate calculations. If you can locate the
point where the calculations go bad, then you know just where to look for the prob-
lem; knowing where to look is 95 percent of the battle.

If you still cannot find the problem after all of the preceding steps, explain what
you are doing to another student or to your instructor, and let him or her look at the
code. It is very common for program writers to see just what they expect to see when
they look at their own code. Another person can often quickly spot an error that you
have overlooked time after time.

- )] Good Programming Practice

To reduce your debugging efforts, make sure that during your program design you:

1. Initialize all variables.
2. Use parentheses to make the functions of assignment statements clear.

LIS II0 000000000000 000 00000 20000 L9000 000 0000 9000 9000 0000 0000 004000 00 0y 00000000000

MATLAB includes a special debugging tool called a symbolic debugger, which
is embedded into the Edit/Debug Window. A symbolic debugger is a tool that allows
you to walk through the execution of your program one statement at a time, and to
examine the values of any variables at each step along the way. Symbolic debuggers
allow you to see all of the intermediate results without having to insert a lot of output
statements into your code. We will learn how to use MATLAB’s symbolic debugger
in Chapter 3.

2.16 Summary

In this chapter, we presented many of the fundamental concepts required to write
functional MATLAB programs. We learned about the basic types of MATLAB win-
dows, the workspace, and how to get on-line help.

We introduced two data types: double and char. We also introduced assign-
ment statements, arithmetic calculations, intrinsic functions, input/output statements,
and data files.

The order in which MATLAB expressions are evaluated follows a fixed hierar-
chy, with operations at a higher level evaluated before operations at lower levels. The
hierarchy of operations is summarized in Table 2.12.



2.16 Summary | 95

Table 2.12: Hierarchy of Operations

Precedence Operation

1 The contents of all parentheses are evaluated, starting from the
innermost parentheses and working outward.

All exponentials are evaluated, working from left to right.

3 All multiplications and divisions are evaluated, working from left
to right.

4 All additions and subtractions are evaluated, working from left
to right.

The MATLAB language includes an extremely large number of built-in functions
to help us solve problems. This list of functions is much richer than the list of func-
tions found in other languages like Fortran or C, and it includes device-independent
plotting capabilities. A few of the common intrinsic functions are summarized in
Table 2.8, and many others will be introduced throughout the remainder of the book.
A complete list of all MATLAB functions is available through the on-line Help Desk.

2.16.1 Summary of Good Programming Practice

Every MATLAB program should be designed so that another person who is familiar
with MATLAB can easily understand it. This is very important, since a good program
may be used for a long period of time. Over that time, conditions will change, and the
program will need to be modified to reflect the changes. The program modifications
may be done by someone other than the original programmer. The programmer mak-
ing the modifications must understand the original program well before attempting
to change it.

It is much harder to design clear, understandable, and maintainable programs
than it is to simply write programs. To do so, a programmer must develop the dis-
cipline to properly document his or her work. In addition, the programmer must
be careful to avoid known pitfalls along the path to good programs. The following
guidelines will help you to develop good programs:

1. Use meaningful variable names whenever possible. Use names that can be
understood at a glance, like day, month, and year.

2. Create a data dictionary for each program to make program maintenance easier.

3. Use only lowercase letters in variable names so that there won’t be errors
due to capitalization differences in different occurrences of a variable name.

4. Use a semicolon at the end of all MATLAB assignment statements to
suppress echoing of assigned values in the Command Window. If you need
to examine the results of a statement during program debugging, you may
remove the semicolon from that statement only.

5. If data must be exchanged between MATLAB and other programs, save the
MATLAB data in ASCII format. If the data will only be used in MATLAB,
save the data in MAT-file format.



96 | Chapter 2 MATLAB Basics

. Save ASCII data files with a “dat” file extension to distinguish them from

MAT-files, which have a “mat” file extension.

. Use parentheses as necessary to make your equations clear and easy to

understand.

. Always include the appropriate units with any values that you read or write

in a program.

2.16.2 MATLAB Summary

The following summary lists all of the MATLAB special symbols, commands, and
functions described in this chapter, along with a brief description of each one.

Special Symbols

[
(

o°

]
)

Array constructor.
Forms subscripts.
Marks the limits of a character string.

1. Separates subscripts or matrix elements
2. Separates assignment statements on a line.

1. Suppresses echoing in Command Window.
2. Separates matrix rows.
3. Separates assignment statements on a line.

Marks the beginning of a comment.
Colon operator, used to create shorthand lists.
Array and matrix addition.

Array and matrix subtraction.
Array multiplication.

Matrix multiplication.

Array right division.

Array left division.

Matrix right division.

Matrix left division.

Array exponentiation.

Transpose operator.




2.16 Summary | 97

Commands and Functions (Continued)

acosd (x)

asin (x)

asind (x)

atan (x)

atand (x)

atan2 (y, x)

atan2d (y, x)

ceil (x)

char

clock
cos (x)
cosd (x)
date
disp
doc

double
eps

exp (x)
eye (m,n)

fix(x)

floor (x)

format +
format bank
format compact
format hex
format long
format long e
format long g
format loose

format rat

Calculates the inverse cosine of x. The resulting angle is in
degrees between 0° and 180°.

Calculates the inverse sine of x. The resulting angle is in radians
between —m/2 and 7r/2.

Calculates the inverse sine of x. The resulting angle is in degrees
between—90° and 90°.

Calculates the inverse tangent of x. The resulting angle is in
radians between —/2 and /2.

Calculates the inverse tangent of x. The resulting angle is in
degrees between —90° and 90°.

Calculates the inverse tangent of y/x valid over the entire circle.
The resulting angle is in radians between — and .

Calculates the inverse tangent of y/x valid over the entire circle.
The resulting angle is in degrees between —180° and 180°.

Rounds x to the nearest integer toward positive infinity:
floor(3.1) = 4and floor(-3.1) = -3.

Converts a matrix of numbers into a character string. For ASCII
characters the matrix should contain numbers = 127.

Current time.

Calculates cosine of x, where x is in radians.
Calculates cosine of x, where x is in degrees.
Current date.

Displays data in Command Window.

Opens HTML Help Desk directly at a particular function
description.

Converts a character string into a matrix of numbers.
Represents machine precision.

Calculates e*.

Generates an identity matrix.

Rounds x to the nearest integer toward zero: £ix (3.1) = 3
and fix (-3.1) = -3.

Rounds x to the nearest integer toward minus infinity:
floor(3.1) = 3and floor(-3.1) = -4.

Prints + and — signs only.

Prints in “dollars and cents” format.
Suppresses extra linefeeds in output.

Prints hexadecimal display of bits.

Prints with 14 digits after the decimal.

Prints with 15 digits plus exponent.

Prints with 15 digits with or without exponent.
Prints with extra linefeeds in output.

Prints as an approximate ratio of small integers.

(continued)



98 | Chapter 2 MATLAB Basics

Commands and Functions (Continued)

format short Prints with 4 digits after the decimal.

format short e Prints with 5 digits plus exponent.

format short g Prints with 5 digits with or without exponent.

fprintf Prints formatted information.

grid Adds/removes a grid from a plot.

i V-1

Inf Represents machine infinity ().

input Writes a prompt and reads a value from the keyboard.

int2str Converts x into an integer character string.

3 V7L

legend Adds a legend to a plot.

length (arr) Returns the length of a vector, or the longest dimension of a
two-dimensional array.

load Loads data from a file.

log (x) Calculates the natural logarithm of x.

loglog Generates a log-log plot.

lookfor Looks for a matching term in the one-line MATLAB function
descriptions.

max (x) Returns the maximum value in vector x, and optionally the loca-
tion of that value.

min (x) Returns the minimum value in vector x, and optionally the loca-
tion of that value.

mod (m, n) Remainder or modulo function.

NaN Represents not-a-number.

num2str (x)

ones (m,n)

Converts x into a character string.

Generates an array of ones.

pi Represents the number 7.

plot Generates a linear xy plot.

print Prints a Figure Window

round (x) Rounds x to the nearest integer.

save Saves data from workspace into a file.

sin (x) Calculates sine of x, where x is in radians.
sind (x) Calculates sine of x, where x is in degrees.
size Gets number of rows and columns in an array.
sqgrt Calculates the square root of a number.
str2num Converts a character string into a number.
tan (x) Calculates tangent of x, where x is in radians.
tand (x) Calculates tangent of x, where x is in degrees.
title Adds a title to a plot.

Zeros Generates an array of zeros.




2.17 Exercises | 99

2.17 Exercises

2.1

2.2

2.3

24

Answer the following questions for the array shown.

0.0 .5 1 -3.5 .0
-0.1 -1.2 -6.6 .1 .4
arrayl =
2 .1 5 -0.4 .3
1.1 .1 0 4 -2.1

(a) What is the size of array1?

(b) What is the value of arrayl (1,4)?

(c) What is the value of arrayl (9) ?

(d) What is the size and value of arrayl (:,1:2:4)?

(e) What is the size and value of arrayl ([1 3], [end-1 end])?

Are the following MATLAB variable names legal or illegal? Why?

(a) dogl

(b) 1dog

(c) dogsé&cats

(d) Do_you_know the way to san jose
() _help

(f) Wwhat's_up?

Determine the size and contents of the following arrays. Note that the later arrays
may depend on the definitions of arrays defined earlier in this exercise.

(@)a = 2:3:12;

b)b = [a' a' a'];

(c) c b(1:2:3,1:2:3);

(d)d a(2:4) + b(2,:);

(e)w = [zeros(1,3) ones(3,1)' 3:5'];
(f) b([1 31,2) = b([3 1],2);

(gle = 1:-1:5;

Assume that array arrayl is defined as shown, and determine the contents of
the following subarrays:

2.2 0.0 -2.1 ~-3.5 6.0
0.0 -3.0 -5.6 2.8 2.3
2.1 0.5 0.1 -0.4 5.3
-1.4 7.2 -2.6 1.1 -3.0

arrayl =

(a) arrayl (4, :)

(b) arrayl (:,4)

(c) arrayl(1:2:3,[3 3 4])
(d) array1 ([3 31,:)



100 | Chapter 2 MATLAB Basics

2.5

2.6

2.7

2.8

2.9

Assume that value has been initialized to 107, and determine what is printed
out by each of the following statements.

disp (['value = ' num2str(value)]);
disp (['value = ' int2str(value)]);
fprintf ('value = %e\n',value) ;
fprintf ('value = %f\n',value) ;
fprintf ('value = %g\n',value) ;
fprintf ('value = %12.4f\n',value) ;

Assume that a, b, ¢, and d are defined as follows, and calculate the results of
the following operations if they are legal. If an operation is illegal, explain why.

=[5 =[5

c= [ﬂ d=-eye(2)
(a) result = a + b;
(b) result = a * d;
(c) result = a .* d;
(d) result = a * c;
(e) result = a .* c;
(f) result = a \ b;
(g) result = a .\ b;

(h) result = a .” b;
Evaluate each of the following expressions.

(@12 / 5 + 4

(b) (12 / 5) + 4
(¢)12 / (5 + 4)
@3 *2 "3

)3 * (2 * 3)

® (372 *3

(g) round (-12/5) + 4
(h) ceil (-12/5) + 4
(i) floor(-12/5) + 4

Use MATLARB to evaluate each of the following expressions.
(@ (3 —4i)(—4 + 3i)
(b) cos™'(1.2)

Evaluate the following expressions in MATLAB, where t = 2s,i =V —1, and
o = 1207 rad/s. How do the answers compare?

(a) e ¥ cos(wt)

(b) e [cos(wt) + i sin(w?)]
(C) e[*zt +iwt]



2.10

-2.
2.
-1.
4.
-3.
2.

2.11

2.12

2.17 Exercises | 101

Solve the following system of simultaneous equations for x:

0x +5.0x, +2.0x, +3.0x, +4.0x,-1.0x, =-3.0
0x -1.0x,-5.0x, -2.0x, +6.0x +4.0x = 1.0
0x +6.0x, -4.0x, -5.0x, +3.0x,-1.0x,=-6.0
0x +3.0x,-6.0x -5.0x -2.0x,-2.0x =10.0
0x +6.0x, +4.0x, +2.0x, -5.0x,+4.0x,=-6.0
0x +4.0x, +4.0x, +4.0x, +5.0x, -4.0x_=-2.0

Position and Velocity of a Ball If a stationary ball is released at a height 2, above
the surface of the Earth with a vertical velocity v, the position and velocity of the
ball as a function of time will be given by the equations

1
h(t) = Egtz + vt + h, (2.40)

v(t) = gt + v, (2.41)

where g is the acceleration due to gravity (=9.81 m/s?), & is the height above the
surface of the Earth (assuming no air friction), and v is the vertical component
of velocity. Write a MATLAB program that prompts a user for the initial height
of the ball in meters and the velocity of the ball in meters per second and plots
the height and velocity as a function of time. Be sure to include proper labels
in your plots.

The distance between two points (x,, y,) and (x,, y,) on a Cartesian coordinate
plane is given by the equation

d=Vx, —x)+ (y, —y,) (2.42)

(See Figure 2.21.) Write a program to calculate the distance between any two
points (x,,y,) and (x,,y,) specified by the user. Use good programming practices
in your program. Use the program to calculate the distance between the points
(—3,2) and (3,—6).

o (x, y1)

° (xp )

Figure 2.21 Distance between two points on a Cartesian plane.



102 | Chapter 2 MATLAB Basics

2.13

2.14

2.15

A two-dimensional vector in a Cartesian plane can be represented in either rect-
angular coordinates (x,y) or the polar coordinates (7,0), as shown in Figure 2.22.
The relationships among these two sets of coordinates are given by the following
equations:

X =rcosf (2.43)
y = rsinf (2.44)
r=Ve+y (2.45)
6 = tan"% (2.46)

Use the MATLAB help system to look up function atan2, and use that func-
tion in answering the following questions.

(a) Write a program that accepts a two-dimensional vector in rectangular coor-
dinates and calculates the vector in polar coordinates, with the angle 0
expressed in degrees.

(b) Write a program that accepts a two-dimensional vector in polar coordinates
(with the angle in degrees) and calculates the vector in rectangular coordinates.

Write a version of the programs in Exercise 2.13 that uses functions sind,
cosd, and atan2d instead of functions sin, cos, and atan2. What is the
difference between these two sets of programs?

The distance between two points (x,, y,, z,) and (x,, y,, z,) in a three-dimensional
Cartesian coordinate system is given by the equation

d=NE -7+ -0+ @ -2 (2.47)

Write a program to calculate the distance between any two points (x,, y,, z,) and
(x,, y,, z,) specified by the user. Use good programming practices in your pro-
gram. Use the program to calculate the distance between the points (—3, 2, 5)
and (3,—6,—5).

y axis

.
— Y

Figure 2.22 A vector v can be represented in either rectangular
coordinates (x,y) or polar coordinates (r,0).



2.17 Exercises | 103

2.16 A three-dimensional vector can be represented in either rectangular coordinates
(x, y, z) or spherical coordinates (;; 6, ¢), as shown in Figure 2.23.3 The relation-
ships among these two sets of coordinates are given by the following equations:

X = rcos ¢ cos 0 (2.48)
y = rcos ¢ sin 6 (2.49)
z=rsin¢ (2.50)

r=vVx+y + 7z (2.51)

6 = tan’li (2.52)
Z
¢ = tanil\/xzifyz (2.53)

Use the MATLAB help system to look up function atan?2, and use that func-
tion in answering the following questions.

(a) Write a program that accepts a three-dimensional vector in rectangular coor-
dinates and calculates the vector in spherical coordinates, with the angles 6
and ¢ expressed in degrees.

(b) Write a program that accepts a three-dimensional vector in spherical coordi-
nates (with the angles 6 and ¢ in degrees) and calculates the vector in rectan-
gular coordinates.

2.17 MATLAB includes two functions cart2sph and sph2cart to convert back
and forth between Cartesian and spherical coordinates. Look these functions up
in the MATLAB help system and rewrite the programs in Exercise 2.15 using

Figure 2.23 A three-dimensional vector v can be represented in either
rectangular coordinates (x, y, z) or spherical coordinates (r, 0, ¢).

* These definitions of the angles in spherical coordinates are nonstandard according to international usage,
but they match the definitions employed by the MATLAB program.



104 | Chapter 2 MATLAB Basics

2.18

2.19

2.20

2.21

2.22

2.23

these functions. How do the answers compare between the programs written
using Equations (2.48) through (2.53) and the programs written using the built-in
MATLAB functions?

Unit Vectors A unit vector is a vector whose magnitude is 1. Unit vectors are used
in many areas of engineering and physics. A unit vector can be calculated from any
vector by dividing the vector by the magnitude of the vector. A two-dimensional
unit vector in the direction of vector v = xi + yj can be calculated as

xi-l—yj (2.54)
u=——— .
VX2 + y?

A three-dimensional unit vector in the direction of vector v = xi + yj + zk can
be calculated as

x4y + zk
= W (2.55)
VxE+y + 22

(a) Write a program that accepts a two-dimensional vector in rectangular coordi-
nates and calculates the unit vector pointing in that direction.

(b) Write a program that accepts a three-dimensional vector in rectangular coor-
dinates and calculates the unit vector pointing in that direction.

Calculating the Angle between Two Vectors It can be shown that the dot prod-

uct of two vectors is equal to the magnitude of each vector times the cosine of

the angle between them:

u - v = |ul[vcos (2.56)

Note that this expression works for both two-dimensional and three-dimensional
vectors. Use Equation (2.56) to write a program that calculates the angle between
two user-supplied two-dimensional vectors.

Use Equation (2.56) to write a program that calculates the angle between two
user-supplied three-dimensional vectors.

Plot the functions f,(x) = sinx and f,(x) = cos 2x for —27 = x = 27 on the
same axes, using a solid blue line for f,(x) and a dashed red line for f,(x). Then
calculate and plot the function f,(x) = f,(x) — f,(x) on the same axes using a
dotted black line. Be sure to include a title, axis labels, a legend, and a grid on
the plot.

Plot the function f(x) = 2¢ % + 0.5¢ %" for 0 =< x = 20 on a linear set of axes.
Now plot the function f(x) = 2¢ > + 0.5¢ " for 0 = x = 20 with a logarith-
mic y axis. Include a grid, title, and axis labels on each plot. How do the two
plots compare?

In the linear world, the relationship between the net force on an object and the
acceleration of the object is given by Newton’s law:

F = ma (2.57)



2.24

2.25

2.17 Exercises | 105

where F is the net vector force on the object, m is the mass of the object, and a
is the acceleration of the object. If acceleration is in meters per second squared
and mass is in kilograms, then the force is in newtons.

In the rotational world, the relationship between the net torque on an
object and the angular acceleration of the object is given by

T=lo (2.58)

where 7 is the net torque on the object, / is the moment of inertia of the object,
and « is the angular acceleration of the object. If angular acceleration is in radi-
ans per second squared and the moment of inertia is in kilogram-meters squared,
then the torque is in newton-meters.

Suppose that torque of 20 N-m is applied to the shaft of a motor having a
moment of inertia of 15 kg-m?. What is the angular acceleration of the shaft?

Decibels Engineers often measure the ratio of two power measurements in
decibels, or dB. The equation for the ratio of two power measurements in deci-
bels is

PZ
dB = 101log — (2.59)
Pl
where P, is the power level being measured and P, is some reference power
level.

(a) Assume that the reference power level P, is 1 mW, and write a program that
accepts an input power P, and converts it into decibels with respect to the
1 mW reference level. (Engineers have a special unit for decibel power levels
with respect to a I mW reference: dBm.) Use good programming practices in
your program.

(b) Write a program that creates a plot of power in watts versus power in dBm
with respect to a 1 mW reference level. Create both a linear xy plot and a
log-linear xy plot.

Power in a Resistor The voltage across a resistor is related to the current flowing
through it by Ohm’s law (see Figure 2.24):

V=IR (2.60)
and the power consumed in the resistor is given by the equation

P=1V (2.61)

JE

Vv

Figure 2.24 Voltage and current in a resistor.



106 | Chapter 2 MATLAB Basics

2.26

2.27

Write a program that creates a plot of the power consumed by a 1000 () resistor
as the voltage across it is varied from 1 V to 200 V. Create two plots, one showing
power in watts, and one showing power in dBW (dB power levels with respect to
a 1 W reference).

Hyperbolic Cosine The hyperbolic cosine function is defined by the equation

e* +e
cosh x = — (2.62)
Write a program to calculate the hyperbolic cosine of a user-supplied value x.
Use the program to calculate the hyperbolic cosine of 3.0. Compare the answer
that your program produces to the answer produced by the MATLAB intrinsic
function cosh (x) . Also, use MATLAB to plot the function cosh (x) . What is

the smallest value that this function can have? At what value of x does it occur?

Energy Stored in a Spring The force required to compress a linear spring is
given by the equation

F = kx (2.63)

where F is the force in newtons and & is the spring constant in newtons per meter.
The potential energy stored in the compressed spring is given by the equation

1
E= ke (2.64)

where E is the energy in joules. The following information is available for four
springs:

Spring | Spring2 Spring3 Spring 4

Force (N) 20 30 25 20
Spring constant k (N/m) 150 200 250 300

2.28

Determine the compression of each spring and the potential energy stored in
each spring. Which spring has the most energy stored in it?

Radio Receiver A simplified version of the front end of an AM radio receiver is
shown in Figure 2.25. This receiver consists of an RLC tuned circuit containing
a resistor, a capacitor, and an inductor connected in series. The RLC circuit is
connected to an external antenna and the ground, as shown in Figure 2.25.

The tuned circuit allows the radio to select a specific station out of all the
stations transmitting on the AM band. At the resonant frequency of the circuit,
essentially all of the signal V, appearing at the antenna appears across the resis-
tor, which represents the rest of the radio. In other words, the radio receives its
strongest signal at the resonant frequency. The resonant frequency of the LC
circuit is given by the equation

"= 2mvic (269



2.29

2.30

2.17 Exercises | 107

Antenna

Vo R§VR
dJT_

Figure 2.25 A simplified version of the front end of an AM radio receiver.

Groun

where L is inductance in henrys (H) and C is capacitance in farads (F). Write a
program that calculates the resonant frequency of this radio set given specific
values of L and C. Test your program by calculating the frequency of the radio
when L = 0.125 mH and C = 0.20 nF.

Radio Receiver The average (rms) voltage across the resistive load in Figure 2.25
varies as a function of frequency according to Equation (2.66):

vV = 1% (2.66)

R v °
R2+<wL—)
oC

where w = 27f and f'is the frequency in hertz. Assume that L = 0.125 mH, C =
0.20 nF, R = 50 £}, and V, = 10 mV.

(a) Plot the rms voltage on the resistive load as a function of frequency. At what
frequency does the voltage on the resistive load peak? What is the voltage on
the load at this frequency? This frequency is called the resonant frequency f;
of the circuit.

(b) If the frequency is changed to 10 percent greater than the resonant frequency,
what is the voltage on the load? How selective is this radio receiver?

(c) At what frequencies will the voltage on the load drop to half of the voltage at
the resonant frequency?

Suppose two signals were received at the antenna of the radio receiver
described in Exercise 2.29. One signal has a strength of 1 V at a frequency of
1000 kHz, and the other signal has a strength of 1 V at 950 kHz. Calculate the
voltage V, that will be received for each of these signals. How much power will
the first signal supply to the resistive load R? How much power will the second
signal supply to the resistive load R? Express the ratio of the power supplied by
signal 1 to the power supplied by signal 2 in decibels (see Problem 2.24 for the
definition of a decibel). How much is the second signal enhanced or suppressed
compared to the first signal? (Note: The power supplied to the resistive load can
be calculated from the equation P = V2/R.)



108 | Chapter 2 MATLAB Basics

231

2.32

R, Ry Ry

Figure 2.26 Three resistors in parallel.

Equivalent Resistance The equivalent resistance R, of three resistors in paral-
lel is given by Equation 2.67.

1
R =—
B 1 2.67)
Rl R2 3

Calculate the equivalent resistance R, of the circuit shown in Figure 2.26
assuming that R, = 100 ), R, = 50 {2, and R, = 40 Q.

Aircraft Turning Radius An object moving in a circular path at a constant tan-
gential velocity v is shown in Figure 2.27. The radial acceleration required for the
object to move in the circular path is given by the Equation (2.68):

a=— (2.68)

r

where a is the centripetal acceleration of the object in m/s?, v is the tangential
velocity of the object in m/s, and r is the turning radius in meters. Suppose that
the object is an aircraft, and answer the following questions about it:

————

S————

Figure 2.27 An object moving in uniform circular motion due to
the centripetal acceleration a.



2.17 Exercises | 109

(a) Suppose that the aircraft is moving at Mach 0.8, or 80 percent of the speed of
sound. If the centripetal acceleration is 2 g, what is the turning radius of the
aircraft? (Note: For this problem, you may assume that Mach 1 is equal to
340 m/s and that 1 g = 9.81 m/s%.)

(b) Suppose that the speed of the aircraft increases to Mach 1.5. What is the
turning radius of the aircraft now?

(c) Plot the turning radius as a function of aircraft speed for speeds between
Mach 0.5 and Mach 2.0, assuming that the acceleration remains 2 g.

(d) Suppose that the maximum acceleration that the pilot can stand is 7 g. What
is the minimum possible turning radius of the aircraft at Mach 1.3?

(e) Plot the turning radius as a function of centripetal acceleration for accelera-
tions between 2 g and 8 g, assuming a constant speed of Mach 0.8.






Two-Dimensional Plots

One of the most powerful features of MATLAB is that it allows engineers to easily
create plots that visualize engineering data. In other programming languages used
by engineers (such as C++, Java, Fortran, and so forth), plotting is a major task
involving either a lot of effort or additional software packages that are not a part of
the basic language. In contrast, MATLAB is ready to create high-quality plots with
minimal effort right out of the box.

We introduced a few simple plotting commands in Chapter 2, and we used
them to display a variety of data on linear and logarithmic scales in various examples
and exercises.

Because the ability to create plots is so important, we devote all of Chapter 3
to learning how to make good two-dimensional plots of engineering data. Three-
dimensional plots will be addressed in Chapter 8.

3.1 Additional Plotting Features for Two-Dimensional Plots

This section describes additional features that improve the simple two-dimensional
plots introduced in Chapter 2. These features permit us to control the range of x
and y values displayed on a plot, to lay multiple plots on top of each other, to create
multiple figures, to create multiple subplots within a figure, and to provide greater
control of the plotted lines and text strings. In addition, we will learn how to create
polar plots.

3.1.1 Logarithmic Scales

It is possible to plot data on logarithmic scales as well as linear scales. There are four
possible combinations of linear and logarithmic scales on the x and y axes, and each
combination is produced by a separate function.



112 | Chapter 3 Two-Dimensional Plots

—

The plot function plots both x and y data on linear axes.

2. The semilogx function plots x data on logarithmic axes and y data on
linear axes.

3. The semilogy function plots x data on linear axes and y data on logarith-
mic axes.

4. The loglog function plots both x and y data on logarithmic axes.

All of these functions have identical calling sequences—the only difference is the
type of axis used to plot the data.

To compare these four types of plots, we will plot the function y (x) = 2x* over
the range 0 to 100 with each type of plot. The MATLAB code to do this is:

X 0:0.2:100;
y =2 * x.72;

[)

% For the linear / linear case
plot (x,y);

title('Linear / linear Plot');
xlabel ('x");

ylabel('y"');

grid on;

% For the log / linear case
semilogx (x,Vy) ;

title('Log / linear Plot');
xlabel ('x");

ylabel('y');

grid on;

% For the linear / log case
semilogy (x,Vy) ;
title('Linear / log Plot');
xlabel ('x");

ylabel('y');

grid on;

% For the log / log case
loglog (x,Y) ;

title('Log / log Plot');
xlabel ('x") ;
ylabel('y');

grid on;

Examples of each plot are shown in Figure 3.1.

It is important to consider the type of data being plotted when selecting linear
or logarithmic scales. In general, if the range of the data being plotted covers many
orders of magnitude, a logarithmic scale will be more appropriate because on a linear
scale a very small part of the data set will be invisible. If the data being plotted covers
a relatively small dynamic range, then linear scales work very well.



3.1 Additional Plotting Features for Two-Dimensional Plots | 113

File Edit View Insert Tools Desktop Window Help
RE DR P AREELE

x10% Linear / linear Plot

File Edit View Insert Tools Desktop Window Help

NS L ARTDRL- 2|08 | e

104 Log / linear Plot




114 | Chapter 3 Two-Dimensional Plots

File Edit View Inset Tools Desktop Window Help

NEde | LT DRL-|G|0E| e

Linear / log Plot

10°

File Edit View Insert Tools Desktop Window Help
DEES AT DEL 3| 0E D

Log/ log Plot

10°

104

10?

102

107

10°

(d)

Figure 3.1 Comparison of linear, semilog x, semilog y, and log-log plots.



3.1 Additional Plotting Features for Two-Dimensional Plots | 115

Command/Function Duality

Some items in MATLAB seem to be unable to make up their minds whether they
are commands (words typed out on the command line) or functions (with argu-
ments in parentheses). For example, sometimes axis seems to behave like a
command and sometimes it seems to behave like a function. Sometimes we
treat it as a command: axis on; and other times we might treat it as a function:
axis ([0 20 0 35]).How is this possible?

The short answer is that MATLAB commands are really implemented by func-
tions, and the MATLAB interpreter is smart enough to substitute the function call
whenever it encounters the command. It is always possible to call the command
directly as a function instead of using the command syntax. Thus the following two
statements are identical:

axis on;
axis ('on') ;

Whenever MATLAB encounters a command, it forms a function from the
command by treating each command argument as a character string and calling
the equivalent function with those character strings as arguments. Thus MATLAB
interprets the command

garbage 1 2 3
as the following function call:
garbage ('1','2"','3")

Note that only functions with character arguments can be treated as commands.
Functions with numerical arguments must be used in function form only. This fact
explains why axis is sometimes treated as a command and sometimes treated as
a function.

Wjf Good Programming Practice

If the range of the data to plot covers many orders of magnitude, use a logarithmic
scale to represent the data properly. If the range of the data to plot is an order of mag-
nitude or less, use a linear scale.

W

Also, be careful of trying to plot data with negative values on a logarithmic
scale. The logarithm of a negative number is undefined for real numbers, so those
negative points will never be plotted. MATLAB issues a warning and ignores those
negative values.



116 | Chapter 3 Two-Dimensional Plots

[x]] Programming Pitfalls

Do not attempt to plot negative data on a logarithmic scale. The data will be ignored.

3.1.2 Controlling x- and y-axis Plotting Limits

By default, a plot is displayed with x- and y-axis ranges wide enough to show every
point in an input data set. However, it is sometimes useful to display only the subset
of the data that is of particular interest. This can be done using the axis command/
function (see the Command/Function Duality sidebar about the relationship between
MATLAB commands and functions).

Some of the forms of the axis command/function are shown in Table 3.1. The
two most important forms are shown in bold type—they let an engineer get the cur-
rent limits of a plot and modify them. A complete list of all options can be found in
the MATLAB on-line documentation.

Table 3.1: Forms of the axis Function/Command

Command Description

v = axis; This function returns a 4-element row vector containing [Xmin Xmax ymin ymax],
where xmin, xmax, ymin, and ymax are the current limits of the plot.

axis ([xmin xmax  This function sets the x and y limits of the plot to the specified values.

ymin ymax]) ;

axis auto This command restores axes to their default settings.

axis equal This command sets the axis increments to be equal on both axes.

axis ij This command sets the plots into Matrix Axes mode, where the 7 axis is
vertical positive down, and the j axis is horizontal positive right (the default plot-
ting case).

axis manual This command freezes plot scaling at the current limits. If additional plots are
added on the same axes with hold turned on, they will be plotted with the existing
limits.

axis normal This command cancels the effect of axis equal and axis square.

axis square This command makes the current axis box square.

axis tight This command sets the axis limits to the range of the data.

axis off This command turns off all axis labeling, tick marks, and background.

axis on This command turns on all axis labeling, tick marks, and background (default case).

axis xy This command sets the plots into Cartesian Axes mode, where the x axis is

horizontal positive to the right, and the y axis is vertical positive up (the default
plotting case).




3.1 Additional Plotting Features for Two-Dimensional Plots | 117

To illustrate the use of axis, we will plot the function f(x) = sin x from —2
to 277, and then restrict the axes to the region defined by 0 = x =wmand 0 =y =
1. The statements to create this plot are as follows, and the resulting plot is shown
in Figure 3.2a.

X = -2*pi:pi/20:2*pi;

y = sin(x);

plot (x,vy) ;

title ('Plot of sin(x) vs xX');
grid on;

The current limits of this plot can be determined from the basic axis function.

» limits = axis
limits =
-8 8 -1 1

These limits can be modified with the function call axis ([0 pi 0 11).After that
function is executed, the resulting plot is as shown in Figure 3.2b.

3.1.3 Plotting Multiple Plots on the Same Axes

Normally, a new plot is created each time a plot command is issued and the pre-
vious data displayed on the figure is lost. This behavior can be modified with the
hold command. After a hold on command is issued, all additional plots will
be laid on top of the previously existing plots. A hold off command switches
plotting behavior back to the default situation, in which a new plot replaces the
previous one.

For example, the following commands plot sin x and cos x on the same axes. The
resulting plot is shown in Figure 3.3.

X = -pi:pi/20:pi;

vyl = sin(x);

y2 = cos(x);

plot (x,vy1l, 'b-");
hold on;

plot (x,vy2, 'k--");
hold off;

legend ('sin x','cos x');

3.1.4 Creating Multiple Figures

MATLAB can create multiple Figure Windows, with different data displayed in each
window. Each Figure Window is identified by a figure number, which is a small
positive integer. The first Figure Window is Figure 1, the second is Figure 2, and so
forth. One of the Figure Windows will be the current figure, and all new plotting
commands will be displayed in that window.



118 | Chapter 3 Two-Dimensional Plots

File Edit View Insert Tools Desktop Window Help
DEES | M ARATDEL- 2|08 |aD

Plot of sin(x) vs x

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

-1

File Edit View Inset Tools Desktop Window Help

DgHe | KMAAODEL-S|08|nD

Plot of sin(x) vs x

1 T

09

0.8

0.7

0.6

0.5

0.4

0.3

0.2

(b)

Figure 3.2 (a) Plot of sin x versus x. (b) Closeup of the region [0 ™ 0 1].



3.1 Additional Plotting Features for Two-Dimensional Plots | 119

File Edit View Inset Tools Desktop Window Help

NEHSLMRAAOVDEL-|E|0E| D

Figure 3.3 Multiple curves plotted on a single set of axes using the
hold command.

The current figure is selected with the £ igure function. This function takes the
form "figure (n)", where n is a figure number. When this command is executed,
Figure n becomes the current figure and is used for all plotting commands. The figure
is automatically created if it does not already exist. The current figure may also be
selected by clicking on it with the mouse.

The function gcf returns a handle to the current figure, which can be used to
refer to it in MATLAB functions. This function can be used by an M-file if it needs
to know the current figure.

The following commands illustrate the use of the figure function. They
create two figures, displaying e* in the first figure and e in the second one (see
Figure 3.4).

figure (1)

X = 0:0.05:2;

vyl = exp(x);

plot (x,v1) ;
title (' exp(x)"');
grid on;



120 | Chapter 3 Two-Dimensional Plots

File Edit View Insert Tools Desktop Window Help
DEde | h|RNTUDEL- 2|0 | a0
exp(x)

File Edit View Inset Tools Desktop Window Help
DEdS | |RRAOUDEL-|S|0E|aD
exp(-x)

1 T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 ;
0 02 04

(b)

Figure 3.4 Creating multiple plots on separate figures using the figure
function. (a) Figure I; (b) Figure 2.



3.1 Additional Plotting Features for Two-Dimensional Plots | 121

figure (2)

y2 = exp(-x);

plot (x,v2);
title(' exp(-x)"');
grid on;

3.1.5 Subplots

It is possible to place more than one set of axes on a single figure, creating multiple
subplots. Subplots are created with a subplot command of the form

subplot (m,n, p)

This command divides the current figure into m x n equal-sized regions, arranged in
m rows and n columns, and creates a set of axes at position p to receive all current
plotting commands. The subplots are numbered from left to right and from top to
bottom. For example, the command subplot (2,3,4) would divide the current
figure into six regions arranged in two rows and three columns, and create an axis in
position 4 (the lower left one) to accept new plot data (see Figure 3.5).

If a subplot command creates a new set of axes that conflict with a previously
existing set, then the older axes are automatically deleted.

File Edit View Insert Tools Desktop Window Help

NEES| L |RXROUDEL- |2 0H| 8D

Subplot generated in
position 4 (the lower-
left corner)

Figure 3.5 The axis created by the subplot (2,3,4) command.



122 | Chapter 3 Two-Dimensional Plots

File Edit View Insert Teols Desktop Window Help

DEde | |ANODEL- || 0B|aD

Subplot 1 title

Figure 3.6 A figure with two subplots showing sin x and cos x,
respectively.

The following commands create two subplots within a single window and dis-
play the separate graphs in each subplot. The resulting figure is shown in Figure 3.6.

figure (1)

subplot(2,1,1)

X = -pi:pi/20:pi;

y = sin(x);

plot (x,y);

title ('Subplot 1 title');
subplot(2,1,2)

b'4 -pi:pi/20:pi;

vy cos (x) ;

plot (x,vy) ;

title ('Subplot 2 title');

3.1.6 Controlling the Spacing between Points on a Plot

In Chapter 2, we learned how to create an array of values using the colon operator.
The colon operator

start:incr:end



3.1 Additional Plotting Features for Two-Dimensional Plots | 123

produces an array that starts at start, advances in increments of incr, and ends
when the last point plus the increment would equal or exceed the value end. The
colon operator can be used to create an array, but it has two disadvantages in regular
use:

1. Itis not always easy to know how many points will be in the array. For
example, can you tell how many points would be in the array defined by
0:pi:207?

2. There is no guarantee that the last specified point will be in the array, since
the increment could overshoot that point.

To avoid these problems, MATLAB includes two functions to generate an array
of points where the user has full control of both the exact limits of the array and
the number of points in the array. These functions are 1inspace, which produces
a linear spacing between samples, and 1ogspace, which produces a logarithmic
spacing between samples.

The forms of the 1inspace function are:

y = linspace(start,end) ;
y = linspace(start,end,n);

where start is the starting value, end is the ending value, and n is the number
of points to produce in the array. If only the start and end values are specified,
linspace produces 100 equally spaced points starting at start and ending at
end. For example, we can create an array of 10 evenly spaced points on a linear scale
with the command

» linspace(1,10,10)
ans =
1 2 3 4 5 6 7 8 9 10

The forms of the Logspace function are:

y = logspace(start,end) ;
y = logspace(start,end,n);

where start is the exponent of the starting power of 10, end is the exponent of the
ending power of 10, and n is the number of points to produce in the array. If only the
start and end values are specified, 1logspace produces 50 points equally spaced
on a logarithmic scale, starting at start and ending at end. For example, we can
create an array of logarithmically spaced points starting at 1 (=10°) and ending at
10 (=10") on a logarithmic scale with the command

» logspace(0,1,10)
ans =

1.0000 1.2915 1.6681 2.1544 2.7826
3.5938 4.6416 5.9948 7.7426 10.0000

The 1ogspace function is especially useful for generating data to be plotted on a
logarithmic scale, since the points on the plot will be evenly spaced.



124 | Chapter 3 Two-Dimensional Plots

P> Example 3.1—Creating Linear and Logarithmic Plots

Plot the function

y(x) = x> — 10x + 25 3.1)

over the range 0 to 10 on a linear plot using 21 evenly spaced points in one subplot,
and over the range 107! to 10' on a semilogarithmic plot using 21 evenly spaced
points on a logarithmic x axis in a second subplot. Put markers on each point used
in the calculation so that they will be visible, and be sure to include a title and axis
labels on each plot.

Solution To create these plots, we will use function 1inspace to calculate an evenly
spaced set of 21 points on a linear scale, and function 1ogspace to calculate an evenly
spaced set of 21 points on a logarithmic scale. Next, we will evaluate Equation (3.1) at
those points and plot the resulting curves. The MATLAB code to do this is as follows:

o° o° o° o° o° o° o o° o° o o° o° o° o°

o\°

O

°

Script file: linear and log plots.m

Purpose:
This program plots y(x) = x*2 - 10*x + 25
on linear and semilogx axes.

Record of revisions:
Date Programmer Description of change

Define variables:

g -- Microphone gain constant
gain -- Gain as a function of angle
theta -- Angle from microphone axis (radians)

Create a figure with two subplots

subplot(2,1,1);

o\°

X

Yy

Now create the linear plot

linspace (0, 10, 21);
x.%2 - 10*x + 25;

plot(x,y, 'b-");

hold on;
plot(x,y,'ro');
title('Linear Plot');
xlabel ('x"') ;
ylabel('y');

hold off;



3.1 Additional Plotting Features for Two-Dimensional Plots | 125

% Select the other subplot
subplot (2,1,2) ;

o

Now create the logarithmic plot
= logspace (-1, 1, 21);

= x.72 - 10*x + 25;
semilogx (x,y, 'b-");

hold on;

semilogx (x,y, 'ro') ;
title('Semilog x Plot');

xlabel ('x"') ;

ylabel ('y') ;

hold off;

MW

The resulting plot is shown in Figure 3.7. Note that the plot scales are different, but
each plot includes 21 evenly spaced samples.

File Edit View Insert Tools Desktop Window Help

NEEdL | NARODEL- |G|0H|aD

Linear Pilot

a0

Semilog x Plot

Figure 3.7 Plots of the function y(x) = x> — 10x + 25 on linear and
semilogarithmic axes.




126 | Chapter 3 Two-Dimensional Plots

3.1.7 Enhanced Control of Plotted Lines

In Chapter 2 we learned how to set the color, style, and marker type for a line. It is
also possible to set four additional properties associated with each line:

®m LineWidth—Specifies the width of each line in points

m MarkerEdgeColor—Specifies the color of the marker or the edge color
for filled markers

m MarkerFaceColor—Specifies the color of the face of filled markers

®m MarkerSize—Specifies the size of the marker in points

These properties are specified in the plot command after the data to be plotted in
the following fashion:

plot (x,y, 'PropertyName',6value, ...)

For example, the following command plots a 3-point-wide solid black line with
6-point-wide circular markers at the data points. Each marker has a red edge and a
green center, as shown in Figure 3.8. (See color insert.)

X = 0:pi/15:4*pi;

y = exp(2*sin(x)) ;

plot(x,y,'-ko', 'LineWidth',3.0, '"MarkerSize',6, ...
'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'g')

File Edit View Inset Tools Desktop Window Help

DEES L RAUDEL- |G| 0E| 8D

Figure 3.8 A plot illustrating the use of the LineWidth and Marker
properties. (See color insert.)



3.1 Additional Plotting Features for Two-Dimensional Plots | 127

3.1.8 Enhanced Control of Text Strings

Itis possible to enhance plotted text strings (titles, axis labels, etc.) with formatting such as
boldface and italic and with special characters such as Greek and mathematical symbols.

The font used to display the text can be modified by stream modifiers. A stream
modifier is a special sequence of characters that tells the MATLAB interpreter to
change its behavior. The most common stream modifiers are:

m \bf—Specifies boldface

m \ it—Specifies italic

m \ rm—Removes stream modifiers, restoring normal font

m \fontname { fontname }—Specifies the font name to use

m \fontsize{fontsize}—Specifies font size

m  {xxx}—Indicates that the characters inside the braces are subscripts

m * {xxx}—Indicates that the characters inside the braces are superscripts

Once a stream modifier has been inserted into a text string, it will remain in effect until
the end of the string or until cancelled. Any stream modifier can be followed by braces
{}. If a modifier is followed by braces, only the text within the braces is affected.

Special Greek and mathematical symbols may also be used in text strings.
They are created by embedding escape sequences into the text string. These escape
sequences are the same as those defined in the TeX language. A sample of the possi-
ble escape sequences is shown in Table 3.2; the full set of possibilities is included in
the MATLAB on-line documentation.

Table 3.2: Selected Greek and Mathematical Symbols

Character Character Character
Sequence Symbol Sequence Symbol Sequence Symbol
\alpha a \int ]
\beta B \cong =
\gamma v \Gamma r \sim

\delta b \Delta A \infty oo
\epsilon € \pm +
\eta n \leq <
\theta 0 \geq >
\lambda A \Lambda A \neq #*
\mu n \propto oc
\nu v \div +
\pi T \Pi II \circ °
\phi b \leftrightarrow ~
\rho p \leftarrow «—
\sigma o \Sigma 3 \rightarrow -
\tau T \uparrow )
\omega o \Omega Q \downarrow l




128 | Chapter 3 Two-Dimensional Plots

If one of the special escape characters \, {, }, , or * must be printed, precede it by
a backslash character.
The following examples illustrate the use of stream modifiers and special characters.

String Result

\tau {ind} versus \omega_ {\itm} T,  VEIsus @
\theta varies from O\circ to 90\circ 0 varies from 0° to 90°
\bf{B} {\its} B

N

- Bl Good Programming Practice

Use stream modifiers to create effects such as bold, italic, superscripts, subscripts,
and special characters in your plot titles and labels.

i

P> Example 3.2—Labeling Plots with Special Symbols

o° o° o o o° o° o o o o

o

Script

Plot the decaying exponential function
y(f) = 10e™" sin wt (3.2)

where the time constant 7 = 3 s and the radial velocity w =  rad/s over the range
0 =t = 10 s. Include the plotted equation in the title of the plot, and label the x and
y axes properly.

Solution To create this plot, we will use function 1inspace to calculate an evenly
spaced set of 100 points between 0 and 10. Next, we will evaluate Equation (3.2) at
those points and plot the resulting curve. Finally, we will use the special symbols in
this chapter to create the title of the plot.

The title of the plot must include italic letters for y(7), t/7, and wt, and it must set
the ¢/7 as a superscript. The string of symbols that will do this is

\it{y(t)} = \it{e}*{-\it{t / \tau}} sin \it{\omegat}
The MATLAB code that plots this function is as follows:

file: decaying exponential.m

Purpose:
This program plots the function

y(t)

= 10*EXP(-t/tau) *SIN (omega*t)

on linear and semilogx axes.

Record of revisions:
Date Programmer Description of change

01/06/18

/18 S. J. Chapman Original code



3.1 Additional Plotting Features for Two-Dimensional Plots | 129

o

o

Define variables:

% tau -- Time constant, s

% omega -- Radial velocity, rad/s
% t -- Time (s)

% vy -- Output of function

o

Declare time constant and radial velocity
tau = 3;
omega = pi;

o

Now create the plot

= linspace (0, 10, 100);

y = 10 * exp(-t./tau) .* sin(omega .* t);

plot(t,y, 'b-");

title('Plot of \it{y(t)} = \it{e}*{-\it{t / \tau}} sin \it{\omegat}');
xlabel ("\it{t}");

vlabel ("\it{y(t)}");

grid on;

o

The resulting plot is shown in Figure 3.9.

File Edit View Insert Tools Desktop Window Help

NEdL | RAUDEL-|G|0H| e

Plot of y(t) = e/ " sin «t

Figure 3.9 Plot of the function y(t) = 10e " sin wt with special
symbols used to reproduce the equation in the title.




130 | Chapter 3 Two-Dimensional Plots

3.2 Polar Plots

MATLAB includes a special function called polarplot that plots two-dimensional
data in polar coordinates instead of rectangular coordinates.' The basic form of this
function is

polarplot (theta, r)
polarplot (theta, r,LineSpec)

where theta is an array of angles in radians, and r is an array of distances from the
center of the plot. The angle theta is the angle (in radians) of a point counterclock-
wise from the right-hand horizontal axis, r is distance from the center of the plot to
the point, and LineSpec is the line specification as defined in Section 2.11.4.

This function is useful for plotting data that is intrinsically a function of angle,
as we will see in the next example.

P> Example 3.3—Cardioid Microphone

Most microphones designed for use on a stage are directional microphones, which
are specifically built to enhance the signals received from the singer in front of the
microphone while suppressing the audience noise from behind the microphone. The
gain of such a microphone varies as a function of angle according to the equation

Gain = 2g(1 + cos 0) (3.3)

where g is a constant associated with a particular microphone, and 6 is the angle from
the axis of the microphone to the sound source. Assume that g is 0.5 for a particular
microphone, and make a polar plot the gain of the microphone as a function of the
direction of the sound source.

Solution We must calculate the gain of the microphone versus angle and then plot
it with a polar plot. The MATLAB code to do this is as follows:

Script file: microphone.m

Purpose:
This program plots the gain pattern of a cardioid
microphone.

Record of revisions:
Date Programmer Description of change

01/06/18 S. J. Chapman Original code

o° o o o o° o° o° o o o

"Function polarplot was added in MATLAB Release R2016a. It does not work for earlier versions of
MATLAB. There is an older polar plot function called polar, but it is no longer recommended for use.



3.2 Polar Plots | 131

Define wvariables:

o° o o oP° o

g -- Microphone gain constant
gain -- Gain as a function of angle
theta -- Angle from microphone axis (radians)

o

Calculate gain versus angle

g = 0.5;

theta = linspace(0,2*pi,41);

gain = 2*g* (l+cos(theta)) ;

% Plot gain

polarplot (theta,gain,'r-"');

title ('\bfGain versus angle \it{\theta}');

The resulting plot is shown in Figure 3.10. Note that this type of microphone is called
a “cardioid microphone” because its gain pattern is heart shaped.

File Edit View Insert Tools Desktop Window Help

NEde AU DEL- |G| 08| e

Gain versus angle ¢
90

—5

1.5

Figure 3.10 Gain of a cardioid microphone. (See color insert.)




132 | Chapter 3 Two-Dimensional Plots

3.3 Annotating and Saving Plots

Once a plot has been created by a MATLAB program, a user can edit and annotate
the plot using the GUI-based tools available from the plot toolbar. Figure 3.11
shows the tools available, which allow the user to edit the properties of any objects

on the plot or to add annotations to the plot. When the Editing button (| [3 |)

is selected from the toolbar, the editing tools become available for use. When
the button is depressed, clicking any line or text on the figure will cause it to be
selected for editing, and double-clicking the line or text will open a Property Editor
Window that allows the user to modify any or all of the characteristics of that
object. Figure 3.12 shows Figure 3.10 after a user has clicked on the red line to
change it to a 3-pixel-wide solid blue line. (See color insert.)

The figure toolbar also includes a Plot Browser button ( i ). When this button
is depressed, the Plot Browser is displayed. This tool gives the user complete control
over the figure. The user can add axes, edit object properties, modify data values, and
add annotations such as lines and text boxes.

If it is not otherwise displayed, the user can enable a Plot Edit Toolbar by select-
ing the “View > Plot Edit Toolbar” menu item. This toolbar allows a user to add
lines, arrows, text, rectangles, and ellipses to annotate and explain a plot. Figure 3.13
shows a Figure Window with the Plot Edit Toolbar enabled.

File Edit View Insert Tools Desktop Window Help

DI KRRV BDEL-|S|0H|a D

The plot browser. Clicking
this tool enables the plot
browser.

The EDIT tool. Clicking this
tool allows a userto select and
edit plot features.

Insert Legend Tool

Figure 3.11 The editing tools on the figure toolbar.



3.3 Annotating and Saving Plots | 133

Figure 3.12 Figure 3.10 after the line has been modified using the
editing tools built into the figure toolbar. (See color insert.)

File Edit View Insert Tools Desktop Window Help
FE DIDNEECEI PAREELLE
dlAaA|BIIEEENNNNNTOO|W S

Ellipse tool: Add
ellipses to a plot

Line tool: Add  Arrow tool: Add ~ Text tool: Add Rectangle tool: Add
lines to a plot. arrows to a plot annotations to a rectangles to a plot
plot

Figure 3.13 A figure window showing the Plot Edit Toolbar.



134 | Chapter 3 Two-Dimensional Plots

R R e . R o D W D = lrcx
DEde|h "090 - 308 om L]
M LlAA B EED \\\‘\'_jx_-__l___r_g_ a e

=1 Pt Booyes

B \bbtinin veren sncgle \afitheta)
A -

150 k.

e
200,

Nols rusll af rear of micmphone.

20 00

Figure 3.14 Figure 3.10 after the Plot Browser has been used to add an
arrow and annotation.

Figure 3.14 shows the plot in Figure 3.10 after the Plot Browser and the Plot Edit
Toolbar have been enabled. In this figure, the user has used the controls on the Plot
Edit Toolbar to add an arrow and a comment to the plot.

When the plot has been edited and annotated, the user can save the entire plot in
a modifiable form using the “File/Save As” menu item from the Figure Window. The
resulting figure file (* . £1g) contains all the information required to re-create the
figure plus annotations at any time in the future.

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 3.3. If you have trouble with the quiz, reread the section,
ask your instructor for help, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

1. Write the MATLAB statements required to plot sin x versus cos 2x from 0 to
21 in steps of 7/10. The points should be connected by a 2-pixel-wide red line,
and each point should be marked with a 6-pixel-wide blue circular marker.

2. Use the Figure editing tools to change the markers to black squares on the
plot created in quiz question 1. Add an arrow and annotation pointing to the
location x = 7 on the plot.

Write the MATLAB text string that will produce the following expressions:
3. f(x) = sinfcos2 ¢
4. Plot of > x” versus x



3.4 Additional Types of Two-Dimensional Plots | 135

Write the expression produced by the following text strings:

5. "\tau\it_ {m}"'

6. "\bf\itx {1}"{ 2} + x {2}"{ 2} \rm(units: \bfm*{2}\rm)'

7. Plot the function r = 10* cos (36) for 0 < 6 =< 27 in steps of 0.017 using
a polar plot. |

8. Plot the function y(x) = by for0.01 = x = 100 on alinear and alog-log plot.

X

Take advantage of 1inspace and logspace when creating the plots.
What is the shape of this function on a log-log plot?

3.4 Additional Types of Two-Dimensional Plots

In addition to the two-dimensional plots that we have already seen, MATLAB sup-
ports many other more specialized plots. In fact, the MATLAB help system lists more
than 20 types of two-dimensional plots. Examples include stem plots, stair plots,
bar plots, pie plots, three-dimensional pie plots, and compass plots. A stem plot
is a plot in which each data value is represented by a marker and a line connecting
the marker vertically to the x axis. A stair plot is a plot in which each data point is
represented by a horizontal line, and successive points are connected by vertical lines,
producing a stair-step effect. A bar plot is a plot in which each point is represented
by a vertical bar or horizontal bar. A pie plot is a plot represented by “pie slices” of
various sizes. A three-dimensional pie plot is a pie plot displayed in three dimensions
(like a coin). Finally, a compass plot is a type of polar plot in which each value is rep-
resented by an arrow whose length is proportional to its value. These types of plots are
summarized in Table 3.3, and examples of all of the plots are shown in Figure 3.15.

Table 3.3: Additional Two-Dimensional Plotting Functions

Function Description

bar (x,y) This function creates a vertical bar plot, with the values in x used to label each bar
and the values in y used to determine the height of the bar.

barh (x,y) This function creates a horizontal bar plot, with the values in x used to label each bar

compass (x,Vy)

and the values in y used to determine the horizontal length of the bar.

This function creates a polar plot, with an arrow drawn from the origin to the location
of each (x,y) point. Note that the locations of the points to plot are specified in Carte-
sian coordinates, not polar coordinates.

pie (x) This function creates a pie plot. This function determines the percentage of the total pie cor-

pie(x,explode) responding to each value of x and plots pie slices of that size. The optional array explode
controls whether or not individual pie slices are separated from the remainder of the pie.

pie3(x) This function creates a three-dimensional pie plot. It is otherwise similar to pie.

pie3 (x,explode)

stairs(x,y)

stem(x,y)

This function creates a stair plot, with each stair step centered on an (x,y) point.

This function creates a stem plot, with a marker at each (x,y) point and a stem drawn
vertically from that point to the x axis.




136 | Chapter 3 Two-Dimensional Plots

File Edit View Insert Tools Desktop Window Help
NEWS| b RAUDEL- 3|08 |80
Example of a Stem Plot

File Edit View Insert Tools Desktop Window Help

NEEL| L RRUDEL- |G 0E | aD

Example of a Stair Plot




3.4 Additional Types of Two-Dimensional Plots | 137

File Edit View Insert Tools Desktop Window Help
NEES|L|RXNUDEL |3 |0E|ad
Example of a Bar Plot

File Edit View Insert Tools Desktop Window Help

NEEde | |RXRUDEL - G|0E |80

Example of a Horizontal Bar Plot




138 | Chapter 3 Two-Dimensional Plots

File Edit View Insert Tools Desktop Window Help
EEIDNEEEE Y AREE
Example of a Pie Plot

16%

File Edit View Insert Tools Desktop Window Help

AEF BN Y AR

Example of a Pie Plot

o




3.4 Additional Types of Two-Dimensional Plots | 139

File Edit View Insert Tools Desktop Window Help N
Dade |k |RAUDEL B DB |aD
Example of a Compass Plot
2
120 60
4
3
150 30
2
1
180 0
210 330
240 300
270
(2

Figure 3.15 Additional types of two-dimensional plots: (a) stem plot;
(b) stair plot; (c) vertical bar plot; (d) horizontal bar plot; (e) pie plot;
(f) three-dimensional pie plot (see color insert); (g) compass plot.

Stair, stem, vertical bar, horizontal bar, and compass plots are all similar to
plot, and they are used in the same manner. For example, the following code pro-
duces the stem plot shown in Figure 3.15a.

x=[123 45 6];
y=12628785];

stem(x,vy) ;

title('\bfExample of a Stem Plot');
xlabel ('\bf\itx"') ;

ylabel ('\bf\ity"') ;

axis ([0 7 0 101);

Stair, bar, and compass plots can be created by substituting stairs, bar, barh, or
compass for stemin the preceding code. The details of all of these plots, including
any optional parameters, can be found in the MATLAB on-line help system.
Functions pie and pie3 behave differently than the other plots described pre-
viously. To create a pie plot, an engineer passes an array x containing the data to be
plotted, and function pie determines the percentage of the total pie that each element
of x represents. For example, if the array x is [1 2 3 4], then pie will calculate
that the first element x (1) is 1/10 or 10% of the pie, the second element x (2) is 2/10
or 20% of the pie, and so forth. The function then plots those percentages as pie slices.
Function pie also supports an optional parameter, explode. If present,
explode is a logical array of 1s and Os, with an element for each element in array
x. If a value in explode is 1, then the corresponding pie slice is drawn slightly



140 | Chapter 3 Two-Dimensional Plots

separated from the pie. For example, the following code produces the pie plot in

Figure 3.15e. Note that the

data
explode

[10 37 5
[0 1

second slice of the pie is “exploded.”

6 6];
0 0 0];

pie(data,explode) ;
title('\bfExample of a Pie Plot');
legend ('One', 'Two', 'Three', 'Four', 'Five') ;

Figure 3.15f shows the three-dimensional version of the pie plot, produced by substi-
tuting pie3 for pie in the preceding script.

3.5 Using the plot Function with Two-Dimensional Arrays

In all of the previous examples in this book, we have plotted data one vector at a time.
What would happen if, instead of a vector of data, we had a two-dimensional array
of data? The answer is that MATLAB treats each column of the two-dimensional
array as a separate line, and it plots as many lines as there are columns in the data set.
For example, suppose that we create an array containing the function f(x) = sinx in
column 1, f(x) = cosx in column 2, f(x) = sin’x in column 3, and f(x) = cos?x in
column 4, each for x = 0 to 10 in steps of 0.1. This array can be created using the

following statements:

X = 0:0.1:10;

y = zeros (length (x
y(:,1) = sin(x)
y(:,2) = cos(x)
y(:,3) = sin(x).
y(:,4) = cos(x).

) 4);

!

If this array is plotted using the plot (x,y) command, the results are as shown in
Figure 3.16. Note that each column of array y has become a separate line on the plot.
The bar and barh plots can also take two-dimensional array arguments. If an

array argument is supplied

to these plots, the program will display each column as a

separately colored bar on the plot. For example, the following code produces the bar

plot shown in Figure 3.17.

X = 1:5;

y = zeros(5,3);
y(l,:) = [1 2 3
y(2,:) = [2 3 4
y(3,:) = [3 45
y(4,:) = [4 5 4
y(5,:) = [5 4 3
bar (x,vy) ;

~.

!

!

[ S

!

title('\bfExample of a 2D Bar Plot');
xlabel ('\bf\itx') ;
ylabel ('\bf\ity"') ;



3.5 Using the plot Function with Two-Dimensional Arrays | 141

File Edit View Inset Tools Desktop Window Help

NEWe |k |RAUDEL- 3|08 |aO

Figure 3.16 The result of plotting the two-dimensional array y.
Note that each column is a separate line on the plot.

File Edit View Inset Tools Desktop Window Help
DEdS |k |RRUDEL-|S|DE D

Example of a 2D Bar Plot

Figure 3.17 A bar plot created from a two-dimensional array y.
Note that each column is a separate colored bar on the plot.



142 | Chapter 3 Two-Dimensional Plots

3.6 Plots with Two y Axes

Sometimes we would like to plot two or more data items with very different output
ranges, or with different units. For example, we might want to plot both the distance
traveled by an accelerating object and the velocity of the object. Normally, we would
accomplish this by creating two figures and plotting each type on a separate plot.
Alternately, we could create a single figure and create two subplots on it, one for the
distance and one for the velocity.

MATLAB supports an additional command that allows us to plot both the dis-
tance and the velocity on a single set of axes, with different scales on the left y axis
and the right y axis to support the two different types of data. This is the yyaxis
command.?

The forms of the yyaxis command are

yyaxis left
yyaxis right

After selecting an axis on which to plot data, the yyaxis left command will
cause all following commands to be referred to the left-hand axis, and the scale
of the left-hand axis will adjust to match the data. Similarly, the yyaxis right
command will cause all following commands to be referred to the right-hand axis,
and the scale of the right-hand axis will adjust to match the data. All plot-related
commands, including scaling and labels, will be referred to whichever axis is cur-
rently active.

For example, suppose that a car is at some position x, and some velocity v, at
time zero, and that it accelerates at a constant acceleration a starting at time zero.
Then the distance traveled by the car and the velocity of the car for times greater than
zero would be given by the following equations:

1
dt) =x, + vyt + Eatz (3.4)

v(t) = v, + at (3.5)

Assume that X, =10m, v, = 5 m/s, and a = 3 m/s?, and plot the distance and velocity
of the car as a function of time for time 0 = ¢t = 10s.
The following script file will create the required plot:

% Input data

x0 = 10;
vl = 5;
a = 3;

’The yyaxis command was added to MATLAB in Release 2016a. It does not work for earlier versions
of MATLAB. There is an older plot function called plotyy that performs the same function, but it is no
longer recommended for use.



3.6 Plots with Two yAxes | 143

o

Calculate the data to plot

= linspace(0,10) ;

=x0 +v0 * t + 0.5 * a .*x t.72;
=v0 + a * t;

< Qo

% Plot the distance on the left axis
figure (1) ;

yyaxis left;

plot(t,d, 'b-");

ylabel ('\bfDistance (m)"'");

% Plot the velocity on the right axis
yyaxis right;

plot(t,v,'r--"');

ylabel ('\bfVvelocity (m/s)"');

% Add title and x axis

title('\bfPlot of Distance and Velocity vs time');
xlabel ('\bfTime (s)')"

grid on;

The resulting plot is shown in Figure 3.18.

File Edit View Inset Tools Desktop Window Help
NEdS K RAUDEL-|B|0EH | aD
Plot of Distance and Velocity vs time

250

Velocity (m/s)

E
8
=
©
E
a

Figure 3.18 A plot showing the distance traveled and velocity of a car
versus time.The two plots are displayed on different y axes.



144 | Chapter 3 Two-Dimensional Plots

P> Example 3.4—Electrical Engineering: Frequency Response
of a Low-Pass Filter

A simple low-pass filter circuit is shown in Figure 3.19. This circuit consists of a
resistor and capacitor in series, and the ratio of the output voltage V to the input

voltage V. is given by the equation

v, 1

V. 1+ 2mfRC

where V. is a sinusoidal input voltage of frequency f, R is the resistance in ohms,
C is the capacitance in farads, and j is V' —1 (electrical engineers use j instead
of i for V' —1, because the letter i is traditionally reserved for the current in

a circuit).

Assume that the resistance R = 16 k() and capacitance C = 1 uF, and plot the
amplitude and frequency response of this filter over the frequency range 0 = f =

1000 Hz.

Solution The amplitude response of a filter is the ratio of the amplitude of the out-
put voltage to the amplitude of the input voltage, and the phase response of the filter
is the difference between the phase of the output voltage and the phase of the input
voltage. The simplest way to calculate the amplitude and phase response of the filter
is to evaluate Equation (3.6) at many different frequencies. The plot of the magnitude
of Equation (3.6) versus frequency is the amplitude response of the filter, and the plot
of the angle of Equation (3.6) versus frequency is the phase response of the filter.
Because the frequency and amplitude response of a filter can vary over a wide
range, it is customary to plot both of these values on logarithmic scales. On the other
hand, the phase varies over a very limited range, so it is customary to plot the phase
of the filter on a linear scale. Therefore, we will use a 1oglog plot for the amplitude
response and a semilogx plot for the phase response of the filter. We will display

both responses as two subplots within a figure.

We will also use stream modifiers to make the title and axis labels appear in

boldface; this improves the appearance of the plots.

o_

Figure 3.19 A simple low-pass filter circuit.



3.6 Plots with Two yAxes | 145

The MATLAB code required to create and plot the responses is as follows:

o\

Script file: plot filter.m

o\

o\

Purpose:
This program plots the amplitude and phase responses
of a low-pass RC filter.

o o o°

o\

Record of revisions:
Date Programmer Description of change

o\

o\

1/06/18 S. J. Chapman Original code

o\
\ Il

o\

o\

Define variables:
Amplitude response
C -- Capacitance (farads)

o\
Q
3
o]
|
|

o\

% il -- Frequency of input signal (Hz)
% phase -- Phase response

% R -- Resistance (ohms)

% res -- Vo/Vi

Initialize R & C

o

R = 16000; % 16 k ohms
C = 1.0E-6; % 1 uF

% Create array of input frequencies
f = 1:2:1000;

[)

% Calculate response

res = 1 ./ (1 + Jj*2*pi*f*R*C );
% Calculate amplitude response
amp = abs(res);

% Calculate phase response
phase = angle(res);

% Create plots

subplot(2,1,1);

loglog( £, amp );
title('\bfAmplitude Response') ;
xlabel (' \bfFrequency (Hz)');
ylabel ('\bfOutput/Input Ratio');
grid on;

subplot(2,1,2);
semilogx ( £, phase );



146 | Chapter 3 Two-Dimensional Plots

Amplitude Response

g 10°

=

<

-4

-

210! b

S

=

£

© 102 N

10° 10! 102 10

Frequency (Hz)

= Phase Response

A ——

2 T

s —0.5 g

£ {

s -1

g‘ \\\~—-

T 15 F

=

)

=

S 1 10! 10 10°
Frequency (Hz)

Figure 3.20 The amplitude and phase response of the low-pass filter circuit.

title ('\bfPhase Response') ;
xlabel (' \bfFrequency (Hz)');

ylabel ('\bfOutput-Input Phase (rad)');
grid on;

The resulting amplitude and phase responses are shown in Figure 3.20. Note that this
circuit is called a low-pass filter because low frequencies are passed through with
little attenuation, while high frequencies are strongly attenuated.

-

P> Example 3.5—Thermodynamics: The Ideal Gas Law

An ideal gas is one in which all collisions between molecules are perfectly elastic. It
is possible to think of the molecules in an ideal gas as perfectly hard billiard balls that
collide and bounce off of each other without losing kinetic energy.

Such a gas can be characterized by three quantities: absolute pressure (P), vol-
ume (V), and absolute temperature (7). The relationship among these quantities in an
ideal gas is known as the ideal gas law:

PV = nRT (3.7



3.6 Plots with Two yAxes | 147

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the gas in
liters (L), n is the number of molecules of the gas in units of moles (mol), R is the
universal gas constant (8.314 L -kPa/mol - K), and T is the absolute temperature in
kelvins (K). (Note: 1 mol = 6.02 X 10% molecules)

Assume that a sample of an ideal gas contains 1 mole of molecules at a temper-
ature of 273 K, and answer the following questions.

(a) How does the volume of this gas vary as its pressure varies from 1 to
1000 kPa? Plot pressure versus volume for this gas on an appropriate set of
axes. Use a solid red line with a width of 2 pixels.

(b) Suppose that the temperature of the gas is increased to 373 K. How does
the volume of this gas vary with pressure now? Plot pressure versus volume
for this gas on the same set of axes as for part (a). Use a dashed blue line
with a width of 2 pixels.

Include a boldface title and x- and y-axis labels on the plot, as well as legends
for each line.

Solution The values that we wish to plot both vary by a factor of 1000, so an ordi-
nary linear plot will not produce a particularly useful result. Therefore, we will plot
the data on a log-log scale.

Note that we must plot two curves on the same set of axes, so we must issue
the command hold on after the first one is plotted and hold off after the plot is
complete. We must also specify the color, style, and width of each line, and specify
that labels be in boldface.

A program that calculates the volume of the gas as a function of pressure and
creates the appropriate plot is as follows. Note that the special features controlling
the style of the plot are shown in boldface.

o\°

Script file: ideal gas.m

o\°

o\°

Purpose:
This program plots the pressure versus volume of an
ideal gas.

o° o° o

o\°

Record of revisions:
Date Programmer Description of change

o\°

o\°

01 /18 S. J. Chapman Original code

o o

o\°

Define variables:
n -- Number of atoms (mol)
-- Pressure (kPa)
-- Ideal gas constant (L kPa/mol K)
Temperature (K)
-- volume (L)

o° o o oe
<+ x™d

1

1

o\°



148 | Chapter 3 Two-Dimensional Plots

Initialize nRT

o

n 1; % Moles of atoms

R = 8.314; % Ideal gas constant

T = 273; % Temperature (K)

% Create array of input pressures. Note that this
% array must be quite dense to catch the major

% changes in volume at low pressures.

P =1:0.1:1000;

% Calculate volumes

V= (n*RH*T) ./ P;

[

% Create first plot

figure (1) ;

loglog( P, V, 'r-', 'LineWidth', 2 );
title('\bfVolume vs Pressure in an Ideal Gas') ;
xlabel ('\bfPressure (kPa)');

ylabel ('\bfvolume (L)"') ;

grid on;

hold on;

o

Now increase temperature

T = 373; % Temperature (K)
% Calculate volumes
V= (n*R=*T) ./ P;

[

% Add second line to plot

figure (1) ;

loglog( P, V, 'b--', 'LineWidth', 2 );
hold off;

% Add legend
legend('T = 273 K','T = 373 k');

The resulting volume-versus-pressure plot is shown in Figure 3.21.



3.7 Summary | 149

File Edit View Insert Tools Desktop Window Help
A IR P AR E =

4 Volume vs Pressure in an Ideal Gas
10 T

T=273K
== =T=373K

-
=)
@

3
g 2
Ewo
[=]
S

=
=

107

Pressure (kPa)

Figure 3.21 Pressure versus volume for an ideal gas.

3.7 Summary

Chapter 3 extended our knowledge of two-dimensional plots, which were introduced
in Chapter 2. Two-dimensional plots can take many different forms, as summarized
in Table 3.4.

The axis command allows an engineer to select the specific range of x and
y data to be plotted. The hold command allows later plots to be plotted on top of
earlier ones, so that elements can be added to a graph a piece at a time. The figure
command allows an engineer to create and select among multiple Figure Windows,
so that a program can create multiple plots in separate windows. The subplot com-
mand allows an engineer to create and select among multiple plots within a single
Figure Window.

In addition, we learned how to control additional characteristics of our plots,
such as the line width and marker color. These properties may be controlled by spec-
ifying 'PropertyName', value pairs in the plot command after the data to be
plotted.

Text strings in plots may be enhanced with stream modifiers and escape
sequences. Stream modifiers allow an engineer to specify features like boldface, italic,



150 | Chapter 3 Two-Dimensional Plots

Table 3.4: Summary of Two-Dimensional Plots

Function

Description

plot (x,y)

semilogx (x,y)

semilogy (x,Vy)

loglog(x,vy)

polarplot (theta, r)

bar (x,vy)

compass (x,Vy)

pie (x)
pie(x,explode)

pie3 (x)
pie3 (x,explode)

stairs(x,vy)

stem(x,Vy)

yyaxis left
yyaxis right

This function plots points or lines with a linear scale on the x and y axes.

This function plots points or lines with a logarithmic scale on the x axis and a
linear scale on the y axis.

This function plots points or lines with a linear scale on the x axis and a linear
scale on the y axis.

This function plots points or lines with a logarithmic scale on the x and y axes.

This function plots points or lines on a polar plot, where theta is the angle (in
radians) of a point counterclockwise from the right-hand horizontal axis, and r is
distance from the center of the plot to the point.

This function creates a vertical bar plot, with the values in x used to label each
bar, and the values in y used to determine the height of the bar.

This function creates a polar plot, with an arrow drawn from the origin to the
location of each (x,y) point. Note that the locations of the points to plot are speci-
fied in Cartesian coordinates, not polar coordinates.

This function creates a pie plot. This function determines the percentage of the
total pie corresponding to each value of x and plots pie slices of that size. The
optional array explode controls whether or not individual pie slices are sepa-
rated from the remainder of the pie.

This function creates a three-dimensional pie plot. It is just like function pie,
except that the display is in three dimensions.

This function creates a stair plot, with each stair step centered on an (x,y)
point.

This function creates a stem plot, with a marker at each (x,y) point and a stem
drawn vertically from that point to the x axis.

This function causes all of the following plot commands to the current axes to
work with the left y axis or right y axis, respectively.

superscripts, subscripts, font size, and font name. Escape sequences allow the engineer
to include special characters such as Greek and mathematical symbols in the
text string.

3.7.1

Summary of Good Programming Practice

Adhere to the following guidelines when working with MATLAB functions:

1.

Consider the type of data you are working with when determining how
best to plot it. If the range of the data to be plotted covers many orders of
magnitude, use a logarithmic scale to represent the data properly. If the
range of the data to be plotted is an order of magnitude or less, then use a
linear scale.



3.8 Exercises | 151

2. Use stream modifiers to create effects such as bold, italic, superscripts, sub-
scripts, and special characters in your plot titles and labels.

3.7.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

Commands and Functions

axis

bar (x,vy)
barh (x,y)
compass (x,V)

figure

hold
linspace
loglog(x,vy)
logspace

pie (x)

pie3 (x)
polarplot (theta, r)
semilogx (x,V)
semilogy (x,V)
stairs(x,y)
stem(x,Vy)

subplot

(a) Sets the x and y limits of the data to be plotted.
(b) Gets the x and y limits of the data to be plotted.
(c) Sets other axis-related properties.

Creates a vertical bar plot.
Creates a horizontal bar plot.
Creates a compass plot.

Selects a Figure Window to be the current Figure Window. If
the selected Figure Window does not exist, it is automatically
created.

Allows multiple plot commands to write on top of each other.
Creates an array of samples with linear spacing.
Creates a log-log plot.

Creates an array of samples with logarithmic spacing.
Creates a pie plot.

Creates a three-dimensional pie plot.

Creates a polar plot.

Creates a log-linear plot.

Creates a linear-log plot.

Creates a stair plot.

Creates a stem plot.

Selects a subplot in the current Figure Window. If the selected
subplot does not exist, it is automatically created. If the new
subplot conflicts with a previously existing set of axes, they
are automatically deleted.

3.8 Exercises

3.1 Plot the function y(x) = e~

05¢gin 2x for 100 values of x between 0 and 10.

Use a 2-point-wide solid blue line for this function. Then plot the function

—0.5x

y(x) =e

cos 2x on the same axes. Use a 3-point-wide dashed red line for

this function. Be sure to include a legend, title, axis labels, and grid on the

plots.



152 | Chapter 3 Two-Dimensional Plots

3.2

3.3

34

3.5
3.6

3.7

3.8

3.9

3.10

3.12

Use the MATLAB plot editing tools to modify the plot in Exercise 3.1. Change
the line representing the function y(x) = e %" sin 2x to be a black dashed line
that is 1 point wide.
Plot the functions in Exercise 3.1 on a log-linear plot. Be sure to include a legend,
title, axis labels, and grid on the plots.
Plot the function y(x) = ¢~°* sin 2x on a bar plot. Use 100 values of x between 0
and 10 in the plot. Be sure to include a legend, title, axis labels, and grid on the plots.
Create a polar plot of the function r(6) = sin (260) cos 6 for 0 < 6 < 277
Plot the function f(x) = x* — 3x° + 10x*> — x — 2 for —6 = x =< 6. Draw the
function as a solid black 2-point-wide line, and turn on the grid. Be sure to
include a title and axis labels, and include the equation for the function being
plotted in the title string. (Note that you will need stream modifiers to get the
italics and the superscripts in the title string.)

. x> —6x+5 . .
Plot the function f(x) = T _3 using 200 points over the range
—2 = x = 8. Note that there is an asymptote at x = 3, so the function will tend
to infinity near that point. In order to see the rest of the plot properly, you will
need to limit the y axis to a reasonable size, so use the axis command to limit
the y axis to the range —10 to 10.
Suppose that George, Sam, Betty, Charlie, and Suzie contributed $15, $5, $10,
$5, and $15, respectively, to a colleague’s going-away present. Create a pie chart
of their contributions. What percentage of the cost was paid by Sam?
Plot the function y(x) = ¢™*sin x for x between 0 and 4 in steps of 0.1. Create
the following plot types: (a) linear plot; (b) log-linear plot; (c) stem plot; (d) stair
plot; (e) bar plot; (f) horizontal bar plot; (g) compass plot. Be sure to include
titles and axis labels on all plots.
Why does it not make sense to plot the function y(x) = e~ sin x from the previ-
ous exercise on a linear-log or a log-log plot?
Assume that the complex function f(¢) is defined by the equation

F(H=(4025)r—2.0 (3.8)

Plot the amplitude and phase of function f for 0 = ¢ = 4 on two separate
subplots within a single figure. Be sure to provide appropriate titles and
axis labels. (Note: You can calculate the amplitude of the function using the
MATLAB function abs and the phase of the function using the MATLAB
function phase.)

Create an array of 100 input samples in the range 1 to 100 using the 1inspace
function, and plot the equation

y(x) = 20log, (2x) (3.9

on a semilogx plot. Draw a solid blue line of width 2, and label each point
with a red circle. Now create an array of 100 input samples in the range 1 to 100
using the Logspace function, and plot Equation (3.9) on a semilogx plot.
Draw a solid red line of width 2, and label each point with a black star. How
does the spacing of the points on the plot compare when using 1inspace and
logspace?



3.8 Exercises | 153

3.13 Error Bars When plots are made from real measurements recorded in the labo-

ratory, the data that we plot is often the average of many separate measurements.
This kind of data has two important pieces of information: the average value of
the measurement and the amount of variation in the measurements that went into
the calculation.

It is possible to convey both pieces of information on the same plot
by adding error bars to the data. An error bar is a small vertical line that
shows the amount of variation that went into the measurement at each
point. The MATLAB function errorbar supplies this capability for
MATLAB plots.

Look up errorbar in the MATLAB documentation, and learn how to
use it. Note that there are two versions of this call: one that shows a single error
that is applied equally on either side of the average point, and one that allows
you to specify upper limits and lower limits separately.

Suppose that you wanted to use this capability to plot the mean high
temperature at a location by month, as well as the minimum and maximum
extremes. The data might take the form of the following table:

Temperatures at Location (°F)

Average Daily

Month High Extreme High Extreme Low
January 66 88 16
February 70 92 24
March 75 100 25
April 84 105 35
May 93 114 39
June 103 122 50
July 105 121 63
August 103 116 61
September 99 116 47
October 88 107 34
November 75 96 27
December 66 87 22

Create a plot of the mean high temperature by month at this location, showing

the extremes as error bars. Be sure to label your plot properly.

3.14 The Spiral of Archimedes The spiral of Archimedes is a curve described in
polar coordinates by the equation

r= kO

(3.10)

where r is the distance of a point from the origin and 6 is the angle of that point
in radians with respect to the origin. Plot the spiral of Archimedes for 0 = 6 =



154 | Chapter 3 Two-Dimensional Plots

3.15

3.16

3.17

67 when k = 0.5. Use a solid magenta line that is 3 pixels wide for the plot. Be
sure to label your plot properly.

The distance x and velocity v of an object undergoing constant acceleration
are given by Equations (3.4) and (3.5), respectively. Assume that x, = 200 m,
v, = 5m/s, and a = —5 m/s’. Plot the distance and velocity of the object as a
function of time for time 0 = ¢t = 125 as follows:

(a) Plotdistance x versus time and velocity y versus time on two separate figures,
with appropriate titles, axis labels, legend, and a grid.

(b) Plot distance x versus time and velocity y versus time on two subplots in a
single figure, with appropriate titles, axis labels, legend, and a grid.

(c) Plot distance x versus time and velocity y versus time on a single set of axes
using yyaxis, with appropriate titles, axis labels, legend, and a grid.

Ideal Gas Law A tank holds an amount of gas pressurized at 200 kPa in the win-
ter when the temperature of the tank is 0° C. What would the pressure in the tank
be if it holds the same amount of gas when the temperature is 100° C? Create a
plot showing the expected pressure as the temperature in the tank increases from
0° Cto 200° C.

van der Waals Equation The ideal gas law describes the temperature, pressure,
and volume of an ideal gas. It is

PV = nRT (3.7)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the
gas in liters (L), n is the number of molecules of the gas in units of moles (mol),
R is the universal gas constant (8.314 L -kPa/mol-K), and 7 is the absolute
temperature in kelvins (K). (Note: 1 mol = 6.02 X 10 molecules)

Real gases are not ideal because the molecules of the gas are not perfectly
elastic—they tend to cling together a bit. The relationship among the temper-
ature, pressure, and volume of a real gas can be represented by a modification
of the ideal gas law called van der Waals equation:

(p + ’if)(v — nb) = nRT @3.11)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the
gas in liters (L), a is a measure of attraction between the particles, n is the
number of molecules of the gas in units of moles (mol), b is the volume of one
mole of the particles, R is the universal gas constant (8.314 L -kPa/mol - K),
and T is the absolute temperature in kelvins (K).

This equation can be solved for P to give pressure as a function of temper-
ature and volume.

nRT _@
V—nb V?

For carbon dioxide, the value of a = 0.396 kPa-L and the value of b =
0.0427 L/mol. Assume that a sample of carbon dioxide gas contains 1 mole

p= (3.12)



3.18

3.19

3.20

3.8 Exercises | 155

of molecules at a temperature of 0° C (273 K) and occupies 30 L of volume.
Answer the following questions:

(a) What is the pressure of the gas according to the ideal gas law?

(b) What is the pressure of the gas according to the van der Waals equation?

(c) Plot the pressure versus volume at this temperature according to the ideal
gas law and according to van der Waals equation on the same axes. Is the
pressure of a real gas higher or lower than the pressure of an ideal gas under
the same temperature conditions?

Antenna Gain Pattern The gain G of a certain microwave dish antenna can be
expressed as a function of angle by the equation
T

G(0) = |sinc 40| for — g =0= 5 (3.13)

where 0 is measured in radians from the boresite of the dish, and sinc x =
sin x/x. Plot this gain function on a polar plot, with the title “Antenna Gain
versus 6 in boldface.
High-Pass Filter Figure 3.22 shows a simple high-pass filter consisting of a
resistor and a capacitor. The ratio of the output voltage V' to the input voltage V.,
is given by the equation
Vo _J2mfRC_ (3.14)
V. 1+ j2afRC
Assume that R = 16 k) and C = 1 uF. Calculate and plot the amplitude and
phase response of this filter as a function of frequency.
Output Power from a Motor The output power produced by a rotating motor
is given by the equation

P=7_w (3.15)

IND “m

where 7, is the induced torque on the shaft in newton-meters, o, is the rota-

tional speed of the shaft in radians per second, and P is in watts. Assume that
the rotational speed of a particular motor shaft is given by the equation

o = 188.5(1 — ¢ ) rad/s (3.16)
and the induced torque on the shaft is given by
Toap = 10e7°% N-m (3.17)
| | o

O —

Figure 3.22 A simple high-pass filter circuit.



156 | Chapter 3 Two-Dimensional Plots

3.21

3.22

(a) Plot the torque, speed, and power supplied by this shaft versus time in three
subplots aligned vertically within a single figure for 0 = ¢ = 10 s. Be sure
to label your plots properly with the symbols 7, and w  where appropriate.
Create two separate plots, one with the power and torque displayed on a
linear scale, and one with the output power displayed on a logarithmic scale.
Time should always be displayed on a linear scale.

(b) Plot the torque and power supplied by this shaft versus time in a single linear
plot using the yyaxis function. Be sure to label your plots properly with the
symbols 7, and P where appropriate.

Plotting Orbits When a satellite orbits the Earth, the satellite’s orbit will form
an ellipse with the Earth located at one of the focal points of the ellipse. The
satellite’s orbit can be expressed in polar coordinates as

14
= 3.18
" 1 —¢ecosb ( )

where r and 6 are the distance and angle of the satellite from the center of the
Earth, p is a parameter specifying the size of the orbit, and & is a parameter
representing the eccentricity of the orbit. A circular orbit has an eccentricity &
of 0. An elliptical orbit has an eccentricity of 0 = & < 1. If ¢ = 1, the satellite
follows a parabolic path. If € > 1, the satellite follows a hyperbolic path and
escapes from the Earth’s gravitational field.

Consider a satellite with a size parameter p = 800 km. Plot the orbit of

this satellite if (a) ¢ = 0; (b) e = 0.25; and (c) € = 0.5. How close does each
orbit come to Earth? How far away does each orbit get from Earth? Compare
the three plots you created. Can you determine what the parameter p means
from looking at the plots?
Plotting Orbits An asteroid passing the near Earth but not captured by its gravity
will follow a hyperbolic orbit. This orbit is represented by Equation (3.18) with
an eccentricity >1. Assume that the size parameter of the orbit p = 800 km and
the eccentricity € = 2. Plot the orbit of the asteroid as it passes Earth. (Ignore the
effects of other bodies such as the sun on the asteroid’s orbit.)



Branching Statements
and Program Design

In Chapter 2, we developed several complete working MATLAB programs. However,
all of the programs were very simple, consisting of a series of MATLAB statements
that were executed one after another in a fixed order. Such programs are called
sequential programs. They read input data, process it to produce a desired answer,
print out the answer, and quit. There is no way to repeat sections of the program
more than once, and there is no way to selectively execute only certain portions of
the program depending on values of the input data.

In Chapters 4 and 5, we will introduce a number of MATLAB statements that
allow us to control the order in which statements are executed in a program.There
are two broad categories of control statements: branches, which select specific
sections of the code to execute, and loops, which cause specific sections of the
code to be repeated. Branches will be discussed in this chapter, and loops will be
discussed in Chapter 5.

With the introduction of branches and loops, our programs are going to
become more complex, and it will get easier to make mistakes. To help avoid pro-
gramming errors, we will introduce a formal program design procedure based on
the technique known as top-down design. We will also introduce a common algo-
rithm development tool known as pseudocode.

We will also study the MATLAB logical data type before discussing branches,
because branches are controlled by logical values and expressions.

4.1 Introduction to Top-Down Design Techniques

Suppose that you are an engineer working in industry and that you need to write a
program to solve some problem. How do you begin?

When given a new problem, there is a natural tendency to sit down at a keyboard
and start programming without “wasting” alot of time thinking about the problem first.

157



158 | Chapter 4 Branching Statements and Program Design

It is often possible to get away with this “on the fly” approach to programming for
very small problems, such as many of the examples in this book. In the real world,
however, problems are larger, and an engineer attempting this approach will become
hopelessly bogged down. For larger problems, it pays to think out the problem and
the approach you are going to take to it before writing a single line of code.

We will introduce a formal program design process in this section, and we will
apply that process to every major application developed in the remainder of the book.
For some of the simple examples that we will be doing, the design process will seem
like overkill. However, as the problems that we solve get increasingly larger and
more complex, the design process becomes essential to successful programming.

When I was an undergraduate, one of my professors was fond of saying, “Pro-
gramming is easy. It’s knowing what to program that’s hard.” His point was force-
fully driven home to me after I left university and began working in industry on
larger-scale software projects. I found that the most difficult part of my job was to
understand the problem I was trying to solve. Once I really understood the problem,
it became easy to break the problem apart into smaller, more easily manageable
pieces with well-defined functions, and then to tackle those pieces one at a time.

Top-down design is the process of starting with a large task and breaking it
down into smaller, more easily understandable pieces (sub-tasks) which perform a
portion of the desired task. Each sub-task may in turn be subdivided into smaller
sub-tasks if necessary. Once the program is divided into small pieces, each piece
can be coded and tested independently. We do not attempt to combine the sub-tasks
into a complete task until each of the sub-tasks has been verified to work properly
by itself.

The concept of top-down design is the basis of our formal program design
process. We will now introduce the details of the process, which is illustrated in
Figure 4.1. The steps involved are as follows:

1. Clearly state the problem that you are trying to solve.

Programs are usually written to fill some perceived need, but that need may
not be articulated clearly by the person requesting the program. For exam-
ple, a user may ask for a program to solve a system of simultaneous linear
equations. This request is not clear enough to allow an engineer to design
a program to meet the need; he or she must first know much more about
the problem to be solved. Is the system of equations to be solved real or
complex? What is the maximum number of equations and unknowns that
the program must handle? Are there any symmetries in the equations which
might be exploited to make the task easier? The program designer will have
to talk with the user requesting the program, and the two of them will have to
come up with a clear statement of exactly what they are trying to accomplish.
A clear statement of the problem will prevent misunderstandings, and it will
also help the program designer to properly organize his or her thoughts. In
the example we were describing, a proper statement of the problem might
have been:

Design and create a program to solve a system of simultaneous linear equa-
tions having real coefficients and with up to 20 equations in 20 unknowns.



4.1 Introduction to Top-Down Design Techniques | 159

Start

!

State the problem you
are trying to solve

Define required inputs
and outputs

” Decomposition
/
Design the algorithm \
\
l Stepwise refinement
Convert algorithm into
MATLARB statements Top-down design process

Test the resulting
MATLAB program

!

Finished!

Figure 4.1 The program design process used in this book.

. Define the inputs required by the program and the outputs to be produced
by the program.

The inputs to the program and the outputs produced by the program must be
specified so that the new program will properly fit into the overall processing
scheme. In the preceding example, the coefficients of the equations to be
solved are probably in some preexisting order, and our new program must
be able to read them in that order. Similarly, it must produce the answers
required by the programs which may follow it in the overall processing
scheme, and it must write out those answers in the format needed by the
programs following it.



160 | Chapter 4 Branching Statements and Program Design

3. Design the algorithm that you intend to implement in the program.

An algorithm is a step-by-step procedure for finding the solution to a prob-
lem. It is at this stage in the process that top-down design techniques come
into play. The designer looks for logical divisions within the problem and
divides it up into sub-tasks along those lines. This process is called decom-
position. If the sub-tasks are themselves large, the designer can break them
up into even smaller sub-sub-tasks. This process continues until the problem
has been divided into many small pieces, each of which does a simple, clearly
understandable job.

After the problem has been decomposed into small pieces, each piece
is further refined through a process called stepwise refinement. In stepwise
refinement, a designer starts with a general description of what the piece of
code should do, and then defines the functions of the piece in greater and
greater detail until they are specific enough to be turned into MATLAB state-
ments. Stepwise refinement is usually done with pseudocode, which will be
described in the next section.

It is often helpful to solve a simple example of the problem by hand dur-
ing the algorithm development process. If the designer understands the steps
that he or she went through in solving the problem by hand, then he or she will
be better able to apply decomposition and stepwise refinement to the problem.

4. Turn the algorithm into MATLAB statements.
If the decomposition and refinement process was carried out properly, this
step will be very simple. All the engineer will have to do is to replace pseu-
docode with the corresponding MATLAB statements on a one-for-one basis.

5. Test the resulting MATLAB program.
This step is the real killer. The components of the program must first be tested
individually, if possible, and then the program as a whole must be tested. When
testing a program, an engineer must verify that it works correctly for all legal
input data sets. It is very common for a program to be written, tested with some
standard data set, and released for use, only to find that it produces the wrong
answers (or crashes) with a different input data set. If the algorithm implemented
in a program includes different branches, we must test all of the possible branches
to confirm that the program operates correctly under every possible circumstance.
This exhaustive testing can be almost impossible in really large programs, so
bugs can be discovered after the program has been in regular use for years.

Because the programs in this book are fairly small, we will not go through the
sort of extensive testing just described. However, we will follow the basic principles
in testing all of our programs.

- Good Programming Practice

Follow the steps of the program design process to produce reliable, understandable
MATLAB programs.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000



4.2 Use of Pseudocode | 161

In a large programming project, the time actually spent programming is surpris-
ingly small. In his book The Mythical Man-Month,' Frederick P. Brooks, Jr. suggests
that in a typical large software project, one-third of the time is spent planning what
to do (steps 1 through 3), one-sixth of the time is spent actually writing the program
(step 4), and one-half of the time is spent in testing and debugging the program.
Clearly, anything that we can do to reduce the testing and debugging time will be
very helpful. We can best reduce the testing and debugging time by doing a very
careful job in the planning phase and by using good programming practices. Good
programming practices will reduce the number of bugs in the program and will make
the ones that do creep in easier to find.

4.2 Use of Pseudocode

As part of the design process, it is necessary to describe the algorithm that you intend
to implement. The description of the algorithm should be in a standard form that
is easy for both you and other people to understand, and the description should aid
you in turning your concept into MATLAB code. The standard forms that we use to
describe algorithms are called constructs (or sometimes structures), and an algo-
rithm described using these constructs is called a structured algorithm. When the
algorithm is implemented in a MATLAB program, the resulting program is called a
structured program.

The constructs used to build algorithms can be described in a special way called
pseudocode. Pseudocode is a hybrid mixture of MATLAB and English. It is struc-
tured like MATLAB, with a separate line for each distinct idea or segment of code,
but the descriptions on each line are in English. Each line of the pseudocode should
describe its idea in plain, easily understandable English. Pseudocode is very useful
for developing algorithms since it is flexible and easy to modify. It is especially
useful since pseudocode can be written and modified with the same editor or word
processor used to write the MATLAB program—no special graphical capabilities
are required.

For example, the pseudocode for the algorithm in Example 2.3 is:

Prompt user to enter temperature in degrees Fahrenheit
Read temperature in degrees Fahrenheit (temp f)
temp k in kelvins « (5/9) * (temp f - 32) + 273.15
Write temperature in kelvins

Notice that a left arrow (<) is used instead of an equal sign (=) to indicate that a
value is stored in a variable since this avoids any confusion between assignment and
equality. Pseudocode is intended to aid you in organizing your thoughts before con-
verting them into MATLAB code.

'The Mythical Man-Month, Anniversary Edition, by Frederick P. Brooks, Jr., Addison-Wesley, 1995.



162 | Chapter 4 Branching Statements and Program Design

4.3 The logical DataType

The logical data type is a special type of data that can have one of only two possi-
ble values: true or false. These values are produced by the two special functions
true and false. They are also produced by two types of MATLAB operators:
relational operators and logic operators.

Logical values are stored in a single byte of memory, so they take up much less
space than numbers, which usually occupy 8 bytes.

The operation of many MATLAB branching constructs is controlled by logical
variables or expressions. If the result of a variable or expression is true, then one sec-
tion of code is executed. If not, then a different section of code is executed.

To create a logical variable, just assign a logical value to it in an assignment
statement. For example, the statement

al = true;

creates a logical variable al containing the logical value true. If this variable is
examined with the whos command, we can see that it has the logical data type:

» whos al
Name Size Bytes Class
al 1x1 1 logical

Unlike programming languages such as Java, C++, and Fortran, it is legal in
MATLAB to mix numerical and logical data in expressions. If a logical value is used
in a place where a numerical value is expected, then true values are converted to
the number 1 and £alse values are converted to the number 0, and these numbers
are used in the calculations. If a numerical value is used in a place where a logi-
cal value is expected, nonzero values are converted to the logical value true and
0 values are converted to the logical value false, and these logical values are used
in the calculation.

It is also possible to explicitly convert numerical values to logical values and
vice versa. The 1ogical function converts numerical data to logical data, and the
real function converts logical data to numerical data.

4.3.1 Relational and Logic Operators

Relational and logic operators are operators that produce a true or false result.
These operators are very important because they control which code gets executed in
some MATLAB branching structures.

Relational operators are operators that compare two numbers and produce a
true or false result. For example, a > D is a relational operator that compares the
numbers in variables a and b. If the value in a is greater than the value in b, then this
operator returns a true result. Otherwise, the operator returns a false result.

Logic operators are operators that compare one or two logical values and produce
a true or false result. For example, && is a logical AND operator. The operator a && b
compares the logical values stored in variables a and b. If both a and b are true (non-
zero), then the operator returns a true result. Otherwise, the operator returns a false result.



43 The logical DataType | 163

Table 4.1: Relational Operators

Operator Operation

== Equal to

~= Not equal to

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to

4.3.2 Relational Operators

Relational operators are operators with two numerical or string operands that return
true (1) or false (0) depending on the relationship between the two operands. The
general form of a relational operator is

a opa,

where a, and a, are arithmetic expressions, variables, or strings, and op is one of the
relational operators listed in Table 4.1.

If the relationship between a, and a, expressed by the operator is true, then the
operation returns a true value; otherwise, the operation returns false.

Some relational operations and their results are as follows:

Operation Result

3 < 4 true (1)
3 <=4 true (1)
3 == 4 false (0)
3 > 4 false (0)
4 <= 4 true (1)
'A' < 'B! true (1)

The last relational operation is true because characters are evaluated in alphabetical order.
Relational operators may be used to compare a scalar value with an array. For

1 0
example, ifa = [_2 J and b = 0, then the expression a > b will yield the array

0

1 0 0 2
both arrays have the same size. For example, if a = [_2 J andb = [_2 _ J,

1
{ J. Relational operators may also be used to compare two arrays, as long as

0
]. If the arrays have different

1
then the expression a >= b will yield the array [1 )

sizes, a run-time error will result.



164 | Chapter 4 Branching Statements and Program Design

Note that since character arrays are really arrays of characters, relational oper-
ators can only compare two character arrays if they are of equal lengths. If they are
of unequal lengths, the comparison operation will produce an error. In Chapter 9, we
will learn of a more general way to compare character arrays.

The equivalence relational operator is written with two equal signs, while the
assignment operator is written with a single equal sign. These are very different oper-
ators that beginning engineers often confuse. The == symbol is a comparison opera-
tion that returns a logical (0 or 1) result, while the = symbol assigns the value of the
expression to the right of the equal sign to the variable on the left of the equal sign.
It is a very common mistake for beginning engineers to use a single equal sign when
trying to do a comparison.

[x]] Programming Pitfalls

Be careful not to confuse the equivalence relational operator (==) with the assign-
ment operator (=).

In the hierarchy of operations, relational operators are evaluated after all arith-
metic operators have been evaluated. Therefore, the following two expressions are
equivalent (both are true).

7 + 3 < 2 4+ 11
(7 + 3) < (2 + 11)

4.3.3 A Caution About the == and ~= Operators

The equivalence operator (==) returns a true value (1) when the two values being
compared are equal and a false (0) when the two values being compared are differ-
ent. Similarly, the nonequivalence operator (~=) returns a false (0) when the two
values being compared are equal and a true (1) when the two values being com-
pared are different. These operators are generally safe to use for comparing character
arrays, but they can sometimes produce surprising results when two numerical values
are compared. Due to roundoff errors during computer calculations, two theoret-
ically equal numbers can differ slightly, which can cause an equality or inequality
test to fail.

For example, consider the following two numbers, both of which should be
equal to 0.0.

a = 0;
b sin(pi) ;

Since these numbers are theoretically the same, the relational operation a == Db
should produce a 1. In fact, the results of this MATLAB calculation are



4.3 The logical DataType | 165

» a = 0;
» b = sin(pi);
» a ==Db
ans =
0

MATLAB reports that a and b are different because a slight roundoff error in the
calculation of sin (pi) makes the result be 1.2246 X 107'¢ instead of exactly zero.
The two theoretically equal values differ slightly due to roundoff error.

Instead of comparing two numbers for exact equality, you should set up your tests
to determine if the two numbers nearly equal to each other within some accuracy that
takes into account the roundoff error expected for the numbers being compared. The test

» abs(a - b) < 1.0E-14
ans =
1

produces the correct answer despite the roundoff error in calculating b.

- Good Programming Practice

Be cautious about testing for equality with numerical values since roundoff errors
may cause two variables that should be equal to fail a test for equality. Instead, test
to see if the variables are nearly equal within the roundoff error to be expected on the
computer you are working with.

LIS SI0 050000000000 000 00000 20000 L9000 L9000 L0000 0000 0000 0000 0000 9000 00 00 00 00y 00000000000

4.3.4 Logic Operators

Logic operators are operators with one or two logical operands that yield a logical
result. There are five binary logic operators—AND (& and &&), inclusive OR (| and
| |, and exclusive OR (xor)—and one unary logic operator: NOT (~). The general
form of a binary logic operation is

lopl,
and the general form of a unary logic operation is
opl,

where [ and [, are expressions or variables, and op is one of the logic operators
shown in Table 4.2 on the next page.

If the relationship between /, and [, expressed by the operator is true, then the
operation returns a true (1); otherwise, the operation returns a false (0). Note that
logic operators treat any nonzero value as true and any zero value as false.

The results of the operators are summarized in truth tables, which show the
result of each operation for all possible combinations of /, and /,. Table 4.3 shows the
truth tables for all logic operators.



166 | Chapter 4 Branching Statements and Program Design

Table 4.2: Logic Operators

Operator Operation

& Logical AND

&& Logical AND with shortcut evaluation

| Logical Inclusive OR

|| Logical Inclusive OR with shortcut evaluation
Xor Logical Exclusive OR

~ Logical NOT

Logical ANDs

The result of an AND operator is true (1) if and only if both input operands are true.
If either or both operands are false, the result is false (0), as shown in Table 4.3.

Note that there are two logical AND operators: && and & Why are there two
AND operators, and what is the difference between them? The basic difference
between && and & is that && supports short-circuit evaluations (or partial evalua-
tions) while & doesn’t. That is, && will evaluate expression /, and immediately return
a false (0) value if /, is false. If /  is false, the operator never evaluates [, because
the result of the operator will be false regardless of the value of /.. In contrast, the &
operator always evaluates both / and [, before returning an answer.

A second difference between && and & is that && only works between scalar
values, while & works with either scalar or array values, as long as the sizes of the
arrays are compatible.

When should you use && and when should you use & in a program? Most of the
time, it doesn’t matter which AND operation is used. If you are comparing scalars and
it is not necessary to always evaluate [, then use the && operator. The partial evalu-
ation will make the operation faster in the cases where the first operand is false.

Sometimes it is important to use shortcut expressions. For example, suppose that
we wanted to test for the situation where the ratio of two variables a and b is greater
than 10. The code to perform this test is:

x=a /b >10.0

Table 4.3: Truth Tables for Logic Operators

Inputs and or xor not

I Lo\ L&l dssl, 0| L 1 || xor(,l) -~
false false| false false false false false true
false true false false true true true true
true false| false false true true true false

true true true true true true false false




4.3 The logical DataType | 167

This code normally works fine, but what about the case where b is zero? In that case,
we would be dividing by zero, which produces an Inf instead of a number. The test
could be modified to avoid this problem as follows:

x = (b ~= 0) && (a/b > 10.0)

This expression uses partial evaluation, so if b = 0, the expressiona/b > 10.0
will never be evaluated, and no Inf will occur.

Good Programming Practice

Use the & AND operator if it is necessary to ensure that both operands are evaluated
in an expression, or if the comparison is between arrays. Otherwise, use the && AND
operator, since the partial evaluation will make the operation faster in cases where the
first operand is false. The & operator is preferred in most practical cases.

i

Logical Inclusive ORs

The result of an inclusive OR operator is true (1) if either or both of the input
operands are true. If both operands are false, the result is false (0), as shown in
Table 4.3.

Note that there are two inclusive OR operators: | | and |. Why are there two
inclusive OR operators, and what is the difference between them? The basic differ-
ence between | | and | is that | | supports partial evaluations while | doesn’t. That
is, | | will evaluate expression /, and immediately return a true value if /, is true. If /,
is true, the operator never evaluates /,, because the result of the operator will be true
regardless of the value of /.. In contrast, the | operator always evaluates both /, and
L, before returning an answer.

A second difference between | | and | is that | | only works between scalar
values, while | works with either scalar or array values, as long as the sizes of the
arrays are compatible.

When should you use | | and when should you use | in a program? Most of the
time, it doesn’t matter which OR operation is used. If you are comparing scalars and
it is not necessary to always evaluate /,, use the | | operator. The partial evaluation
will make the operation faster in cases where the first operand is true.

- Good Programming Practice

Use the | inclusive OR operator if it is necessary to ensure that both operands are
evaluated in an expression, or if the comparison is between arrays. Otherwise, use the
| | operator, since the partial evaluation will make the operation faster in the cases
where the first operand is true. The | operator is preferred in most practical cases.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000



168 | Chapter 4 Branching Statements and Program Design

Logical Exclusive OR

The result of an exclusive OR operator is true if and only if one operand is true and
the other one is false. If both operands are true or both operands are false, then the
result is false, as shown in Table 4.3. Note that both operands must always be evalu-
ated in order to calculate the result of an exclusive OR.

The logical exclusive OR operation is implemented as a function. For example,

a = 10;
b = 0;
X = xor(a, b);

The value in a is nonzero, so it is treated as true. The value in b is zero, so it is treated
as false. Since one value is true and the other is false, the result of the xoxr operation
will be true, and it returns a value of 1.

Logical NOT

The NOT operator (~) is a unary operator, having only one operand. The result of a
NOT operator is true (1) if its operand is zero and false (0) if its operand is nonzero,
as shown in Table 4.3.

Hierarchy of Operations

In the hierarchy of operations, logic operators are evaluated after all arithmetic oper-
ations and all relational operators have been evaluated. The order in which the oper-
ators in an expression are evaluated is as follows:

1. All arithmetic operators are evaluated first in the order previously
described.

2. All relational operators (==, ~=, >, >=, <, <=) are evaluated, working from
left to right.

3. All ~ operators are evaluated.

4. All & and && operators are evaluated, working from left to right.

5. All |, | |, and xor operators are evaluated, working from left to right.

As with arithmetic operations, parentheses can be used to change the default order of
evaluation. Examples of some logic operators and their results are given in Example 4.1.

P> Example 4.1 —Evaluating Expressions

Assume that the following variables are initialized with the values shown, and calcu-
late the result of the specified expressions:

valuel = 1

value2 = 0

value3d = 1

value4 = -10
value5 = 0

valueé = [1 2; 0 1]



4.3 The logical DataType | 169

Expression Result Comment

(a) ~valuel false (0)

(b) ~value3 false (0) The number 1 is treated as true, and the NOT
operation is applied.

(c) valuel | value2 true (1)

(d valuel & value2 false (0)

(e) valued4 & valueb false (0) —10 is treated as true and O is treated as false
when the AND operation is applied.

(f) ~(value4 & value5) true (1) —10 is treated as true and O is treated as false
when the AND operation is applied, and then the
NOT operation reverses the result.

(g) valuel + value4 -9

(h) valuel + (~value4) 1 The number value4 is nonzero and so it is
considered true. When the NOT operation is
performed, the result is false (0). Then valuel
is added to the 0, so the final resultis 1 + 0 = 1.

(1) value3 && value6 Illegal The && operator must be used with scalar
operands.

) value3 & valueé6 AND between a scalar and an array operand. The

nonzero values of array value6 are treated as true.

-

The ~ operator is evaluated before other logic operators. Therefore, the paren-
theses were required in part (f) of Example 4.1. If they had been absent, the expres-
sion in part (f) would have been evaluated in the order (~value4) & values.

4.3.5 Logical Functions

MATLAB includes a number of logical functions that return true whenever the
condition they test for is true and false whenever the condition they test for is
false. These functions can be used with relational and logic operators to control the

operation of branches and loops.

A few of the more important logical functions are given in Table 4.4.

Table 4.4: Selected MATLAB Logical Functions

Function Purpose
false Returns a false (0) value.
ischar(a) Returns true if a is a character array and false otherwise.

iscolumn (a)

isempty(a)

Returns true if a is a column array and false otherwise.

Returns true if a is an empty array and false otherwise.

(continued)



170 | Chapter 4 Branching Statements and Program Design

Table 4.4: Selected MATLAB Logical Functions (Continued)

Function Purpose

isinf (a) Returns true if the value of a is infinite (Inf) and false otherwise.
islogical (a) Returns true if the value of a is a logical data type and £alse otherwise.
isnan(a) Returns true if the value of a is NaN (not a number) and false otherwise.
isnumeric(a) Returns true if a is a numerical array and false otherwise.
isrow(a) Returns true if a is a row array and false otherwise.
isscalar(a) Returns true if a is a scalar and £alse otherwise.

logical Converts numerical values to logical values: if a value is nonzero, it is
converted to true. If it is zero, it is converted to false.

true Returns a true (1) value.

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 4.3. If you have trouble with the quiz, reread the section,
ask your instructor for help, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

Assume that a, b, ¢, and d are as defined, and evaluate the following expressions.

a = -20; b = 2;
c = 0; d=1;

l.a>Db

2.b > d

3.a>b && c > d

4, a == D

5.a && b > ¢

6. ~~b

-1 3
a = 2; b=|: }r‘
—1 5
0o -1 -2 1 4
CcC = 7 d= 12
[2 J [o 1 o}
7. ~(a > b)
8.a >c & b > ¢
9. ¢c <= d

10. logical (4)
11. islogical (d)
12. a * b > ¢
13.a * (b > ¢)



4.4 Branches | 171

Assume that a, b, c, and d are as defined. Explain the order in which each of the
following expressions are evaluated, and specify the results in each case:
a = 2; b = 3;
c = 10; d=0;
14. a*b™2 > a*c
154 || b > a
16. (d | b) > a
Assume that a, b, ¢, and d are as defined, and evaluate the following expressions.

a = 20; b = -2;
c = 0; d 'Test';

17. isinf (a/b)

18. isinf (a/c)

19. a > b && ischar (d)
20. isempty (c)

21. (~a) & Db

22. (~a) + Db

4.4 Branches

Branches are MATLAB statements that permit us to select and execute specific sec-
tions of code (called blocks) while skipping other sections of code. They are varia-
tions of the i f construct, the switch construct, and the try/catch construct.

4.4.1 The if Construct

The if construct has the form

if control expr 1
Statement 1
Statement 2 Block 1

elseif control expr 2
Statement 1

Statement 2 Block 2
else

Statement 1
Statement 2 Block 3

end



172 | Chapter 4 Branching Statements and Program Design

where the control expressions are logical expressions that control the operation of
the if construct. If control_expr_1I is true (nonzero), then the program executes
the statements in Block 1 and skips to the first executable statement following the
end. Otherwise, the program checks for the status of control_expr_2. If control_
expr_2 is true (nonzero), then the program executes the statements in Block 2 and
skips to the first executable statement following the end. If all control expressions
are zero, then the program executes the statements in the block associated with the
else clause.

There can be any number of elseif clauses (0 or more) in an if construct,
but there can be at most one else clause. The control expression in each clause
will be tested only if the control expressions in every clause that precedes it are false
(0). Once one of the expressions proves to be true and the corresponding code block
is executed, the program skips to the first executable statement following the end.
If all control expressions are false, then the program executes the statements in the
block associated with the el se clause. If there is no else clause, then execution
continues after the end statement without executing any part of the i £ construct.

Note that the MATLAB keyword end in this construct is completely different
from the MATLAB function end that we used in Chapter 2 to return the highest
value of a given subscript. MATLAB tells the difference between these two uses of
end from the context in which the word appears within an M-file.

In most circumstances, the control expressions will be some combination of rela-
tional and logic operators. As we learned earlier in this chapter, relational and logic
operators produce a true (1) when the corresponding condition is true and a false
(0) when the corresponding condition is false. When an operator is true, its result is
nonzero, and the corresponding block of code will be executed.

As an example of an if construct, consider the solution of a quadratic equation

of the form
ax* +bx+c=0 4.1)
The solution to this equation is
—b + Vb — dac
x= 5 ac (4.2)
a

The term b> — 4ac is known as the discriminant of the equation. If b*> — 4ac > 0,
then there are two distinct real roots to the quadratic equation. If »> — 4ac = 0, then
there is a single repeated root to the equation, and if 5> — 4ac < 0, then there are two
complex roots to the quadratic equation.

Suppose that we wanted to examine the discriminant of a quadratic equation
and to tell a user whether the equation has two complex roots, two identical real
roots, or two distinct real roots. In pseudocode, this construct would take the form

if ("2 - 4*a*c) < 0

Write msg that equation has two complex roots.
elseif (b**2 - 4.*a*c) == 0

Write msg that equation has two identical real roots.



44 Branches | 173

else
Write msg that equation has two distinct real roots.
end

The MATLAB statements to do this are

if ("2 - 4*a*c) < 0
disp('This equation has two complex roots.');

elseif (b"2 - 4*a*c) == 0

disp('This equation has two identical real roots.');
else

disp('This equation has two distinct real roots.');
end

For readability, the blocks of code within an if construct are usually indented
by three or four spaces, but this is not actually required.

- W) Good Programming Practice

Always indent the body of an if construct by three or more spaces to improve the
readability of the code. Note that indentation is automatic if you use the MATLAB
editor to write your programs.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000

It is possible to write a complete if construct on a single line by separating the
parts of the construct by commas or semicolons. Thus the following two constructs
are identical:

if x < 0
y = abs(x);
end

and

if x < 0; y = abs(x); end

However, this should only be done for very simple constructs.

4.4.2 Examples Using if Constructs

We will now look at two examples that illustrate the use of if constructs.

P> Example 4.2—The Quadratic Equation
Write a program to solve for the roots of a quadratic equation, regardless of type.

Solution We will follow the design steps outlined earlier in the chapter.



174 | Chapter 4 Branching Statements and Program Design

1. State the problem
The problem statement for this example is very simple. We want to write a
program that will solve for the roots of a quadratic equation, whether they are
distinct real roots, repeated real roots, or complex roots.

2. Define the inputs and outputs
The inputs required by this program are the coefficients a, b, and ¢ of the
quadratic equation

ax> +bx+c=0 4.1

The output from the program will be the roots of the quadratic equation,
whether they are distinct real roots, repeated real roots, or complex roots.

3. Design the algorithm
This task can be broken down into three major sections whose functions are
input, processing, and output:

Read the input data
Calculate the roots
Write out the roots

We will now break each of the preceding major sections into smaller,
more detailed pieces. There are three possible ways to calculate the roots,
depending on the value of the discriminant, so it is logical to implement
this algorithm with a three-branched if construct. The resulting pseudoc-
ode is:

Prompt the user for the coefficients a, b, and c.
Read a, b, and c

discriminant < b®2 - 4 * a * ¢

if discriminant > 0
x1 « ( -b + sgrt(discriminant) ) / ( 2 * a )
X2 <« ( -b - sgrt(discriminant) ) / ( 2 * a )

Write msg that equation has two distinct real roots.
Write out the two roots.

elseif discriminant == 0
xl « -b/ (2 * a)
Write msg that equation has two identical real roots.
Write out the repeated root.

else
real part « -b / (2 * a )
imag part < sgrt ( abs ( discriminant ) ) / (2 * a )

Write msg that equation has two complex roots.
Write out the two roots.
end

4. Turn the algorithm into MATLAB statements
The final MATLAB code is as follows:



o° o° o° o° o° o° o o° o° o o

o° o° o o o° o° o° o o o

o
o

4.4 Branches | 175

Script file: calc_roots.m

Purpose:
This program solves for the roots of a quadratic equation
of the form a*x*2 + b*x + ¢ = 0. It calculates the answers

regardless of the type of roots that the equation possesses.

Record of revisions:
Date Programmer Description of change

01/12/18 S. J. Chapman Original code

Define variables:

a -- Coefficient of x"2 term of equation

b -- Coefficient of x term of equation

c -- Constant term of equation

discriminant -- Discriminant of the equation

imag part -- Imag part of equation (for complex roots)
real part -- Real part of equation (for complex roots)

x1 -- First solution of equation (for real roots)
x2 -- Second solution of equation (for real roots)

Prompt the user for the coefficients of the equation

disp ('This program solves for the roots of a quadratic ');

disp ('equation of the form A*X"2 + B*X + C = 0. ');
= input ('Enter the coefficient A: ');
= input ('Enter the coefficient B: ');
= input ('Enter the coefficient C: ');

a
b
c

o
o

Calculate discriminant

discriminant = b*2 - 4 * a * c;

o
o

Solve for the roots, depending on the value of the discriminant

if discriminant > 0 % there are two real roots, so...

x1 = ( -b + sgrt(discriminant) ) / (2 * a );
x2 = ( -b - sgrt(discriminant) ) / (2 * a );
disp ('This equation has two real roots:');
fprintf ('x1 = $f\n', x1);

fprintf ('x2 = %$f\n', x2);

elseif discriminant == 0 % there is one repeated root, so...

x1 = (-b) / (2 *a);
disp ('This equation has two identical real roots:');
fprintf ('x1 = x2 = %$f\n', x1);

[

else % there are complex roots, so

(-b) / (2*a);
sgrt ( abs ( discriminant ) ) / ( 2 * a );

real part
imag part



176 | Chapter 4 Branching Statements and Program Design

disp ('This equation has complex roots:');
fprintf('x1 = %f +i %$f\n', real part, imag part );
fprintf ('x1 $f -i $f\n', real part, imag part );

end

5. Test the program
Next, we must test the program using real input data. Since there are three
possible paths through the program, we must test all three paths before we
can be certain that the program is working properly. From Equation (4.2), it
is possible to verify the solutions to the following equations:

X*+5x+6=0 x=—2and x = —3
X*+4x+4=0 x= -2
¥*+2x+5=0 x=—1%xi2

If this program is executed three times with the preceding coefficients, the
results are as follows (user inputs are shown in boldface):

» calc_roots

This program solves for the roots of a gquadratic
equation of the form A*X"2 + B*X + C = 0.

Enter the coefficient A: 1

Enter the coefficient B: 5

Enter the coefficient C: 6

This equation has two real roots:

x1 -2.000000

x2 = -3.000000

» calc_roots

This program solves for the roots of a quadratic
equation of the form A*X"2 + B*X + C = 0.

Enter the coefficient A: 1

Enter the coefficient B: 4

Enter the coefficient C: 4

This equation has two identical real roots:

x1l = x2 = -2.000000

» calc_roots

This program solves for the roots of a quadratic
equation of the form A*X"2 + B*X + C 0.

Enter the coefficient A: 1

Enter the coefficient B: 2

Enter the coefficient C: 5

This equation has complex roots:

x1l = -1.000000 +i 2.000000

x1l = -1.000000 -i 2.000000

The program gives the correct answers for our test data in all three possible cases.

<




4.4 Branches | 177

P> Example 4.3—Evaluating a Function of Two Variables

Write a MATLAB program to evaluate a function f(x,y) for any two user-specified
values x and y. The function f(x,y) is defined as follows.

x+y x=0andy=0
x+y* x=0andy<0
X*+y x<Oandy=0
X*+y x<0andy<0

[ y) =

Solution The function f(x,y) is evaluated differently depending on the signs of the
two independent variables x and y. To determine the proper equation to apply, it will
be necessary to check for the signs of the x and y values supplied by the user.

1. State the problem
This problem statement is very simple: Evaluate the function f(x,y) for any
user-supplied values of x and y.

2. Define the inputs and outputs
The inputs required by this program are the values of the independent vari-
ables x and y. The output from the program will be the value of the function

Sxy).

3. Design the algorithm
This task can be broken down into three major sections whose functions are
input, processing, and output:

Read the input values x and y
Calculate f (x,y)
Write out f(x,y)

We will now break each of the preceding major sections into smaller,
more detailed pieces. There are four possible ways to calculate the func-
tion f(x,y), depending on the values of x and y, so it is logical to imple-
ment this algorithm with a four-branched if construct. The resulting
pseudocode is:

Prompt the user for the wvalues x and y.
Read x and y
if x 2 0 and y = 0
fun <« x + vy
elseif x = 0 and y < O
fun « x + y*2
elseif x < 0 and y = 0
fun « x*2 + vy
else
fun « x*2 + y™2
end
Write out f(x,y)



178 | Chapter 4 Branching Statements and Program Design

4. Turn the algorithm into MATLAB statements
The final MATLAB code is as follows:

% Script file: funxy.m
% Purpose:
% This program solves the function f(x,y) for a
% user-specified x and y, where f(x,y) is defined as:
; X +y X >= 0 and y >= 0
o £(x, y)= xA+ y©2 X >= 0 and y < 0
o X2 +y X <0 and y >= 0
o x"2 + y~2 X <0 and y < 0
% Record of revisions:
% Date Programmer Description of change
% 01/12/18 S. J. Chapman Original code
% Define variables:
% x -- First independent variable
% vy -- Second independent variable
% fun -- Resulting function
% Prompt the user for the values x and y
x = input ('Enter the x coefficient: ');
y = input ('Enter the y coefficient: ');
% Calculate the function f(x,y) based upon
% the signs of x and y.
if x >= 0 & vy >= 0

fun = x + vy;
elseif x >= 0 & vy < O

fun = x + y2;
elseif x < 0 & vy >= 0

fun = x™2 + vy;
else $ x < 0 and y < 0, so

fun = x"2 + y*2;

end
% Write the value of the function.
disp (['The value of the function is ' num2str(fun)l]);

5. Test the program
Next, we must test the program using real input data. Since there are four
possible paths through the program, we must test all four paths before
we can be certain that the program is working properly. To test all four
possible paths, we will execute the program with the four sets of input



values (x,y) = (2, 3), (2, —3), (—2, 3), and (—2,

hand, we see that

4.4 Branches | 179

—3). Calculating by

f@3)=2+3=5
fQ-3) =2+ (=3P =11
f(=23) = (-2 +3=7
f(-2.-3) = (-2 + (=32 =13

If this program is compiled and then run four times with the preceding val-
ues, the results are:

» funxy

Enter the
Enter the
The value
» funxy

Enter the
Enter the
The value
» funxy

Enter the
Enter the
The value
» funxy

Enter the
Enter the
The value

x coefficient: 2
y coefficient: 3
of the function is

x coefficient: 2
y coefficient: -3
of the function is

x coefficient: -2
y coefficient: 3
of the function is

x coefficient: -2
y coefficient: -3
of the function is

11

13

The program gives the correct answers for our test values in all four possible cases.

<

4.4.3 Notes Concerning the Use of i £ Constructs

The if construct is very flexible. It must have one if statement and one end state-
ment. In between, it can have any number of elseif clauses and may also have
one else clause. With this combination of features, it is possible to implement any
desired branching construct.

In addition, if constructs may be nested. Two if constructs are said to be
nested if one of them lies entirely within a single code block of the other one. The
following two if constructs are properly nested.

if x > 0



180 | Chapter 4 Branching Statements and Program Design

if y <0
end

end

The MATLAB interpreter always associates a given end statement with the
most recent 1f statement, so in the preceding code the first end closes the if
y < 0 statement, while the second end closes the 1f x > 0 statement. This works
well for a properly written program, but it can cause the interpreter to produce confus-
ing error messages in cases where the programmer makes a coding error. For example,
suppose that we have a large program containing a construct like the following:

if.(testl)
if.(test2)
if.(test3)
end
end

end

This program contains three nested 1f constructs that may span hundreds of lines
of code. Now suppose that the first end statement is accidentally deleted during
an editing session. When that happens, the MATLAB interpreter will automatically
associate the second end with the innermost 1 £ (test3) construct, and the third
end with the middle 1f (test2). When the interpreter reaches the end of the
file, it will notice that the first 1f (testl) construct was never ended, and it will
generate an error message saying that there is a missing end. Unfortunately, it can’t
tell where the problem occurred, so we will have to go back and manually search the
entire program to locate the problem.

It is sometimes possible to implement an algorithm using either multiple
elseif clauses or nested 1f statements. In that case, the program designer may
choose whichever style he or she prefers.

P> Example 4.4—Assigning Letter Grades

Suppose that we are writing a program which reads in a numerical grade and assigns
a letter grade to it according to the following table:

95 < grade A
86 < grade = 95 B



4.4 Branches | 181

76 < grade = 86 C
66 < grade = 76 D
0 < grade = 66 F

Write an if construct that will assign the grades as described in the preceding table
using (a) multiple elseif clauses and (b) nested 1 f constructs.

Solution (a) One possible structure using elseif clauses is

if grade > 95.0

disp('The grade is A.');
elseif grade > 86.0

disp('The grade is B.');
elseif grade > 76.0

disp('The grade is C.');
elseif grade > 66.0

disp('The grade is D.');
else

disp('The grade is F.');
end

(b) One possible structure using nested i f constructs is

if grade > 95.0
disp('The grade is A.');

else
if grade > 86.0
disp('The grade is B.');
else
if grade > 76.0
disp('The grade is C.');
else
if grade > 66.0
disp('The grade is D.');
else
disp('The grade is F.');
end
end
end
end

<

It should be clear from Example 4.4 that if there are a lot of mutually exclusive
options, a single if construct with multiple elseif clauses will be simpler than a

nested if construct.



182 | Chapter 4 Branching Statements and Program Design

- Good Programming Practice

For branches in which there are many mutually exclusive options, use a single 1f
construct with multiple elseif clauses in preference to nested if constructs.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000

4.4.4 The switch Construct

The switch construct is another form of branching construct. It permits an
engineer to select a particular code block to execute based on the value of a
numerical, character, or logical expression. The general form of a switch con-
struct is:

switch (switch expr)
case case_expr:l
Statement 1
Statement 2 Block 1

case case_expr 2
Statement 1

Statement 2 Block 2
otherwise

Statement 1

Statement 2 Block n

end

If the value of switch_expr is equal to case_expr_1I, then the first code block will be
executed, and the program will jump to the first statement following the end of the
switch construct. Similarly, if the value of switch_expr is equal to case_expr_2,
then the second code block will be executed, and the program will jump to the
first statement following the end of the switch construct. The same idea applies
for any other cases in the construct. The otherwise code block is optional. If
it is present, it will be executed whenever the value of switch expr is out-
side the range of all of the case selectors. If it is not present and the value of
switch expr is outside the range of all of the case selectors, then none of the
code blocks will be executed. The pseudocode for the case construct looks just like
its MATLAB implementation.

If many values of the switch expr should cause the same code to execute,
all of those values may be included in a single block by enclosing them in brackets,
as shown in the following code segment. If the switch expression matches any of the
case expressions in the list, then the block will be executed.



4.4 Branches | 183

switch (switch expr)
case {case expr 1, case expr 2, case expr 3}
Statement 1

Statement 2 Block 1
otherwise

Statement 1

Statement 2 Block n
end

The switch_expr and each case_expr may be numerical, character array, or log-
ical values. The expression must evaluate to a scalar number, a scalar logical value,
or to a single character array.

Note that at most one code block can be executed. After a code block is exe-
cuted, execution skips to the first executable statement after the end statement. The
case expressions in the individual cases should be mutually exclusive so that they can
all be selected based on the value of the switch expression. If the switch expression
matches more than one case expression, only the first one of them will be executed.

Let’s look at a simple example of a switch construct. The following statements
determine whether an integer between 1 and 10 is even or odd, and print out an
appropriate message. It illustrates the use of a list of values as case selectors and also
the use of the otherwise block.

switch (value)
case {1,3,5,7,9}

disp('The value is odd.');
case {2,4,6,8,10}

disp('The value is even.');
otherwise

disp('The value is out of range.');
end

- Good Programming Practice

Use switch structures to select mutually exclusive options based on a single input
expression.

SIHVSH R/ L0009 000 0400004000040 0 0400404004900 000000 0000400/ 400/ 40 104 40y 100 400000

4.4.5 The try/catch Construct

The try/catch construct is a special form branching construct designed to trap
errors. Ordinarily, when a MATLAB program encounters an error while running,
the program aborts. The try/catch construct modifies this default behavior. If
an error occurs in a statement in the try block of this construct, then instead of



184 | Chapter 4 Branching Statements and Program Design

aborting, the code in the catch block is executed, and the program keeps running.
This allows an engineer to handle errors within the program without causing the
program to stop.

The general form of a try/catch construct is:

try

Statement 1

Statement 2 Try Block
catch

Statement 1

Statement 2 Catch Block
end

When a try/catch construct is reached, the statements in the try block will be
executed. If no error occurs, the statements in the catch block will be skipped,
and execution will continue at the first statement following the end of the construct.
On the other hand, if an error does occur in the try block, the program will stop
executing the statements in the try block and immediately execute the statements
in the catch block.

A catch statement can take an optional ME argument, where ME stands for a
MException (MATLAB exception) object. The ME object is created when a fail-
ure occurs during the execution of statements in the try block. The ME object con-
tains details about the type of exception (ME.identifier), the error message
(ME .message), the cause of the error (ME. cause), and the stack (ME. stack),
which specifies exactly where the error occurred. This information can be displayed to
the user, or the programmer can use this information to try to recover from the error and
let the program proceed.”

An example program containing a try/catch construct follows. This pro-
gram creates an array and asks the user to specify an element of the array to display.
The user will supply a subscript number, and the program displays the correspond-
ing array element. The statements in the try block will always be executed in
this program, while the statements in the catch block will only be executed if an
error occurs in the try block. If the user specifies an illegal subscript, execution
will transfer to the catch block, and the ME object will contain data explaining
what went wrong. In this simple program, this information is just echoed to the
command window. In more complicated programs, it could be used to recover from
the error.

% Test try/catch

% Initialize array
a=[1-325];

*We will learn more about exceptions when we study object-oriented programming in Chapter 12.



44 Branches | 185

try
% Try to display an element

index = input ('Enter subscript of element to display: ');
disp( ['a(' int2str(index) ') = ' num2str(a(index))] );
catch ME

% If we get here, an error occurred. Display the error.
ME
stack = ME.stack

end
When this program is executed with a legal subscript, the results are:

» test try catch
Enter subscript of element to display: 3
a(3) =2

When this program is executed with an illegal subscript, the results are:

» test try catch
Enter subscript of element to display: 9
ME =

MException with properties:

identifier: 'MATLAB:badsubscript'
message: 'Attempted to access a(9); index out of bounds
because numel (a)=4."
cause: {}
stack: [1x1l struct]
stack =
file: 'C:\Data\book\matlab\6e\chap4\test try catch.m'
name: 'test try catch'
line: 10

- Good Programming Practice

Use try/catch structures to trap run-time errors so that a program can recover
gracefully from them.

i

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 4.4. If