
Chapter 1

MATLAB PRIMER

This chapter will serve as a hands-on tutorial for beginners who are unfa-
miliar with MATLAB. We assume that readers have either the student edi-
tion or a full version of MATLAB.1 Before reading this chapter, the reader
should set up MATLAB on the computer, open the command window, and
try to type and execute the commands as they are explained. Although this
book tries to explain the MATLAB commands as clearly as possible, keep in
mind that learning a new language is confusing and tedious in the beginning.
Trying the commands and practicing them on the computer will help you to
understand them.

Readers are encouraged to solve most of the problems at the end of this
chapter. Each one is simple, but your knowledge and skill will increase by
a continuous effort to solve them. Readers may also seek help by looking at
answer keys at the end of the book, as well as similar problems and answers
posted at the author’s web site.2

Throughout this book you will see log represented as loge. The log
function to the base 10, namely log10, will be specifically denoted as log10.
Trigonometric functions use radians but not degrees; however, the angles in
graphic views are in degrees.

The results of some computations may vary slightly on different comput-
ers, but the differences are typically negligible. Some calculations, however,
are sensitive to rounding errors and can produce significantly disparate re-
sults on different computers. Such problems are often called ill-conditioned
problems and are usually difficult to solve on any computer.

1MATLAB-6. However, most explanations are applicable to MATLAB 4 and 5 ex-
cept for a small number of commands. The features available only with MATLAB-6 are
indicated in the text.

2http://olen.eng.ohio-state.edu/matlab

1

Prentice Hall PTR
This is a sample chapter of Numerical Analysis and Graphic Visualization with MATLAB, 2nd edition
ISBN: 0-13-065489-2

For the full text, visit http://www.phptr.com

©2001 Pearson Education. All Rights Reserved.

2 MATLAB Primer Chapter 1

1.1 BEFORE STARTING CALCULATIONS

how to open MATLAB: On a Unix workstation, MATLAB can be
opened by typing

> matlab

On a PC, MATLAB can be started by clicking on the start-up menu or a
shortcut icon for MATLAB. When MATLAB-6 is started, the window, as
illustrated in Figure 1.1, will open. The left side is divided into two subwin-
dows. The right side is the command window, where the most important
work for MATLAB is done. Earlier versions did not have such divided sub-
windows on the left side.

Figure 1.1
MATLAB-6
Desktop.

Once the prompt sign “>>”appears in the command window, type the
commands that are explained throughout this section. On Windows, the
initial (default) working directory is C:/MATLAB/bin. If you wish to use a
floppy disk as a working directory, type the command to change directory,
namely “cd a:”, in after the >> sign, for example

>> cd a:

If the working directory is C:/my_directory, type

>> cd ../..
>> cd my_directory

Section 1.1 Before Starting Calculations 3

On Unix, MATLAB can be opened from any directory. To quit MAT-
LAB, type

>> quit

help: When the meaning of a command is not clear, type help followed
by any command in question. The help command will give you a concise but
precise explanation and will be one of the most frequently used commands
as you proceed. If you type help date or help format as examples, responses
are, respectively, as follows:

>> help date
DATE Current date as date string.
S = DATE returns a string containing the date in dd-mmm-yyyy format.
See also NOW, CLOCK, DATENUM.

>> help format
FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output
display formats as follows:

FORMAT Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format

with 5 digits.
FORMAT LONG G Best of fixed or floating point format

with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + The symbols +, - and blank are printed

for positive, negative, and zero elements.
Imaginary parts are ignored.

FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.

Spacing:
FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

In the online help, keywords are capitalized to make them stand out. Al-
ways type commands in lowercase as all command and function names are
actually in lowercase.

4 MATLAB Primer Chapter 1

Be aware that the help command is limited to the questions regarding
the commands. If you have a question that is more general in nature, click
the Help menu on the top menu bar and then click on MATLAB Help. A
window as shown in Figure 1.2 will open with the index page already in
front. Type the keyword for your question in the small white box under
Search index for. The remainder of the process is similar to that of help in
MS Windows.

Figure 1.2 Help window.

version: The first thing you should know about MATLAB is what ver-
sion you are using. To get this information, type version.

pwd: pwd prints out the current working directory name.

dir: ls or dir lists all the filenames in the current directory.

cd: cd changes the directory.

what: what will list M-, MAT-, and MEX-files in the current working
directory.3 The command what dirname lists the files in directory dirname

on the matlabpath. It is not necessary to give the full pathname in the posi-
tion of dirname; the last component or last several components are sufficient.
For example, what general and what matlab/general both list the m-files in

3m-file: a script or function file (its format is filename.m); MAT-file: a file containing
binary data (its format is filename.mat); MEX-file: MATLAB executable file compiled
from Fortran or C (filename.mex)

Section 1.1 Before Starting Calculations 5

directory toolbox/matlab/general.

who: who lists the variables in the current workspace. whos lists more
information about each variable. who global and whos global list the vari-
ables in the global workspace.

clock: The clock command prints out numbers such as

ans =
1.0e+03 *
2.001 0.0030 0.0050 0.0150 0.0140 0.0091

The first number, 1.0e+03, is a multiplier. The numbers in the second line
have the following meaning:

[year, month, day, hour, minute, second]

The clock values can also be printed out in the integer form by fix(clock).
The answer is

ans =
2001 3 5 15 19 56

where time was year 2001, 3rd month, 5th day, 15 hr, 19 min and 56 sec,
approximately six minutes after the first example of clock was printed out.
The elapsed time of an execution may be measured by clock. For example,
set t 0=clock before a computation starts and t 1=clock when completed.
Then, t 1 - t 0 gives the time elapsed for the computation. You can also
use tic and toc to measure the elapsed time.

The date command gives similar information, but in a more concise for-
mat:

ans =
5-Mar-01

path: path or matlabpath prints MATLAB’s current search path. Com-
mand p = path returns a string p containing the path. Command path(p0)

changes the path to p0, which is a string containing the new path. Command
path(p1,p2) changes the path to the concatenation of the two path strings,
p1 and p2. Therefore, path(path, p3) appends a new directory, p3, to the
current path and path(p3, path) prepends the new path.

6 MATLAB Primer Chapter 1

getenv: getenv(’matlabpath’) will show current MATLAB paths. If
you have not set any path, the response of the computer is simply two dots.

diary on, diary off: with diary you can record all activities on the
MATLAB window. The diary on command starts writing all keyboard in-
put as well as most screen output to a file named diary. diary off terminates
writing. If file diary already exists, the screen output is appended to the
existing diary file. A filename other than diary may be specified by writing
the intended filename after diary. Without on or off, diary itself toggles
diary on and diary off. The file may be printed as a hard copy or may be
edited later.

!(escape): The ! mark is the operator to escape from MATLAB. With
this mark, you have access to the DOS or Unix commands. A text editing
software like the vi editor may be opened from within MATLAB by using
!vi filename if you are on an Unix computer. Escape may be used similarly
on a PC for some DOS commands. !erase filename deletes the file named
filename on a PC. A subdirectory named d.subdir on PC can be created
by using !mkdir d.subdir. Formatting a diskette from MATLAB on a PC
is possible by using !format a:. Executing PC or Unix software in this way
is not recommended, however, because some programs, particularly graphic
or communication software, may harm the computing environment.

demo: The demo command guides the user to numerous demonstrations
that are selectable from a menu. The MATLAB demonstrations are fun.
Visit them often until you understand them in detail.

pathological symptom: MATLAB can get sick for various reasons.
Possible causes may include: (1) wrong combination of commands given
by the user, (2) its own bug, or (3) software instability due to insufficient
memory. Pathological symptoms tend to occur more frequently with an
early edition of an updated version that is loaded with many new features.
If strange behavior is suspected, shut down MATLAB and restart. If a
software error is found, it should be reported to the company. Often, the
company’s web site will explain and provide a patch to update the software.

Section 1.2 How to Do Calculations 7

1.2 HOW TO DO CALCULATIONS

arithmetic operators: Arithmetic operators +, -, *, and / are, respec-
tively, plus, minus, multiply, and divide, the same as in traditional program-
ming languages. To express power, the operator ^ is used. MATLAB uses
one untraditional operator, \, which may be named inverse division. This
operator yields the reciprocal of division, that is, a\b equals b/a. For exam-
ple,

c = 3\1
c =

0.3333

It is not recommended that readers use this operator in typical computa-
tions, but it will become important in Chapter 3, “Linear Algebra.”

calculation with single variables: When a command window is
opened, a prompt sign >> is seen at the upper left corner of the window.
Any command can be written after the prompt sign. In the explanation of
the commands, however, the prompt sign will be omitted for simplicity.

As a simple example, let us evaluate:

Volume =
4
3
πr3, with r = 2

The commands to type on the screen are:

List 1.1a

r = 2;
vol = (4/3)*pi*r^3;

where pi = π, that is, 3.14159265358979, in MATLAB. Each line is typed
after the prompt sign >> and the return key is hit when finished typing.
Notice in the preceding script that each line is a command and completed
by a semicolon. The caret symbol ^ after r is the power operator.

When we work in the command window, the computer calculates the
answer for each command immediately after the return key is hit. Therefore,
the value of vol is already in the computer. How can we get the result printed
out on the screen?

The quickest way of printing out the result is to type vol and hit return.
Then the computer prints out

8 MATLAB Primer Chapter 1

vol =
33.510

Another way of printing out the value of vol is to omit the semicolon at the
end of the second command

List 1.1b
r = 2;
vol = (4/3)*pi*r^3

Without a semicolon, the result is printed out immediately after the compu-
tation. Because displaying every result is cumbersome, however, we generally
place a semicolon after each command.

Multiple commands may be written in a single line separated by semi-
colons. If the results are to be printed out for each command executed,
separate commands by commas. The line may be terminated with or with-
out a comma. For example, if you write

r = 2, vol = (4/3)*pi*r^3

the values of r and vol are printed out, but if you write

r = 2; vol = (4/3)*pi*r^3;

no results are displayed.
A long command may be split into multiple lines. In Fortran, it is done

by a continuation mark on column 6. In MATLAB, the continuation mark
is ... and it is placed at the end of the line to be continued; for example,

List 1.2

r = 2;
vol = (4/3)*3.14159 ...

*r^3;

The prompt sign will not appear in the line following the continuation mark.

variables and variable names: Variable names and their types do
not have to be declared. This is because variable names in MATLAB make
no distinction among integer, real, and complex variables. Any variable can
take real, complex, and integer values.

In principle, any name can be used as long as it is compatible in MAT-
LAB. We should, however, be aware of two incompatible situations. The
first is that the name is not accepted by MATLAB. The second is that the

Section 1.2 How to Do Calculations 9

name is accepted, but it destroys the original meaning of a reserved name.
These conflicts can occur with the following types of names:

(a) Names for certain values
(b) Function (subroutine) names
(c) Command names

One method to examine compatibility of the variable name is to test it
on the command screen. A valid statement such as x=9 is responded to as

x =
9

which means that the variable is accepted. If end=4 (a bad example) is
attempted, however, it is ignored.

An example of the second conflict is as follows: If sin and cos are used (as
poor examples of variables) with no relation to the trigonometric functions,
for example,

sin = 3;
cos = sin^2;

the calculations proceed; however, sin and cos can never be used as trigono-
metric functions thereafter until variables are cleared by issuing the clear

command or MATLAB is shut down. If any error message concerning a
conflict appears, the reader should investigate the cause.

Traditionally, symbols i, j, k, l, m, and n have been used as integer
variables or indices. At the same time, i and j are used to denote a unit
imaginary value, or

√−1. In MATLAB, i and j are reserved as unit imag-
inary value. Therefore, if the computation involves complex variables, it is
advisable to avoid i and j as user-defined variables.

Table 1.1 lists samples of reserved variable names that have special mean-
ings. Whether a variable or filename exists may also be checked by using
the exist command. For more details, type help exist.

format: Numbers displayed are five-digit numbers by default:

pi
ans =

3.1416

The same numbers, however, may be displayed with 16 digits after the com-
mand format long; for example,

10 MATLAB Primer Chapter 1

Table 1.1 Special Numbers and Variable Names

Variable name Meaning Value

eps Machine epsilon 2.2204e-16
pi π 3.14159...
i and j Unit imaginary

√−1
inf Infinity ∞
NaN Not a number
date Date
flops Floating point operation count
nargin Number of function input arguments
nargout Same for output

format long
pi
ans =

3.141592653589793

In order to return to the short format, use format short. Also, with format

short e and format long e, respectively, short and long numbers are printed
in floating-point format.

clear: As you execute commands, MATLAB memorizes the variables
used. Their values stay in memory until you quit MATLAB or clear the
variables. To clear all the variables, use the clear command. If only certain
variables are to be cleared, name the variables after clear; for example,

clear x y z

clc: If you wish to clear a window, use the command clc.

1.3 BRANCH STATEMENTS

if, else, elsif, end: An if statement is always closed with an end

statement; for example,

List 1.3
n = 2; %(Assume n is a user input so it may be changed)
if n<=5, price=15;
elseif n>5, price=12;
end

Section 1.3 Branch Statements 11

Here the line starting elseif can be eliminated if not needed. Do not sepa-
rate elseif into two words. Of course, elseif can be repeated when neces-
sary. Notice also in writing the foregoing script that the prompt sign does not
appear after if until end is typed. The foregoing script may be equivalently
written as

n = 2; %(Assume n is a user input so it may be changed)
if n<=5, price=15;
else price=12;
end

When the if statement needs to examine the equality of two terms, use
“==”as in the C language; for example,

List 1.4
n = 2;
if n==2, price=17;
end

The not equal operator is written as “~=,”for example,

List 1.5
r = 2;
if r ~= 3, vol = (4/3)*pi*r^3;
end

The greater than, less than, equal or greater than, and equal or less than
operators are, respectively,

>
<
>=
<=

The logical statements and and or are denoted by & and |, respectively.
For example, the conditional equation,

if g > 3 or g < 0, then a = 6

is written as

if g>3 | g<0, a = 6; end

Also, the conditional equation

12 MATLAB Primer Chapter 1

if a > 3 and c < 0, b = 19

is stated as

if a>3 & c<0, b=19; end

The & and | operators can be used in a clustered form, for example,

if ((a==2 | b==3) & c<5) g=1; end

Example 1.1

Assuming two arbitrary integers, R and D, are given in the beginning
of the script, write a script that prints out only if R is divisible by
D = 3.

Solution

Two equivalent ways to examine if R is divisible by another number
are: (1) fix(R/D)=R/D , and (2) mod(R,D)=0. Here, fix(x) returns the
integer part of the number x, while mod(x,y) returns the remainder
on division of x by y. Therefore, a script based on (1) is:

List 1.6a
R=45; D=3;
if fix(R/D) == R/D, R, end

A script based on (2) is
List 1.6b
R=45; D=3;
if mod(R,D) == 0, R, end

1.4 LOOPS WITH for/end OR while/end

loops: MATLAB has for/end and while/end loops. To illustrate a
for/end loop, let us look at the following script that calculates y = x2−5x−3
for each of x = 1, 2..9 in increasing order.

List 1.7a

for x=1:9
y=x^2 - 5*x - 3

end

Section 1.4 Loops with for/end or while/end 13

Notice that for is terminated by end. In the first cycle, x is set to 1, and y
is calculated. In the second cycle, x is set to 2 (with an increment of 1), and
y is calculated. The same is repeated until the calculation of y is completed
for the last value of x.

If x is to be changed with a different increment, the increment can be
specified between the initial and last number as follows:

List 1.7a
for x=1:0.5:9

y=x^2 - 5*x - 3
end

where the increment is now 0.5.
The order of calculation in the loop can be reversed as follows:

List 1.7b
for x=9:-1:1

y=x^2 - 5*x - 3
end

Here, the middle number -1 in 9:-1:1 is the increment in changing x.
It is also possible to compute for any sequence of specified values of x,

for example:

List 1.7c
for x=[-2 0 15 6]

y=x^2 - 5*x - 3
end

Here, y is computed for x =-2 first, which is followed by x =0, 15, and 6.
The if/end statement can be inserted in the loop. In the following ex-

ample, y = sin(x) if sin(x) > 0 but y = 0 if sin(x) < 0.

List 1.7d
for x=0:0.1:10

y=sin(x);
if y<0, y=0;end
y

end

In the following script, c=0 initializes the counter c to zero, x=[-8, ..]

defines an array of the numbers, and length(x) is the length of the array x.
In the for/end loop the counter c is incremented by one if x(i) is negative.
Finally, c prints out the count of the negative elements.

14 MATLAB Primer Chapter 1

List 1.7e
c=0; x=[-8, 0, 2, 5, 7, 2, 0, 0, 4, 6, 6, 9];
for i=1:length(x)

if x(i)<0, c=c+1; end
end
c

The loop index can be decremented as

List 1.8
c=0; x=[-8, 0, 2, 5, 7, 2, 0, 0, 4, 6, 6, 9];
for i=length(x):-1:1

if x(i)<0, c=c+1; end
end
c

In this example, -1 between two colon operators is the decrement of the
parameter i after each cycle of the loop operation.

An alternative way of writing a loop is to use the while/end; for example,

List 1.9
i = 0;c=0; x=[-8, 0, 2, 5, 7, 2, 0, 0, 4, 6, 6, 9];
while i<length(x)+1

i=i+1
if x(i)<0, c=c+1; end

end
c

Example 1.2

Write a script that removes the numbers divisible by 4 from an array
x. Assume the array x is given by

x=[-8, 0, 2, 5, 7, 2, 0, 0, 4, 6, 6, 9]

Solution

The script to the answer is
List 1.9
x=[-8, 0, 2, 5, 7, 2, 0, 0, 4, 6, 6, 9];
y=[];
for n=1:length(x)

if x(n)/4 - fix(x(n)/4)~=0 y=[y,x(n)]; end
end
y

Section 1.4 Loops with for/end or while/end 15

In the foregoing script, fix(x(n)/4) equals the integer part of x(n)/4,
so fix(x(n)/4)-x(n)/4=0 is satisfied if x(n) is divisible by 4. Equiv-
alently, mod(a,b) may be used that equals zero if a is divisible by b.
The following script shows alternative programming to achieve the
same end:

List 1.9
x=[-8, 0, 2, 5, 7, 2, 0, 0, 4, 6, 6, 9];
for n=1:length(x)

if mod(x(n),4)=0 x(n)=[]; end
end
x

The result is
y =

2 5 7 2 6 6 9

break: The break terminates the execution of a for or while loop. When
used in nested loops, only the immediate loop where break is located is
terminated. In the next example, break terminates the inner loop as soon
as j>2*i is satisfied once, but the loop for i is continued until i=6:

List 1.10
for i=1:6

for j=1:20
if j>2*i, break, end

end
end

Another example is

List 1.11
r=0
while r<10
r = input(’Type radius (or -1 to stop): ’);
if r< 0, break, end
vol = (4/3)*pi*r^3;
fprintf(’Volume = %7.3f\n’, vol)

end

In the foregoing loop, the radius r is typed through the keyboard. The
fprintf statement is to print out vol with a format, %7.3f, which is equiva-
lent to F7.3 in Fortran. If 0 ≤ r < 10, vol is computed and printed out, but
if r < 0 the loop is terminated. Also, if r < 10 is dissatisfied once, the while

16 MATLAB Primer Chapter 1

loop is terminated. More explanations for input and fprintf are given in
later subsections.

In a programming language that has no break command, goto would be
used to break a loop. MATLAB, on the other hand, has no goto statement.

infinite loop: Sometimes a loop that can continue infinitely is used,
which may be terminated when a certain condition is met. The following
example shows an infinite loop that is broken only if the condition x > xlimit

is met:

while 1
.
.
if x > xlimit, break; end
.
.

end

1.5 READING AND WRITING

Passing data to and from MATLAB is possible in several different ways. The
methods may be classified into three classes:

(a) Interactive operation by keyboard or mouse
(b) Reading from or writing to a data file
(c) Using save or load

In the remainder of this subsection, only a minimal amount of informa-
tion regarding reading and writing is introduced. More information can be
found in Section 1.8.

input: MATLAB can take input data through the keyboard using the
input command. To read a number, the synopsis would be

z = input(’Type your input: ’)

The string between quote signs, namely, Type your input:, is a prompting
message to be printed out on the screen. As a value is typed and a return
key is hit, the input is saved in z. A string input can be typed from the
keyboard. The synopsis is

Section 1.5 Reading and Writing 17

z = input(’Your name please: ’, ’s’)

The second argument ’s’ indicates that the input from the keyboard is a
string. The variable z becomes an array variable (row vector) unless the
string has only one character. A string input can be taken by input without
’s’ if the typed string is enclosed by single quote signs. In this case, a
prompt message may be written as

z = input(’Type your name (in single quote signs):’)

fprintf: Printing out formatted messages and numbers is possible using
fprintf; for example,

fprintf(’The volume of the sphere %12.5f.\n’, vol)

Included between two single quote signs are a string to be printed out, the
format for the volume, and a new-line operator. The style of the format is
familiar to those who know the C language: The volume of the sphere is
the string to be printed out, %12.5f is the format and similar to F12.5 in
Fortran, and \n is the new-line operator that advances the screen position by
one line. The new-line operator can be placed anywhere within the string.
Finally, vol is the variable to be printed out in accordance with the format
%12.5f. If \n is omitted, the next print starts without advancing a line.

The command

fprintf(’e_format: %12.5e\n’, 12345.2)

will print out

e_format: 1.23452e+04

If two print statements are consecutively written without \n in the first
statement, for example,

fprintf(’e_format: %12.5e’, 12345.2);
fprintf(’f_format: %12.3f\n’, 7.23462)

then all the output will be printed out in a single line as

e_format: 1.23452e+04 f_format: 7.235

An integer value can be typed using the same format, except that 0 is
placed after the decimal point; for example,

fprintf(’f_format: %12.0f\n’, 93)

18 MATLAB Primer Chapter 1

yields

f_format: 93

When multiple numbers are to be printed on a single line, fprintf may be
repeatedly used without \n, except in the last statement.

With the fprintf command, it is possible to write formatted output into
a file. To do this, the named file has to be opened by the fopen command,
for example,

vol=55.0
fileid = fopen(’file_x’,’w’);
fprintf(fileid,’Volume= %12.5f\n’, vol);
fclose(fileid);

will write the output in the file named file x. If no such file exists, a new
file is created. If the file exists, the output is appended. If necessary, the
existing file file x can be deleted by !rm file x on Unix, or !erase file x

on Windows.

disp: Command disp displays a number, vector, matrix, or a string on
the command window without variable name. Therefore, it may be used to
display messages or data on the screen. For example, disp(pi) and disp pi

both print 3.14159 on the command screen. Try also disp ’This is a test

for disp.’.

sprintf: Writing sprintf is very similar to fprintf except that sprintf

writes the output into a string. This statement is often used to create a
command in a string that can be executed as eval(s). It is useful when a
command is to be created or edited automatically and executed within an
m-file.

1.6 ARRAY VARIABLES

one-dimensional array variables: One-dimensional array variables
are in a column or a row form, and are closely related to vectors and matrices.
In MATLAB, row array is synonymous with row vector, and column array
is synonymous with column vector. The variable x can be defined as a row
vector by specifying its elements; for example:

x = [0, 0.1, 0.2, 0.3, 0.4, 0.5];

Section 1.6 Array Variables 19

To print a particular element, type x with its subscript. For example, typing
x(3) as a command will show

ans =
0.2

An equivalent way of defining the same x is

for i=1:6
x(i) = (i-1)*0.1;

end

The size of the vector does not have to be predeclared as it is adjusted
automatically. The number of elements of x can be increased by defining
additional elements, for example,

x(7) = 0.6;

A row array variable with a fixed increment or decrement may be equiv-
alently written as

x = 2:-0.4:2

It yields

x = 2.0000 1.6000 1.2000 0.8000 0.4000 -0.0000

The definition of a column array is similar to a row array except that the
elements are separated by semicolons; for example,

z = [0; 0.1; 0.2; 0.3; 0.4; 0.5];

An alternative way of defining the same thing is to put a prime after a row
array:

z = [0, 0.1, 0.2, 0.3, 0.4, 0.5]’;

The prime operator is the same as the transpose operator in the matrix
and vector calculus, so it converts a column vector to a row vector and vice
versa. Typing z as a command yields

z =
0
0.1
0.2
0.3
0.4
0.5

20 MATLAB Primer Chapter 1

If a single element of an array c is specified, for example,

c(8) = 11;

c(i) = 0 is assumed for i=1 through 7. Therefore, typing c yields

c =
0 0 0 0 0 0 0 11

Likewise

clear c
c(1:5)=7

produces

c =
7 7 7 7 7

Also

clear c
c(1:2:7)=5

yields

c =
5 0 5 0 5 0 5

which can be further changed by

c(2:2:7)=1

to

c =
5 1 5 1 5 1 5

When y and x have the same length and the same form (row or column),
the vector y and x can be added, subtracted, multiplied, and divided using
the array arithmetic operators as

z = x + y
z = x - y
z = x .* y
z = x ./ y

which are equivalent, respectively, to

Section 1.6 Array Variables 21

List 1.12

for i=1:6; z(i) = x(i) + y(i); end
for i=1:6; z(i) = x(i) - y(i); end
for i=1:6; z(i) = x(i)*y(i); end
for i=1:6; z(i) = x(i)/y(i); end

The rules for addition and subtraction are the same as for vectors in lin-
ear algebra. However, .* and ./ are named array multiplication operators
and array division operators, respectively, which are not the same as mul-
tiplication and division for matrices and vectors. If the period in .* or ./

is omitted, the meaning becomes entirely different (see Chapter 3, “Linear
Algebra,”for more details).

The array power operator is illustrated by

g = z.^1.2;

where z is a vector of length 6, a period is placed before the ^ operator, and g

becomes a vector of the same length. The foregoing statement is equivalent
to

for i=1:length(g); g(i) = z(i)^1.2; end

where no period is placed before the ^ operator.
The size of an array can be increased by appending an element or a vector

(or vectors). As an example, assume

x =
2 3

The following command appends 5 to x and makes its length 3:

x = [x, 5]

which returns

x =
2 3 5

A column vector may be appended with a number or a vector or vectors.
Suppose y is a column vector,

y =
2
3

22 MATLAB Primer Chapter 1

then

y = [y; 7]

yields

y =
2
3
7

Here, 7 is appended to the end of the column vector. Notice that a semicolon
is used to append to a column vector. An element can be prepended to a
vector also, for example, x = [9,x] yields

x =
9 2 3 5

where x on the right side was defined earlier. Similarly, [-1;y] yields

y =
-1
2
3
7

A reverse procedure is to extract a part of a vector. For the foregoing y,

w = y(3:4)

will define w that equals the 3rd and 4th elements of y, namely

w =
3
7

length, size: If you don’t remember the size of a vector, ask the com-
puter. For a vector

x = [9, 2, 3, 5]

the inquiry

length(x)

is responded to by

Section 1.6 Array Variables 23

ans =
4

The answer is the same for a column array. Let us define y = [9, 2,

3]’. Then, length(y) returns ans = 3; however, when you want to know if
the vector is a column or row type in addition to the length, use size. For
example, size(y) will return

ans =
3 1

where the first number is the number of rows and the second number is the
number of columns. From this answer, we learn that y is a 3×1 array, that
is, a column vector of length 3. For z=[9,2,3,5], size(z) will return

ans =
1 4

that is, z is a row vector of length 4.

deletion of array elements: An element of an array may be deleted
as follows. Assume z=[3, 5, 7, 9], and the third element is to be deleted
from the array. Then

z(3)=[]

yields

z =
[3, 5, 9]

string variables: String variables are arrays. For example, a string
variable v defined by

v = ’glacier’

is equivalent to

v = [’g’, ’l’, ’a’, ’c’, ’i’, ’e’, ’r’]

The variable v can be converted to a column string by

v = v’

which is

24 MATLAB Primer Chapter 1

g
l
a
c
i
e
r

two-dimensional array variables: A two-dimensional array, which is
synonymous with a matrix in MATLAB, can be defined by specifying its
elements. For example, a 3×3 array can be defined by

m = [0.1, 0.2, 0.3; 0.4, 0.5, 0.6; 0.7, 0.8, 0.9];

Notice that the elements for a row are terminated by a semicolon. Of
course, the number of elements in each row must be identical. Otherwise
the definition will not be accepted. The statement is equivalent to writing

List 1.13
m(1,1)=0.1;
m(1,2)=0.2;
m(1,3)=0.3;
m(2,1)=0.4;
m(2,2)=0.5;
m(2,3)=0.6;
m(3,1)=0.7;
m(3,2)=0.8;
m(3,3)=0.9;

Typing m as a command yields

m =
0.1000 0.2000 0.3000
0.4000 0.5000 0.6000
0.7000 0.8000 0.9000

A whole column or a row of a two-dimensional array can be expressed
using a colon. For example, m(1,:) and m(:,3) are the first row of m and the
third column of m, respectively, and treated as vectors. For example,

c(1,:) = m(3,:);
c(2,:) = m(2,:);
c(3,:) = m(1,:);

yields

Section 1.6 Array Variables 25

c =
0.7000 0.8000 0.9000
0.4000 0.5000 0.6000
0.1000 0.2000 0.3000

Two-dimensional arrays can be added, subtracted, multiplied, and di-
vided using the array arithmetic operators:

List 1.14a
c = a + b
c = a - b
c = a .* b
c = a ./ b

Here, a and b are two-dimensional arrays of the same size. The foregoing
statements are equivalent to, respectively,

List 1.14b
for i=1:3

for j=1:3
c(i,j) = a(i,j) + b(i,j);

end
end

for i=1:3
for j=1:3

c(i,j) = a(i,j) - b(i,j);
end

end

for i=1:3
for j=1:3

c(i,j) = a(i,j)*b(i,j);
end

end

for i=1:3
for j=1:3

c(i,j) = a(i,j)/b(i,j);
end

end

Note that the expressions in List 1.14a are significantly more compact and
clearer than the expressions in List 1.14b.

The statement with the array power operator,

26 MATLAB Primer Chapter 1

g = a.^3

is equivalent to

for i=1:3
for j=1:3

g(i,j) = a(i,j)^3;
end

end

Column vectors and row vectors are both special cases of a matrix.
Therefore, array operators work equally on vectors and matrices. There
are two advantages in using the array arithmetic operators. First, program-
ming becomes short. Second, the computational efficiency of MATLAB is
higher with the short form than writing the same using loops.

if and arrays: Array variables may be compared in an if statement,
assuming that a and b are matrices of the same size:

(1) if a==b is satisfied only if a(i,j)=b(i,j) for all the elements.

(2) if a>=b is satisfied only if a(i,j)>=b(i,j) for all the elements.

(3) if a~=b is satisfied if a(i,j)~=b(i,j) for at least one element.

If two string variables of different lengths are compared by an if state-
ment, an arithmetic error occurs because the two arrays must have the same
length. In order to compare string variables in if statements, all the string
variables must be adjusted to a predetermined length by appending blank
spaces. For example, instead of

a = ’echinopsis’
b = ’thithle’
c = ’cirsium’
d = ’onopordon’

write as

a = ’echinopsis’
b = ’thithle ’
c = ’cirsium ’
d = ’onopordon ’

Then, a, b, and c may be compared in if statements.
This task may be more easily achieved, however, by str2mat. For exam-

ple, suppose string variables have been given by

Section 1.6 Array Variables 27

t1 = ’digitalis’
t2 = ’nicotiana’
t3 = ’basilicum’
t4 = ’lychnis’
t5 = ’chrysanthemum’

Then they may be organized in a single string matrix by

s = str2mat(t1,t2,t3,t4,t5)

The first row of s becomes t1, the second row t2, and so on, with an identical
length because blank spaces are added to shorter strings.

Example 1.3

(a) An array of numbers is given by
x=[9, 2, -3, -6, 7, -2, 1, 7, 4, -6, 8, 4, 0, -2];

Write a script to count the number of negative entries.
(b) Write a script to find the minimum and maximum values in the

array given in (a). (Do this in a primitive way without using
min or max commands.)

Solution

(a) The key for the script writing is to use for/end and if/end.
The counter c is initialized to 0 in the beginning. Then, x(i)<0
is examined for each of x(i). If the condition is satisfied, the
counter is increased by one. The final answer is typed simply
by c.

x=[9, 2, -3, -6, 7, -2, 1, 7, 4, -6, 8, 4, 0, -2];
c=0;
for i=1:length(x);
if x(i)<0 c=c+1;end

end
c

The answer is
c =

5

(b) In the following script, xmin and xmax are initialized to a large
positive and large negative number, respectively. Then, xmin

and xmax are compared to each x(i). If xmin is greater than

28 MATLAB Primer Chapter 1

x(i), xmin is set to x(i), and, similarly, if xmax is smaller than
x(i), xmax is set to x(i).

x=[9, 2, -3, -6, 7, -2, 1, 7, 4, -6, 8, 4, 0, -2];
xmin=999; xmax=-999;
for i=1:length(x);
if xmin>x(i), xmin=x(i);end
if xmax<x(i), xmax=x(i);end

end
[xmin,xmax]

The answer is
ans =

-6 9

Comment: Be aware that min and max commands find the minimum and maxi-

mum, respectively, and make the task easier.

Example 1.4

(a) Write a script to examine if a given number is a prime number
or not. Read the integer to be examined by the input command.
Do not use factor or isprime commands. (Hint: Check to see if
the number is divisible by all the lower numbers except unity).

(b) Write a script to print out the prime numbers less than 100
in increasing order. Print out the total number of the prime
numbers found, a list of the prime numbers, and the sum of the
prime numbers less than 100. (Do not use factor or isprime

commands).

Solution

(a) In the following script, the number to be examined, i, is given
through the input. The ans is initialized to 1. Then the number
i is divided by 2 through i-1. If fix(i/n) equals i/n for any n,
ans is set to 0 and the loop is terminated by break. If the loop
is completed without resetting ans=1, the i is a prime number.

clear
i=input(’Type an integer greater than 1: ’);
ans=1;
for n=2:i-1

if i/n==fix(i/n), ans=0; break;end

Section 1.6 Array Variables 29

end
if ans==0, fprintf(’No, %2.0f is not a prime number.\n’,i)
else fprintf(’Yes, %2.0f is a prime number.\n’,i)
end

A sample output is

Type an integer greater than 1: 5
Yes, 5 is a prime number.

(b) The script for this part is essentially the same as for (a), except
the prime number tested is changed in another loop from 2 to
99. The array prime is initialed to 2 because it is the first prime
number. If i examined is a prime number, then it is appended
to prime.

clear
prime=[2];
for i=3:99
ans=1;
for n=2:i-1
if i/n==fix(i/n), ans=0; break ;end

end
if ans==1, prime=[prime,i];end

end
k=length(prime);
fprintf(’\n\nPart (b) answer\n’)
fprintf(’Number of prime numbers = %3.0f\n’,k)
fprintf(’Prime numbers less than 100\n’,k)
for j=1:length(prime)
fprintf(’%4.0f’,prime(j));
if j==fix(j/10)*10, fprintf(’\n’);end

end
fprintf(’\nThe sum of the prime numbers = %4.0f\n’,sum(prime))

The results are

Part (b) Answer
Number of prime numbers = 25
Prime numbers less than 100

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97

The sum of the prime numbers = 1060

30 MATLAB Primer Chapter 1

1.7 UNIQUE ASPECT OF NUMBERS IN MATLAB

In ordinary programming languages, numbers are classified into several cat-
egories such as single, double, real, integer, and complex. In MATLAB, all
variables are treated equally in double precision. There is no distinction
between integer and real variables, nor between real and complex variables.
How to assign a value to a variable is entirely up to the user. If a variable
is to be used as an integer, just set the value as an integer. Integers are
recognized as far as they are recognizable from the mantissa and exponents
in the memory. No distinction between real and complex variables is unique
to MATLAB, but it provides great advantages. In Fortran, for example, real
variables and complex variables cannot share the same subroutines.

As a simple example, consider roots of a quadratic polynomial

ax2 + bx + c = 0

The solution may be written as

x =
−b ±√

b2 − 4ac

2a
In Fortran or C, one has to separate the solutions to two cases:

(a) b2 ≥ 4ac,

x =
−b ±√

b2 − 4ac

2a

(b) b2 < 4ac,

x =
−b ± i

√
4ac − b2

2a

where i equals
√−1, and the solutions in the second case are complex values.

In MATLAB, however, no separation is necessary. Regardless of the sign of
the value inside the square root, the roots are computed by

x1 = (-b + sqrt(b^2 - 4*a*c))/(2*a)
x2 = (-b - sqrt(b^2 - 4*a*c))/(2*a)

If the roots are complex, MATLAB automatically treats the variables as
complex.

Accuracy of computations is affected by a number of factors. The key
parameters that affect computational accuracy in a programming language
are

Section 1.7 Unique Aspect of Numbers in MATLAB 31

Smallest positive number: x min
Largest positive number: x max
Machine epsilon: eps4

In Table 1.2, these three numbers in MATLAB are compared to those in
Fortran on a few typical computers.

Table 1.2 Comparison of the Range of Numbers and Machine Epsilon

Software MATLAB Fortran(workstation) Fortran(Cray)
Precision Single (Double)

x min 4.5e-324 2.9e-39(same) 4.6e-2476

x max 9.9e+307 1.7e+38(same) 5.4e+2465

eps 2.2e-16 1.2e-7(2.8e-17) 1.3e-29

The foregoing table shows that the machine epsilon (eps) of MATLAB is
equivalent to that of double precision in Fortran on typical workstations.5

MATLAB treats all numbers in double precision. The x min of MATLAB
is significantly smaller than in Fortran on workstations and PCs, and x max
is significantly larger. Indeed, x min and x max are next to those of Cray.
The wide range of numbers on MATLAB is indeed a significant advantage
when exponential functions or functions with singularities are computed.

If the reader would like to verify x min, x max, and eps, run the following
scripts (the last number appearing on the screen is the answer):

List 1.15

% To find x_min
x=1; while x>0, x=x/2, end

List 1.16

% To find x_max
x=1; while x<inf, x=x*2, end

4Machine epsilon is the difference between 1 and the next floating value greater than
1. In other words, no floating value between 1 and 1+eps can be expressed. Any number
that falls in between is, therefore, rounded to 1 or 1+eps. One half of the machine
epsilon can be interpreted as a maximum relative rounding error associated with a floating
value. Obviously, the smaller the eps, the more accurate the numbers in the computing
environment.

5S. Nakamura, Applied Numerical Methods in C, Prentice-Hall, 1992.

32 MATLAB Primer Chapter 1

List 1.17
% To find machine epsilon
x=1; while x>0, x=x/2; ex = x*0.98 + 1; ex=ex - 1;

if ex > 0, ex, end
end

If a value becomes greater than x max, the number is treated (in MAT-
LAB) as ∞, denoted by inf. If you type inf on the command window, the
response is

ans =
inf

Typing x = 1/inf will yield

ans =
0

Sometimes, however, the answer becomes NaN, which means not a num-
ber. For example, if you try to compute i*inf, the answer of MATLAB
is

ans =
NaN

1.8 MATHEMATICAL FUNCTIONS OF MATLAB

Like any other programming language, MATLAB has numerous mathemat-
ical functions ranging from elementary to high levels. Elementary functions
may be classified into the following three categories:

(a) Trigonometric functions
(b) Other elementary functions
(c) Functions that do chores

Table 1.3 shows the functions in the first two categories. The functions in
the third category are explained in Section 1.9.

Mathematical functions in MATLAB have two distinct differences from
those in other programming languages such as Fortran and C: (1) math-
ematical functions work for complex variables without any discrimination,
and (2) mathematical functions work for vector and matrix arguments.

complex arguments: To show how the functions of MATLAB work
for imaginary or complex variables, let us try

Section 1.8 Mathematical Functions of MATLAB 33

cos(2 + 3*i)

where i equals the unit imaginary number, or equivalently square root of
−1. Then the answer is

Table 1.3 Elementary Mathematical Functions

Trigonometric Remarks
functions

sin(x)

cos(x)

tan(x)

asin(x)

acos(x)

atan(x) −π/2 ≥ atan(x) ≥ π/2
atan2(y,x) Same as atan(y/x) but −π ≥ atan(y, x) ≥ π
sinh(x)

cosh(x)

tanh(x)

asinh(x)

acosh(x)

atanh(x)

Other elementary Remarks
functions

abs(x) Absolute value of x
angle(x) Phase angle of complex value:

If x = real, angle = 0
If x =

√−1, angle = π/2
sqrt(x) Square root of x
real(x) Real part of complex value x
imag(x) Imaginary part of complex value x
conj(x) Complex conjugate x
round(x) Round to the nearest integer
fix(x) Round a real value toward zero
floor(x) Round toward −∞
ceil(x) Round x toward +∞
sign(x) +1 if x > 0; -1 if x < 0
mod(x,y) Remainder upon division: x - y*fix(x/y)
rem(x,y) Remainder upon division: x - y*fix(x/y). Different from mod if y ≤ 0
exp(x) Exponential base e
log(x) Log base e
log10(x) Log base 10
factor(x) Factorize x into prime numbers
isprime(x) 1 if x is a prime number, 0 if not
factorial(x) x!

34 MATLAB Primer Chapter 1

ans =
-4.1896 - 9.1092i

For another example, consider the arccosine function, which is the inverse
of the cosine function defined by

y = acos(x) = cos−1(x)

The command

acos(0.5)

yields

ans =
1.0472

The argument x in acos(x) is ordinarily limited to the range −1 ≤ x ≤ 1
(this is the way acos function works in Fortran). In MATLAB, however,
acos accepts any value in −∞ < x < ∞ because the values of acos(x) are
not restricted to real values. Indeed, if we try

acos(3)

then

ans =
0 + 1.7627i

array arguments: Most functions in MATLAB can take vectors and
matrices as argument. For example, if

x =
1 2 3
9 8 7

then sin(x) will yield

ans =
0.8415 0.9093 0.1411
0.4121 0.9894 0.6570

which is a matrix of the same size as x. The computation performed here is
equivalent to

Section 1.9 Functions That Do Chores 35

List 1.18

for i=1:2
for j=1:3
x(i,j) = sin(x(i,j))

end
end

If x is a column or row array, sin(x) becomes a column or row array accord-
ingly.

1.9 FUNCTIONS THAT DO CHORES

Besides functions that compute straightforward mathematical functions listed
in Table 1.3, there are several functions that do chores.

sort: sort reorders elements of a vector to ascending order. This com-
mand is useful if data in a random order have to be reordered in ascending
order. The argument x can be a row vector, column vector, or a matrix. If
x is a matrix, reordering is performed for each column. A few examples are
given here:

sort([2 1 5])
ans =

1 2 5

sort([2 1 5]’)
ans =

1
2
5

sort([9 1 5; 2 8 4])
ans =

2 1 4
9 8 5

sum: sum(x) computes the summation of the elements of a vector or
matrix x. For both a column vector or a row vector, sum computes the total
of the elements. If x is a matrix, the sum of each column is computed and a
row vector consisting of the summation of each column is returned. A few
examples are given here:

36 MATLAB Primer Chapter 1

sum([2 1 5])
ans =

8

sum([2 1 5]’)
ans =

8

sum([2 1 5; 9 8 5])
ans =

11 9 10

max, min: max(x) finds the maximum in vector x, and min(x) finds the
minimum. Argument x can be a row or column vector, or a matrix. If x is
a matrix, the answer is a row vector containing the maximum or minimum
of each column of x. (The rule is the same as that for sort and sum.)

mod: mod(x,y) returns the remainder of division of x by y. Therefore,
the returned values becomes zero if x is divisible by y. In other words,
mod(x,y) becomes zero if x is an integer multiple of y.

rand: Random numbers can be generated by rand. Its synopsis is
rand(n), where n specifies the size of the matrix of random numbers to
be returned. If n = 1, a single random number is returned. For n > 1, a
n×n matrix of random numbers is returned. Unless otherwise specified, the
random numbers generated in this way are in 0 ≤ x ≤ 1. If rand is called
repeatedly, a sequence of random numbers is generated. The random num-
ber generator may be initialized by giving a seed number. The synopsis of
initialization is

rand(’seed’, k)

where k is the seed number. It must be greater than unity. When the seed
number is the same, the sequence of the random numbers becomes the same.
If, however, the sequence is desired to be randomly different whenever the
random generator is started, a randomly chosen seed number must be given.
It could be the pollen count of the day, or the time in seconds, or a number
drawn at a state lottery during the week, although finding a truly random
number from natural phenomena or our daily life is not easy (see Example
1.2).

Section 1.10 Developing a Program as an M-File 37

eval: Commands can be edited as a string and then executed by eval.
The string can be read as input, or created within a script. For example

x=0:0.1:10
string=input(’Type a function name, and hit return: ’,’s’);
s=[’plot(’, ’x,’,string,’(x))’];
eval(s)

If the input is cos, for example, the script plots y=cos(x) for x=0:0.1:10.

1.10 DEVELOPING A PROGRAM AS AN M-FILE

Executing commands from a window is suitable only if the amount of typing
is small, or if you want to explore ideas interactively. When commands are
more than a few lines long, however, the user should write a script m-file, or
a function m-file, because the m-files are saved to disk and can be corrected
as many times as needed.6 The m-file can include anything the user would
write directly in the command window. Beginners should try to develop
short m-files first and execute them.

In MATLAB-6, an m-file can be executed from the editor window. Click
Save and run in the Debug menu.

echo on, echo off: When an m-file is executed, the statements in the
m-file are not usually printed on the screen. After echo is turned on with
the echo on command, however, the statements are printed out. By doing
this, the user can see which part of the m-file is being executed. To turn off
echo, type echo off.

comment statements: The percent sign in m-files indicates that any
statements after this sign on the same line are comments and are to be
ignored for computations. Comments added to m-files in this way can help
explain the meaning of variables and statements.

Example 1.5

Random numbers may be used to play a game. The x=rand(1) com-
mand generates a random number between 0 and 1 and sets x to that

6m-files are classified into two categories: script m-file and function m-file. Script
corresponds to a main program in traditional programming languages, while function
corresponds to subprogram, subroutine, or function in traditional languages.

38 MATLAB Primer Chapter 1

number. Consider 13 spade cards which have been well shuffled. The
probability of picking up one particular card from the stack is 1/13.
Write a program to emulate the action of picking up one spade card
by a random number. The game is to be continued by returning the
card to the stack and shuffling again after each game is over.

Solution

Suppose the interval between 0 and 1 is divided into 13 equally spaced
subintervals. Each is defined by (n − 1)/13 < x < n/13 where
n = 1, 2, ..13. Then, if a random number falls in the nth interval,
we can say that the nth card is drawn. Actually, n can be found by
multiplying x by 13 and rounding up to the nearest higher integer.

Of course, before using rand, we have to initialize rand with
a seed number. If the same seed is used, an identical sequence of
random numbers is generated. One way to pick up a seed number
is to use the clock command. For example, c=clock will set c to
a row vector of length 6. The product of the second through the
last numbers, namely c(2)*c(3)*c(4)*c(5)*c(6), has approximately
3×107 combinations and changes every second throughout one year.

The following m-file determines a card every time it is executed.
The game is repeated by answering the prompted question by r, but
is terminated by typing any letter other than r. This m-file is saved
by List1 19.m, so it can be executed from the command window by
typing List1 19.

List 1.19
c=clock;
k=c(2)*c(3)*c(4)*c(5)*c(6);
rand(’seed’, k)
for k=1:20
n=ceil(13*rand(1));
fprintf(’Card number drawn: %3.0f\n’, n)
disp(’ ’)
disp(’Type r and hit Return to repeat’)
r = input(’or any letter to terminate ’,’s’);
if r ~= ’r’, break, end

end

One interesting but useful feature of an m-file is that it can call other m-
files. The calling m-file is a parent m-file, while the called m-files are children
m-files. This implies that one script may be broken into one parent m-file

Section 1.11 How to Write Your Own Functions 39

and multiple children m-files. The children m-files are similar to function
m-files, which are explained in the next section. The difference, however, is
that the parent and children m-files can see all the variables among them
while function m-files can see only those variables given through arguments.

1.11 HOW TO WRITE YOUR OWN FUNCTIONS

Functions in MATLAB, which are saved as separate m-files, are equivalent
to subroutines and functions in other languages.

function that returns only one variable: Let us consider a function
m-file for the following equation:

f(x) =
2x3 + 7x2 + 3x − 1

x2 − 3x + 5e−x
(1.11.1)

Assuming the m-file is saved as demof .m, its script is illustrated by

List 1.20
function y = demof_(x)
y = (2*x.^3+7*x.^2+3*x-1)./(x.^2-3*x+5*exp(-x));

Notice that the name of the m-file is identical to the name of the function,
which appears on the right side of the equality sign. In the m-file, array
arithmetic operators are used, so the argument x can be a scalar as well as a
vector or matrix. Once demof .m is saved as an m-file, it can be used in the
command window or in another m-file. The command

y = demof_(3)

yields

y =
502.1384

If the argument is a matrix, for example,

demof_([3,1; 0, -1])

the result becomes a matrix also:

ans =
502.1384 -68.4920
-0.2000 0.0568

40 MATLAB Primer Chapter 1

function that returns multiple variables: A function may return
more than one variable. Suppose a function that evaluates mean and stan-
dard deviation of data. To return the two variables, a vector is used on the
left side of the function statement, for example,

List 1.21
function [mean,stdv] = mean_st(x)
n=length(x);
mean = sum(x)/n;
stdv = sqrt(sum(x.^2)/n - mean.^2);

To use this function, the left side of the calling statement should also be a
vector. The foregoing script is to be saved as mean st.m. Then,

x = [1 5 3 4 6 5 8 9 2 4];
[m, s] = mean_st(x)

yields

m =
4.7000

s =
2.3685

function that uses another function: The argument of a function
may be the name of another function. For example, suppose a function that
evaluates a weighted average of a function at three points as

fav =
f(a) + 2f(b) + f(c)

4
(1.11.2)

where f(x) is the function to be named in the argument. The following
script illustrates a MATLAB function f av.m that computes Eq.(1.11.2):

List 1.22
function wa = f_av(f_name, a, b, c)
wa = (feval(f_name,a) + 2*feval(f_name,b) ...

+ feval(f_name,c))/4;

In the foregoing script, f name (a string variable) is the name of the function
f(x). If f(x) is the sine function, f name equals ’sin’. The feval(f name,x)

is a MATLAB command that evaluates the function named f name for the ar-
gument x. For example, y = feval(’sin’,x) becomes equivalent to y=sin(x).

Section 1.12 Saving and Loading Data 41

Example 1.6

Evaluate Eq.(1.11.2) for the function defined by Eq.(1.11.1) with
a = 1, b = 2, and c = 3. Equation (1.11.1) has been written as
demof .m in List 1.20.

Solution

We assume f av.m (List 1.22) has been saved as an m-file. Then, the
command

A = f_av(’demof_’, 1, 2, 3)

yields
89.8976

The number of input and output arguments of feval must be consistent
with the input and output format of the function f name. For example, if the
function f name needs four input variables and returns three output variables,
the statement to call feval would be:

[p, q, s] = feval(f_name, u, v, w, z)

where p, q, and s are output, while f name, u, v, w, and s are input.

debugging of function m-files: Debugging function m-files is more
difficult than script m-files. One reason is that you cannot see the values
of variables by typing the variable names unless debugging commands are
used. The most basic but effective method of developing a function m-
file is to comment-out the function statement on the first line by placing %

before function and then test the m-file as a script m-file. Put the function
statement back after a thorough examination of the m-file.

Using debugging commands is recommended only for advanced MAT-
LAB users.

1.12 SAVING AND LOADING DATA

save, load: If save is used by itself, as in

save

42 MATLAB Primer Chapter 1

all the variables are saved in the default file matlab.mat. The load command
is the inverse of the save command and retrieves all the variables saved by
save.

The filename may be specified by placing it after save; for example:

save file_name

saves all the variables in the file named file name.mat. When you wish to
retrieve the variables, write

load file_name

If only selected variables are to be saved, write the variable names after
file name; for example:

save file_name a b c

In this example, a, b, and c are saved in the file named file name. Do not
separate file name and variables by a comma. All the variables are saved in
double precision binary. When you wish to load the data in file name.mat,
type

load file_name

without variable names. Then, all of a, b, and c are retrieved.

save filename data -ascii: save can be used to save data in ASCII
format. Both save and load with the ASCII option are important because
they make possible export and import of data from MATLAB.

To use the ASCII format, -ascii or /ascii is appended after the variable
names. For example,

save data.tmp x -ascii

saves variable x in 8-digit ASCII to the file named data.tmp. The save

command can save more than one variable; for example,

x = [1, 2, 3, 4]
y = [-1, -2, -3]’
save data2.tmp x y -ascii

If you open the data2.tmp file, it looks like

1.0000000e+00 2.0000000e+00 3.0000000e+00 4.0000000e+00
-1.0000000e+00
-2.0000000e+00
-3.0000000e+00

Section 1.12 Saving and Loading Data 43

The load command allows you to convert a data file into a variable, but
loading a file in ASCII format is not quite the inverse of save in ASCII
format. The reason is that while save in ASCII can write multiple variables,
load reads the entire data file into only one variable. Furthermore, the
filename becomes the variable’s name. For example, if a file named y dat.e

is loaded by

load y_dat.e

the content is loaded to the variable named y dat regardless of the extension
name.

Therefore, the data file y dat must be in one of the following data forms
only:

(a) a single number

(b) a row vector

(c) a column vector

(d) a matrix

If multiple variables have to be loaded, each variable should be prepared in
a separate ASCII data file.

Data files prepared by Fortran or C in ASCII (or text) format can be
loaded by load as long as the data structure is one of the four forms. For
more advanced methods of exporting and importing data files, consult the
MATLAB User’s Guide.

creating file name automatically: it often becomes desirable to cre-
ate filenames automatically within an m-file. If a whole command, including
the filename, is written as a string, it may be executed by eval. In the
following script, xdata is assumed to be computed for each k and saved in
separate files named fname001, fname002, ... in ASCII format.

for k=1:kmax
%Here are some statements to produce xdata for each k.
%kmax is the maximum number of k (less than 1000).
if k<10, s=[’save fname00’,num2str(k), ’ xdata -ascii’]
elseif k>=10 & k<100, s=[’save fname0’,num2str(k), ’ xdata -ascii’]
elseif k>=100, s=[’save fname’,num2str(k), ’ xdata -ascii’]
eval(s)

end

44 MATLAB Primer Chapter 1

1.13 HOW TO MAKE HARD COPIES

One frequently asked question is how to make hard copies of the prints on
the screen. To produce a copy of prints on the screen, use diary introduced
in Section 1.1. If diary is used without a specific filename, the filename
becomes diary in the directory. The file can be printed out as a text file.
Graphic figures are not captured in diary.

PROBLEMS

In resolving the problems that follow, prepare your answers using MATLAB. Run
the statements or scripts on MATLAB. Make sure you correct your script until you
get the right answers. If you are required to submit your answers for the problems,
do not submit the printout without attaching a short summary by hand in case
your instructors have trouble understanding it. Highlight the key numbers (final
answers) in the printout so the instructor can find them without a struggle. If the
problems are difficult and you need assistance, look at similar problems and answers
given in Additional Exercises at http://olen.eng.ohio-state.edu/matlab

(1.1) Guess the MATLAB response to the following statements. Examine your
answers by executing them on MATLAB.

a = [1 2 3; 4 5 6]’
b = [9;7;5;3;1]
c = b(2:4)
d = b(4:-1:1)
e = sort(b)
f = [3,b’]

(1.2) Arrays x and y are defined by

x=[7 4 3]
y=[-1 -2 -3]

(a) Define a new array u by prepending y to x.
(b) Define a new array v by appending y to x.

(1.3) On MATLAB, make a two-dimensional array such that the first row equals x
and the second row equals y, where both x and y are defined in the previous
problem.

(1.4) Eliminate the for/end loop in the following script by using the array arith-
metic operators:

Problems 45

x=11:15
for k=1:length(x)
z(k)=x(k)^2 + 2.3*x(k)^0.5;
end
z

(1.5) Rewrite the following script without using the array arithmetic operators:

x=[4 1 2]
z=1./(1 + x.^2)

(1.6) A vector is given by

a = [4 -1 2 -8 4 5 -3 -1 6 -7]

Write a script that doubles the negative numbers in a. Run the script and
show your output.

(1.7) Write a script that removes positive numbers from a given in Problem (1.6).
Run the script and show your printout of the answer.

(1.8) Write a script that generates an array such as

x=[1 4 2 4 2 4 .. 4 1]

where the length of the array is an odd number, the numbers in the even
addresses are 4, and the numbers in the odd addresses are 2 (except the first
and the last numbers are 1). Run your script and show how it works for any
odd length of x, given by input, which is equal to 3 or greater.

(1.9) Write a script that generates an array such as

x=[1 3 3 2 3 3 2 3 3 .. 2 3 3 1]

where the length of the array is 3n+1 with an integer n, 3 always repeats two
times following 2 except for the first number 1, and the last number is 1. Run
your script and show how it works for any n.

(1.10) A vector is given by

a = [4 -1 2 -8 4 5 -3 -1 6 -7]

Write a script that calculates the sum of positive numbers of a. Run the script
and show your printout of the answer.

(1.11) The pricing scheme of computer printers sold by a company is as follows:

(a) the basic price of a printer is $150 if the customer buys only one printer

(b) the second printer is $120 if the customer buys more than 1 printer

(c) the third printer and beyond is $110.

46 MATLAB Primer Chapter 1

Write a script that calculates the total price for up to 10 printers purchased
by one customer.

The number of printers should be specified at the beginning of the script. The
number of printers may be read by the input command. Calculate the total
price for 10 printers by running your script.

(1.12) Develop a script that generates a price chart for up to 10 printers for the
printer store described in the previous problem. (Use the fprintf command
to print out the table. Utilizing a price table recalculated by hand calculations
is not acceptable.)

(1.13) A company selling printer cartridges has the following price policy. The first
cartridge is $50, the second is $35, but the third one is free. This pricing
pattern repeats as the number of cartridges sold increases, namely, the fourth
is $50, the fifth is $35 and the sixth is free, and so on. Most customers buy
multiples of three to take advantage of every third. However, large organi-
zations like universities and government agencies buy the exact number of
cartridges they need regardless of the advantage of the free phurchase. Thus,
the company must prepare a price chart for any number of cartridges sold.
Write a script to prepare a price chart for up to 20 cartridges. Make sure the
output of your chart is correct by hand calculations.

(1.14) Bubble sort is an iterative method for reordering a sequence of numbers in
increasing order. For example, consider x=[7 1 2 4 8 5]. In the first itera-
tion cycle, 7 in the first position and 1 in the second position are compared.
Since 7 is greater than 1, they are exchanged in the array. Next, 7, which
is now in the second position, is compared to 2 in the third position. Then
an exchange takes place because 7 is greater than 2. The same procedure
is repeated until the last position is involved. The second cycle is the same
using the result of the first cycle. The cycles are repeated until no exchange
becomes necessary. Write a script to reorder x in increasing order. Do not
use the sort command.

(1.15) A matrix m is defined by

m =




1 2 5
3 1 2
4 1 3




How do you read m into MATLAB by the input statement? Show that your
procedure is correct on MATLAB.

(1.16) What is the result of sum(m), max(m), and min(m) on MATLAB, where m is
the matrix defined in the previous problem?

(1.17) Write an m-file that examines if a positive integer is a prime number or not
without using factor or isprime.

Problems 47

(1.18) Array x is given by x=[1:99]. Remove all prime numbers from x, then cal-
culate the sum.

(1.19) Write a script to compute

S =
10∑

n=1

n

n + 1

(a) using a for/end loop, but not array operators or sum.
(b) using array operators and sum, but not any for/end loop.
What is the value of S?

(1.20) Write a script that converts any element equal to 1 in a matrix to -1. Run the
m-file for the 3×3 array (matrix) m defined in Problem 1.15. Print out your
script and its results.

(1.21) Define v by

v = ’glacier’

or

v = [’g’, ’l’, ’a’, ’c’, ’i’, ’e’, ’r’]

Write a script to find the address of i in v.

(1.22) A matrix (or array) generated by m=rand(4,4) is an array of random numbers.
Write a script that prints out the addresses (row and column numbers) of the
numbers that are less than 0.5. Execute your script and make sure it is correct.
Print out your script and the answers.

(1.23) Develop a function m-file, fun es(x), to compute the following function:

y = 0.5ex/3 − x2 sin x

The argument must accept a scalar as well as a vector. Test your function by
typing the following on MATLAB:

fun_es(3)
fun_es([1 2 3])

(1.24) Repeat the task of Problem (1.23) for the function:

y = sin(x) log(1 + x) − x2, x > 0

Denote the function fun lg(x).

48 MATLAB Primer Chapter 1

(1.25) (a) Write a function m-file that calculates the solution of

ax2 + bx + c = 0

Its synopsis is quad rt(a,b,c), where a, b, and c are allowed to be vectors.
(b) Test the function for a=3, b=1, c=1.
(c) Test the function for a=[3 1 2], b=[1 -4 9], c=[1 3 -5].

(1.26) The reader is assumed to have completed fun es and fun lg developed for
Problems 1.23 and 1.24. Now, develop a function, t es(x), that:
(a) asks for the name of the function to be evaluated
(b) lets the user type the function name
(c) evaluates the function by feval and returns the functional values
(d) stops if the choice is neither fun es nor fun lg.

Test your t es by asking to evaluate fun es(3) and fun lg(3).

(1.27) Two variables, x and y, are saved in the out asc.m file:

x = 1:5
y = [-1:-1:-5]’
save out_asc x y -ascii

How does the file look when the file is opened as an m-file? Is it possible to
read both x and y from the same file? If x and y have to be saved in ASCII
format and also have to be loaded later, what should you do?

(1.28) A vector is given:

A = [1 2 3 4 5 6 7 8 9 0]

Write a script to print out the vector content using the fprintf command in
a loop such that the printout will look like:

Vector A is
[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
Print completed.

Note that each number except the last is followed by a comma and one blank
space. Your script should work for any other definition of vector A.

(1.29) Write an m-file that asks the player to type 0 or 1. If 1, the software finds
10 numbers randomly from 1 through 6. Print out the 10 numbers found in
a row vector form. If the player’s input is 0, the program is stopped. Obtain
a seed random number by clock as follows:

c = clock;
sdnum = c(1)*c(2)*c(3)*c(4)*c(5)*c(6);

Problems 49

(1.30) Develop an m-file named fun xa that evaluates the following series:

f(x) = 1 + x +
x2

2!
+

x3

3!
+ .. +

xn

n!

The values of x and n are to be given by input. Test the function by compar-
ing the result with hand calculations for x = 1 and n = 4. The foregoing series
is a truncated Maclaurin expansion of ex and converges for −∞ < x < ∞.
Knowing this, test your function for selected x values, such as x = 0.5, 3.0
and −1, with n = 1, 2, 3, 5, 10, and compare with ex.

(1.31) Develop an m-file named fun xb that evaluates the following series:

f(x) = x − x2

2
+

x3

3
− .. + (−1)n+1 xn

n

The values of x and n are to be given by input. Test the function by compar-
ing the result with hand calculations for x = 1 and n = 4. The foregoing series
is a truncated Maclaurin expansion of log(1+x) and converges for −1 < x < 1.
Knowing this, test your function for selected x value, such as x = −0.5 and
0.5, with n = 1, 2, 3, 5, 10, 20, 50, and compare with log(1+x). (Convergence
becomes increasingly difficult as x approaches −1 or 1.)

