Faculty: Faculty of (Chemical and Energy Engineering	ng	Page 1 of 7	
Subject & Code: Ma Total Lecture Hours	aterial Engineering (SETG 2363 s: 4 hours x 14 weeks)	Semester: 1 Academic Session: 2024/2025	
Lecturer Room No. Tel. No. E-mail Section Prerequisite	Dr. Zulhairun Abdul K N29a AMTEC 07-553 5398/017-954 <u>zulhairun@utm.my</u> Statics (SKPG1243)	Dr. Zulhairun Abdul Karim N29a AMTEC 07-553 5398/017-954 8986 <u>zulhairun@utm.my</u> Statics (SKPG1243)		
Synopsis	The first part of SKPG Topics include classif composites and semi crystalline defects and Main emphasis is on to characterize and a of metals can be exter The second part of the cover stress and defo circular shafts, analys transformation. Throu drawing a free-body of system using the correct	Statics (SKPG1243) The first part of SKPG 1263 is introductory of Materials Engineering. Topics include classification of materials (metals, ceramics, polymers, composites and semiconductors); atomic bonds; crystal structure; crystalline defects and solid solutions; and phase diagrams. Main emphasis is on metals because metals are structurally the simplest to characterize and a sound knowledge of structure-property relation of metals can be extended to the study of ceramics and polymers. The second part of the course deals with Mechanics of Materials. Topics cover stress and deformation of members under axial loading, torsion in circular shafts, analysis and design of beams for bending, and stress transformation. Throughout the course, strong emphasis is placed on drawing a free-body diagram and selecting appropriate coordinate system using the correct sign convention.		
Prepared by: Name: Dr. Zulhairun Abdul Karim Signature: Date: Feb 2020		Certified by: Name: Signature: Date:	(Course Coordinator)	

Facult	ty: Faculty of Chemical and Energy Engineering	Page 2 of 7			
Subje Total	Subject & Code: Material Engineering (SETG 2363)Semester: 1Total Lecture Hours: 4 hours x 14 weeksAcademic Session: 2024/2025				
Cours	se Learning Outcomes:				
By the	e end of the course, students should be able to:				
1)	describe structure-property of traditional and moder (metals, ceramics, polymers and composites) and c simple material selection)	rn engineering i choose class o	materials f materials for a given application (i.e.		
2)	describe types of atomic bonding (ionic, covalent, properties.	metallic, secor	ndary) and relate bonding to materials		
3)	describe and compare crystal structure and po crystallographic direction and planar indices in isome	int defects in etric of cubic ur	metals (FCC and BCC) and draw		
4)	4) describe and differentiate eutectoid and eutectic phase diagrams of binary systems, perform simple calculations (lever rule) to quantify phase composition and fraction using phase diagram, and predict microstructure as function of temperature and composition.				
5)	analyze structural members under axial load and torsion and determine the corresponding internal force, stress and deformation.				
6)	6) Solve problem related to the location of centroid, moment of inertia and normal stress due to bending in a beam of given cross section				
7)) Solve the problem related to the shear force, bending moment diagrams of beams based on allowable normal stress.				
8)	apply Mohr's circle method to determine stress transformation at a point (principal stresses and planes, maximum shear stress, average normal stress)				
9)	9) Function effectively as an individual, and as a member or leader in diverse teams or multidisciplinary settings				
Prepared by: Name: Dr. Zulhairun Abdul KarimCertified by: (Course Coordinator) Name: Signature: Date: Feb 2020Date: Feb 2020Date:					

Faculty: Faculty of Chemical and Energy Engineering	Page 3 of 7
Subject & Code: Material Engineering (SETG 2363)	Semester: 1
Total Lecture Hours: 4 hours x 14 weeks	Academic Session: 2024/2025

STUDENT LEARNING TIME

Teaching and Learning Activities	Student Learning Time (Hours)
1. Lecture	42
-Tutorial	14
2. Independent Study - self learning - information search - library/internet search - reading - group/peer discussion	44
3. Assignment (5x) - self learning - group discussion - team working	15
Test (2x)	2
Final Exam (1x)	3
TOTAL HOURS	120

TEACHING METHODOLOGY

Lecture and discussion, co-operative learning (group discussion), independent study, individual/grouphomework assignment

Prepared by:	Certified by: (Course Coordinator)
Name: Dr. Zulhairun Abdul Karim	Name:
Signature:	Signature:
Date: Feb 2020	Date:

Faculty:	Faculty of Chemical and Energy Engineering		Page 4 of 7
Subject & Code: Material Engineering (SETG 2363) Total Lecture Hours: 4 hours x 14 weeks			Semester: 1 Academic Session: 2024/2025
Week	Торіс	Learning Outcor	nes
1	 Introduction to Materials Science and Engineering (Chapter 1) Classification of engineering materials (sections 1.1-1.6) 	It is expected tha describe str and modern ceramics,po semiconduct perform sim	<i>t students will be able to:</i> ructure-property of traditional classes of materials (metals, lymers, composite, tor) pole material selection
2	 Atomic Structure and Bonding (Chapter 2) Atomic structure and masses Periodic Variations and Trends in Periodic Table Primary Bonds Secondary Bonds (Sections 2.1 – 2.6, omit 2.3) 	It is expected tha describe str trends inPer describe typ bonding: relate bond andmechani	<i>t students will be able to:</i> ructure of atom and various iodic Table bes of primary and secondary type and strength to electrical cal properties of materials
3-4	 Crystal and Amorphous Structure in Materials (Chapter 3) The Space Lattice and Unit Cells Crystal Systems and Bravais Lattices Principal Metallic Crystal Structures Atom Positions in Cubic Unit Cells Directions in Cubic Unit Cells Miller Indices for Crystallographic Planes in Cubic Unit Cells Volume, Planar, and Linear Density Unit- Cell Calculations 	It is expected tha define terms draw crystal assign corre calculate: -Coordinatio -Atomic Pac -Density (ma	<i>t students will be able to:</i> s used to describe crystal structure lographic directions and planes and esponding Miller indices n Number (CN) king Factor (APF) ass, linear and planar)
5-6	 Solidification and Crystalline Imperfections & Thermally Activated Processes and Diffusion in Solids (Chapter 4 & 5) Solidification of Metals Metallic Solid Solutions Crystalline Imperfections Point Defects Line Defects (Dislocations) Rate Processes in Solids Atomic Diffusion in Solids Industrial Applications of Diffusion Processes Case Hardening of Steel by Gas Carburizing Effect of Temperature on Diffusion in Solids 	It is expected tha define and c solidsolution distinguish explain role mechanical a crystalline m describe ma solve non-si Fick'ssecond calculate pa diffusionkine	<i>t students will be able to:</i> describe various forms of metallic is (alloy) types of crystal defect of point defects on andelectrical properties of laterials ain diffusion mechanisms teady state diffusion using d law arameters that influence etics- T,D,Q
Prepared by: Name: Dr. Zulhairun Abdul Karim Signature: Date: Feb 2020		Certified by: (Co Name: Signature: Date:	urse Coordinator)

Faculty: Faculty of Chemical and Energy Engineering			Page 5 of 7
Subjec Total L	t & Code: Material Engineering (SETG 2363) ecture Hours: 4 hours x 14 weeks		Semester: 1 Academic Session: 2024/2025
Week	Торіс	Learning Outc	omes
7	 Phase Diagrams (Chapter 8) Phase Diagrams of Pure Substances Gibb's Phase Rule Binary phase diagram – binary isomorphous and binary eutectic Lever Rule Invariant Reactions 	It is expected th describe p systemand describe to binaryeute draw gene phaseregic determine fraction in to leverrule describe to describe to describe to describe to describe to describe to the top top to the top to the top to the top to the top to the top top top to the top	hat students will be able to: bhase diagram of a material apply Gibbs rule. binary isomorphous and ctic phase diagrams eric diagrams showing all ons and relevant information e phase composition and phase the mixture using tie-line and ypes of invariant reactions
7-8	 9. Engineering Alloys (Chapter 9) Fe-C phase diagram Heat Treatment of Plain Carbon Steels 	 Interpret describe solid describe inva microstructur carry out pha Describe Identify in foreute Describe useit to propert Superpos treatment Describe Appreciate microstruct 	Fe-C phase diagram d phases in Fe-C diagram d phases in Fe-C diagram e upon slow cooling se analysis TTT diagram for eutectoid steel offormation found on TTT diagram ctoid steel the theory of heat treatment and vary microstructure and physical ies se a variety of isothermal heat ents on TTT diagram and explain rostructure types of heat treatment ethe relationship between cture and properties of steel
9	 Introduction: Concept of Stress Review of statics Stresses in members of a structure Normal stress in axial bars 	It is expected th draw free calculate atsupport determine instructura	at students will be able to: body diagrams (FBD) force, moment and reactions internal force and stresses I member
10	 Axial Loading – Stress and Deformation Deformation under axial loading for statically determinate structures 	It is expected th • calculate ofuniform of under axial load.	nat students are able to: normal stress and deformation or multiple cross-section bars
11	 Torsion in Circular Shaft Stress in Elastic Range – Solid and Hollow Shafts Shaft Subjected to Multiple Torques Shaft Deformation: Angle of Twist 	It is expected the derive elast of derive elast of draw FBD shaftdeform shaftsusing	nat students will be able to: stic torsion formula and calculate shear stress and mation for solid, hollow and stepped g elastic torsion formula

Faculty:	Faculty of Chemical and Energy Engineering		Page 6 of 7
Subject & Code: Material Engineering (SETG 2363) Total Lecture Hours: 4 hours x 14 weeks			Semester: 1 Academic Session: 2024/2025
Week	Topic	Learning Outcor	mes
12	 Pure Bending Deformation in a symmetric member inpure bending Stress in the elastic range 	It is expected that determine r calculate m crosssection calculate no	<i>t students will be able to:</i> neutral axis or centroid oment of inertia of given ormal stress due to bending
12-13	 Analysis and Design of Beam for Bending Shear Force (V) and Bending Moment (M) Diagrams Using Relationships between w, V and M(graphical method) Design of Prismatic Beam for Bending 	 It is expected tha classify type draw FBD a reactions of beams construct V segmentana determine r section mod stress select beam allowable no modulus 	t students will be able to: es of beam nd calculate beam support simple and overhang f and M diagrams using lysis AND graphical method. naximum bending moment M ulus and maximum bending n for bending based on given ormal stress or section
13-14	 Transformation of Stress Transformation of plane stress – principalstresses and plane, maximum shear stress and stresses on rotated plane Mohr's circle method for plane stress 	It is expected tha • determine p maximum sh stress using usingMohr's	t students will be able to: principal stresses and plane, near stress and average normal transformation equation AND circle method
Prepared by: Name: Dr. Zulhairun Abdul Karim Signature: Date: Feb 2020		Certified by: (Co Name: Signature: Date:	urse Coordinator)

Faculty: Faculty of Chemical and Energy Engineering	Page 7 of 7
Subject & Code: Material Engineering (SETG 2363)	Semester: 1
Total Lecture Hours: 4 hours x 14 weeks	Academic Session: 2024/2025

MAIN TEXTBOOKS

- 1. W.F. Smith and Javad Hashemi, Foundations of Materials Science and Engineering, 5th Ed. in SI Units, MGraw-Hill International, 2011.
- 2. F. P. Beer, E. R. Johnston, Jr. and J. T. DeWolfe, Mechanics of Materials, 6th Edition (SI Units), McGraw-Hill, 2008.

OTHER REFERENCES

- 1. R.C. Hibbeler, Mechanics of Materials, 8th Edition in SI Units, Pearson-Prentice-Hall, 2011
- 2. William D. Callister, Jr., <u>Materials Science and Engineering</u>: An Introduction 7th edition, John Wiley & Sons (Asia)
- 3. http://www.engin.umich.edu/students/ELRC/me211

GRADING

No.	Assessment	Number	% each	% total	Date
1	HW/Quizzes	4-5		10	As assigned by your lecturer
2	Test 1	1	20	20	Week 5/6
3	Test 2	1	20	20	Week 11/12
4	Final Exam	1	50	50	As scheduled
	OVERALL TOTAL			100	

Prepared by:	Certified by: (Course Coordinator)
Name: Dr. Zulhairun Abdul Karim	Name:
Signature:	Signature:
Date: Feb 2020	Date: