COURSE OUTLINE

Department & Faculty: Department of Energy Engineering School of Chemical and Energy Engineering Course & Code: Nuclear Reactor Materials – SKPN 4123 Contact Hours: 42 hours			
Lecturer Room No. Tel. No. E-mail Section Lecture Time Tutorial Time Venue Assistant Prerequisite Synopsis	 Mr. Mohsin Mohd Sies N01-324 , School of Chemical and Energy Engineering mohsin@utm.my 2018/2019 - I None This course will provide a valuable insight on some of the key issues facing the nuclear power generation industry. Many of these are related to the materials involved, their response to, and their reliability under extreme conditions. The effects of radiation on various properties of materials in nuclear applications will be dealt with to get an appreciation of the materials' limitations on the operation of reactors. Students will first be introduced to the basic concepts of materials science. The basic aspects of the nuclear fuel cycle, current and future nuclear reactor designs, and the materials failures and the requirements for efficient and safe operation of current reactor designs as well as design of novel materials for future reactors will be discussed. A few applications of radiation effects will then be treated with this newfound framework, including the change of material properties under irradiation, void swelling, embrittlement and loss of ductility. At the end of this course, students will be familiar with the basic issues concerning the selection of materials for various components in nuclear reactors.		
Learning Outcomes Generic Skills Addressed	 materials ii) Describe and compare the properties vario iii) Analyze materials-related issues and proble and the remedial approaches iv) Evaluate the fuel properties and testing for 	croscopic and macroscopic properties of the us structural materials in nuclear reactors ems encountered in nuclear reactor structures nuclear reactor lems and suggest plausible remedial solutions	

COURSE OUTLINE

Department & Faculty: Department of Energy Engineering School of Chemical and Energy Engineering	Somoston 1	
Course & Code: Nuclear Reactor Materials – SKPN 4123 Contact Hours: 42 hours	Semester: 1 Academic Session: 2018-2019	
Course Mapping on Bloom Taxonomy and Key Performance Index (KPI) of Course Outcome		

СО	Course Outcome	Program learning outcomes	Weightage	Assessment	KPI
CO1	Evaluate the effect of radiation on the microscopic and macroscopic properties of the materials	PO1 (C3) PO2 (C3)	10% 10%	Assignment Quiz Test Final Exam	
CO2	Describe and compare the properties of various structural materials in nuclear reactors	PO1 (C2)) PO2 (C2)	12.5% 12.5%	Assignment Quiz Test Final Exam	
CO3	Analyze materials-related issues and problems encountered in nuclear reactor structures and the remedial approaches	PO1 (C4) PO2 (C4)	10% 10%	Assignment Quiz Test Final Exam	
CO4	Evaluate the fuel properties and testing for nuclear reactor	PO1 (C4) PO9 (C4)	17.5% 7.5%	Assignment Quiz Test Final Exam	
CO5	Describe procedures for detecting the problems and suggest plausible remedial solutions	PO1 (C2) PO2 (C2)	5% 5%	Assignment Quiz Test Final Exam	

Program Outcomes (PO) related to the course:

- **PO1** Apply knowledge of mathematics, science, engineering fundamentals, chemical and gas engineering principles to the solution of complex engineering problems.
- **PO2** Identify, research relevant literature, formulate and solve complex engineering problems using first principles of mathematics and engineering sciences.

COURSE OUTLINE

Department & Faculty: Department of Energy Engineering School of Chemical and Energy Engineering Course & Code: Nuclear Reactor Materials – SKPN 4123	- Semester: 1 Academic Session: 2018-2019	
Contact Hours: 42 hours		
STUDENT LEARNING TIME (SLT)		
Teaching and Learning Activities	Student Learning Time (hours)	
1. Face-to-Face Learning		
a. Lecturer-Centered Learning		
i. Lecture	45	
b. Student-Centered Learning (SCL)		
i. Laboratory/Tutorial	14	
 Student-centered learning activities – Active Learning, Project Based Learning 		
2. Self-Directed Learning		
a. Non-face-to-face learning or student-centered learning (SCL) such a manual, assignment, module, e-Learning, etc.	as 20	
b. Revision	30	
c. Assessment Preparations	6	
3. Formal Assessment		
a. Continuous Assessment	5	
b. Final Exam	3	
Total (SLT)	120	
students will be divided into group of four an group. The group team members will help ea class. For soft skill the students will be assessed effectiveness of the students as individual and they will be required to solve it in class follo class. The skills are also reflected by quizzes his/her in the class. Short class assignments and discussions wi	technique. At the beginning of the semester, the ad are assigned to sit together in their respective ch other during the problems solving session is all on the communication skills as well as the group member Students are given problem and owing the 10 steps of problem solving given is assignments, test and overall performance of all be carried to assess the achievement of the te tests are to evaluate their attainment of the ical skill.	

Week	Торіс	Topic Outcomes	
Week 1	 1. Introduction to Nuclear Reactor and Materials Nuclear reactions as sources of energetic particles, Nuclear fusion and fission Material properties Atomic structures and bondings 	 It is expected that students will be able to: understand the nuclear reaction and the effects of radiations on the materials Understand the general properties of materials and their classification describe different types 	
Week 2	2. Material Nature 2.2 Crystal Structure 2.3 Imperfections 2.3 Diffusion in Solids 2.4 Dislocation theory 2.5 Cascade collision	 It is expected that students will be able to: explain different material natures and their impacts on the integrity of the materials 	
Week 3	 3. Overview of nuclear reactor and Materials 3.1. Various types [LWR, PHWR, GCR, FBR, Fusion] 3.2. Materials of nuclear reactor 3.3. Existing material selection 	<i>It is expected that students will be able to:</i>describe the properties of different materials for nuclear reactors	
Week 4	 4. Nuclear Reactor design and its materials 4.1 Brief outline of reactor types design and technology, and their particular demands for high-performance materials. 4.2 Introduction to material issues associated with nuclear power generation 	 <i>It is expected that students will be able to:</i> describe different types of reactor and their designs relate the types of reactors with their materials issues 	
Week 5	 5. Mechanical Properties of Materials 5.1. Strength of materials 5.2. Requirements of nuclear reactor materials 	 It is expected that students will be able to: evaluate the criteria of nuclear reactor materials describe the mechanical properties of different materials for nuclear reactor 	
Week 6	 6. Effect and Damage of Radiation on Materials 6.1. Microstructural Changes 6.2. Friction and Source Hardening 6.3. Fracture and DBTT 6.4. Embrittlement and Fracture 	 It is expected that students will be able to: evaluate the effects and damages of radiation on nuclear reactor materials 	
Week 7	7. Welding 7.1. Types and purposes of welding 7.2. Post welding heat treatment	It is expected that students will be able to: • Describe the different characteristics and applications of welding for nuclear reactor	
Week 9	 8. Issues Related to LWR Materials 8.1. Water chemistry 8.2. Stress corrosion cracking 8.3. Irradiation effects on LWR materials 	 It is expected that students will be able to: understand the water chemistry of LWR explain the formation of stress corrosion cracking evaluate the general materials issues in LWR 	
Week 10	 9. Materials in PWR 9.1. Materials and parts in PWR 9.2. Scientific issues related to PWR 9.3. Material selection for PWR 	 It is expected that students will be able to: understand the water chemistry of PWR explain the formation of stress corrosion cracking in PWR evaluate the specific materials issues in PWR 	

Nuclear Reactor Materials - Course Schedule

Week 11	10. Materials in BWR 10.1.Materials and parts in BWR 10.2.Scientific issues related to PWR 10.3.Material selection for PWR	 It is expected that students will be able to: understand the water chemistry of PWR explain the formation of stress corrosion cracking in PWR evaluate the specific materials issues in PWR 	
Week 12	 11. LWR Fuel 11.1.Fuel behavior 11.2.Pellet-cladding mechanical interactions (PCMI) 11.3.Scientific issues related to fuel engineering 11.4.Instrumentation and Testing-hot cell laboratory, post irradiation examinations 	It is expected that students will be able to: • understand the fuel behavior • describe the occurrence of PCMI •	
Week 13	12. Material Degradation Detection and Instrumentation 12.1.Approaches for degradation detection 12.2.Instrumentation	 It is expected that students will be able to: describe the approaches for material degradation detection apply different instrumentations for material studies 	
Week 14	Case Study and Presentation	 <i>It is expected that students will be able to:</i> perform a group presentation that relate to nuclear reactor materials relate the knowledge of nuclear reactor materials to real life application 	

References	:	 K. Linga Murty, Indrajit Charit, An Introduction to Nuclear Materials: Fundamentals and Applications, John Wiley & Sons, 2013 Todd R. Allen, Roger E. Stoller, Shinsuke Yamanaka, Comprehensive Nuclear Materials, Elsevier, 2012 	
Assessment	:	Evaluation	Percent (%)
		Continuous assessment (Assignments, quizzes)	30%
		Test	20%
		Final Examination	50%
		TOTAL	100%

Academic Integrity:

The University has a strict policy on academic integrity. Any form of plagiarism or academic dishonesty will NOT be tolerated. If you have any questions, please consult the lecturer.