COURSE OUTLINE

Department & Faculty: Department of Petroleum Engineering, Faculty of Petroleum & Renewable Energy Engineering			y Engineering	Page 1 of 5	
Subject & Code: Thermodynamics (SKPP 2113) Total Contact Hours: 3 hours X 14 weeks			2113) Sem Aca	ester: 2 demic Session: 2017/2018	
Lectur Room Tel. Email Prerec Synop	rer :	Mohsin N01-324 mohsin None Thermo concept energy a 1 st and fluid, su using ta are app	Mohd Sies 4 @utm.my dynamics is a basic e s such as system, bound are introduced. These cor 2 nd Law of Thermodynar uch as water, air, and r bles of properties or equa lied in power and refriger.	engineering subject where aries, mass, heat, work and acepts are then related in the nics. Properties of common efrigerants are determined tions of state. The concepts ation cycles.	
. iogi			_		
No.	Course outcome	•	Programme outcome addressed	Assessment methods	
1	Determine thermodynami	`	PO2(C2 P1 A1)	Tost Exam	

NO.	Course outcome	add	ressed	methods
1	Determine thermodynamic properties of pure substances from tables of properties and ideal gas equation.	PO2 (C2, P1, A1),		Test, Exam
2	<u>Apply</u> the 1 st Law of Thermodynamics to <u>calculate</u> heat, work, and energy for both closed and open systems.	PO2 (C3, P2, A2), PO3 (CTPS1)		Test, Exam, Assignment
3	<u>Apply</u> the 2 nd Law of Thermodynamics for entropy balance on various systems.	PO2 (C PO3	23, P2, A2), (CTPS1)	Test, Exam, Assignment
4	<u>Analyze</u> and <u>calculate</u> the performance of power and refrigeration cycles.	PO2 (C4, P3, A3) PO3 (CTPS2)		Test, Exam
5	<u>Demonstrate</u> leadership skill by <u>guiding</u> team members to <u>plan</u> , <u>analyze</u> , <u>think critically</u> , and <u>collectively solve</u> the thermodynamic-related problems.	PO2 (C4, A3) PO3 (CTPS3) PO7 (LS1, LS2) PO8 (P4, TS1, TS2, TS3)		Assignment, Group project and presentation
Prepar Name Signat Date:	red by: : Dr Wan Rosli Wan Sulaiman ture: Sept 2012		Certified by: Name: Dr Ra Signature: Date: Sept 20	dzuan Junin 112

Department & Faculty:	
Department of Petroleum Engineering,	Page 2 of 5
Faculty of Petroleum & Renewable Energy Engineering	-
Subject & Code: Thermodynamics (SKPP 2113) Total Contact Hours: 3 hours X 14 weeks	Semester: 2 Academic Session: 2017/2018

TOTAL STUDENT LEARNING TIME (SLT) BASED ON TEACHING-LEARNING

No.	Teaching and learning activity	SLT (hours)
1	Direct learning:	(42)
	(a) Lectures	34
	(b) Student-centered learning (seminar, lab visit etc.)	8
2	Indirect learning:	(72)
	(a) Assignments/Project	20
	(b) Revision	43
	(c) Preparation for assessments:	
	(i) Test	3
	(ii) Final exam	6
3	Assessment:	(6)
	(a) Tests	3
	(b) Final examination	3
	Total	120
	No. of credits	120/40 = 3

TEACHING METHODOLOGY

Lecture and discussion, co-operative learning, independent study, assignments, lab visit, seminar, group project, presentation, etc.

Prepared by: Name: Dr. Wan Rosli Wan Sulaiman Signature:	Certified by: Name: Dr. Radzuan Junin	
Date: Sept 2012	Date: Sept 2012	

COURSE OUTLINE

Department & Faculty: Department of Petroleum Engineering, Faculty of Petroleum & Renewable Energy Engineering			Page 3 of 5	
Subject & Code: Thermodynamics (SKPP 2113) Total Contact Hours: 3 hours X 14 weeks		Semester: 2 Academic Session: 2017/2018		
Chapter	Торіс		Learning outcomes	
1 (1 week) 2 (1 week)	 Introduction to Thermodynamics Definition of Thermodynamics Definition of Thermodynamics system Examples of application of thermodynamics System of Units; Mass, Length and Time Temperature and pressure Work and Heat Definition of work 	 Students sh Identify bastate, equ properties Convert u vice-versa Explain th pressure. Students s Calculat 	ould be able to: asic concepts such as system, uilibrium, process, cycle and s. units British Unit to SI Unit and a. ne concept of temperature and should be able to: the the amount of work in a given	
	 Various forms of work especially the moving boundary work Concept of heat transfer 	 Calculat Calculat Identify Solve pr group. 	e heat in a given process different types of work. roblems by working in a team or	
3 (2 weeks)	 Concept of pure substance Concept of pure substance Illustrate the P-v, T-v and P-T property diagrams and P-v-T surfaces of pure substances Procedures for determining properties of pure substances by using thermodynamic tables Ideal gas and the ideal gas equation of state Ideal gas equation to solve problems Compressibility factor and illustrate its use 	 Students sh Discuss the substance Illustrate a diagrams Determine pure substables. Perform in thermody Explain the compression 	ould be able to: he various types of pure es. and draw the P-v, T-v and P-T for a given process. e the thermodynamic properties of stances by using thermodynamic interpolations to obtain data from namic tables. he concept of ideal gas. ideal gas equation and the sibility factor to solve problems.	
4 (2 weeks)	 First Law of thermodynamics for Closed System Types of energy that may be transferred to or from a thermodynamic system Energy in the form of heat or work that may cross the boundaries of a closed system Internal Energy and Enthalpy Concept of heat capacities, C_v and C_p 	 Students sh Calculate encounte Identify an Thermody Demonstra applied to Relate sp enthalpy of heat and substance 	the various boundary works red in reciprocating devices. and apply the 1 st Law of ynamics. rate the general energy balance o closed system. recific heat to internal energy and change of ideal gases. argy balance problems that involve energy interaction for pure es, ideal gas and incompressible es.	

5 (2 weeks)	 First law of Thermodynamics for Open System Conservation of mass First Law of Thermodynamics for open system Steady state process Examples of steady state process such as heat exchanger, nozzle, throttle, turbine, pump and compressor Transient process 	 Students should be able to: Demonstrate the principle of conservation of mass and the 1st Law of thermodynamics for open system. Solve energy problems for steady flow devices such as heat exchanger, nozzle, throttle, turbine, pump and compressor. Apply the energy balance for simple transient process.
6 (2 weeks)	 The Second Law of Thermodynamics Heat engines and refrigerators Second Law of Thermodynamics Reversible process Carnot Cycle 	 Students should be able to: Describe the heat engine and refrigeration device and identify the processes involved. Apply the 2nd Law of Thermodynamics to solve engineering problems. Apply Carnot cycle principle to solve engineering problems.
7 (1 week)	 Entropy Clausius Inequality Definition of Entropy Entropy of pure substance Entropy and relationship with thermodynamics properties Entropy change and generation Entropy change for liquid and ideal gas 	 Students should be able to: Discuss the Clausius inequality. Calculate the entropy changes that take place during process involving pure substances.
8 (1 week)	 Second Law Analysis for Open System Second Law analysis for open system Principle of the increase of entropy Entropy generation Entropic efficiency 	 Students should be able to: Apply the second law to a given process. Explain the principle of the increase of entropy. Calculate the isentropic and/or adiabatic efficiencies of various devices in steady flow system. Apply the entropy balance to various systems.
9 (2 weeks)	 Power and Refrigeration Systems Power system Rankine cycle Effect of pressure and temperature on the Rankine cycle. Deviation of the actual cycle from the ideal cycle Vapor-Compression refrigeration Deviation of the actual vapor- compression refrigeration cycle from ideal cycle Group project related to application of thermodynamics knowledge in appliances. 	 Students should be able to: Analyze vapor cycle in which the working fluid is alternatively vaporized and condensed. Calculate the performance of Power cycle, refrigeration and heat pumps. Analyze the ideal vapor-compression refrigeration cycle. Solve thermodynamics problems Lead a team or group to solve thermodynamics problems. Apply critical thinking and solve thermodynamics problems. Present the group project

Certified by: Name: **Dr. Radzuan Junin** Signature: Date: **Sept 2012**

COURSE OUTLINE

References	 Main Reference (1) Cengel Y.A. and M.A. Boles (2011). <i>Thermodynamics: An Engineering Approach</i>. 7th ed. London: McGraw Hill.
	 Other Reference (1) Sonntag R., C. Borgnakke C., and V.G. Wylen (2003). <i>Fundamentals of Thermodynamics</i>. 6th ed. London: John Wiley & Sons.
Academic Integrity	: Academic integrity forms a fundamental bond of trust between colleagues, peers, lecturers, and students, and it underlies all genuine learning. At UTM, there is no tolerance for plagiarism or academic dishonesty in any form, including unacknowledged "borrowing" of proprietary material, copying answers or papers, or passing off someone else's work as one's own.
	A breach of ethics or act of dishonesty can result in:
	 failure of a paper or exam within a course, failure of an entire course (blatant plagiarism, cheating on a test or assignment), and academic suspension or expulsion from the college.

GRADING

No.	Assessment	Number	% each	% total	Dates
1	Test (C4, A3, CTPS3)	2	15 % (Test 1) 18 % (Test 2)	33	Week 6 Week 10
2	Final examination (C4, A3, CTPS3)	1	50	50	
3	Assignments (C4, A3, CTPS2) (1) Answer script 2% (2) Presentation 1%	4	3	12	
4	Group project: (1) Report 3% (2) Peer evaluation (TS3, LS2) 2%	1	5	5	
	Total	8	-	100	

Prepared by:	Certified by:
Name: Dr. Wan Rosli Wan Sulaiman	Name: Dr. Radzuan Junin
Signature:	Signature:
Date: Sept 2012	Date: Sept 2012