FACULTY OF CHEMICAL AND ENERGY ENGINEERING
Universiti Teknologi Malaysia

SETN 2393 NUMERICAL METHODS FOR NUCLEAR ENGINEERS	Semester I 2023-2024
Project 1	Due: 14 January 2024

As the name implies, indoor air pollution deals with air contamination in enclosed spaces such as homes, offices, work areas, etc. Suppose that you are designing a ventilation system for a restaurant as shown in Fig. 1 below. The restaurant serving area consists of two square rooms and one elongated room. Room 1 and room 3 have sources of carbon monoxide from smokers and a faulty grill, respectively. Steady-state mass balances can be written for each room. For example, for the smoking section (room 1), the balance can be written as

$$0 = W_{\text{smoker}} + Q_a c_a - Q_a c_1 + E_{13}(c_3 - c_1)$$

(load) + (inflow) - (outflow) + (exchange)

or substituting the parameters:

$$225c_1 - 25c_3 = 3400$$

Similar balances can be written for the other rooms.

- a) Solve for the steady-state concentration of carbon monoxide in each room.
- b) Determine what percent of the carbon monoxide in the kids' section is due to (i) the smokers, (ii) the grill, and (iii) the air in the intake vents.
- c) If the smoker and grill loads are increased to 4000 and 6000 mg/hr, respectively, use the matrix inverse to determine the increase in the concentration in the kids' section.
- d) How does the concentration in the kids' section change if a screen is constructed so that the mixing between areas 2 and 4 is decreased to 5 m3/hr?

Figure 1. Overhead view of rooms in a restaurant. The one-way arrows represent volumetric airflows, whereas the twoway arrows represent diffusive mixing or exchange. The smoker and grill loads add carbon monoxide mass to the system but negligible airflow.

Deliverables

Your report should include the description of the problem, how you set up the problem, assumptions, method of solution, the Matlab/Octave code that you used, the results, all relevant plots, discussion and potential weaknesses in your solution method. Upload your work to the elearning website in a zip file containing all relevant files.