FACULTY OF CHEMICAL AND ENERGY ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

SETN 2393 Numerical Methods for Nuclear Engineers	Semester I 2022-2023
Project 2	Due: 8 February 2023

In Project 1, we analyzed the steady state of a series of reactors as shown in Figure 1. In addition to steady-state computations, we might also be interested in the transient response of a completely mixed reactor. To do this, we have to develop a mathematical expression for the accumulation term in the conservation of mass. Accumulation represents the change in mass in the reactor per change in time. For a constant-volume system, it can be simply formulated as

Accumulation =
$$V \frac{dc}{dt}$$

For $Q_{01}c_{01} = 50$ mg/min, $Q_{03}c_{03} = 160$ mg/min, $V_1 = 50$ m³, $V_2 = 20$ m³, $V_3 = 40$ m³, $V_4 = 80$ m³, and $V_5 = 100$ m³, $c_{01} = 1$ mg/m³, $c_{03} = 8$ mg/m³, and initial concentration for each tank $c_i(0) = 0$ mg/m³, compute how the concentrations will increase over the next two hours by using numerical methods that you have learned.

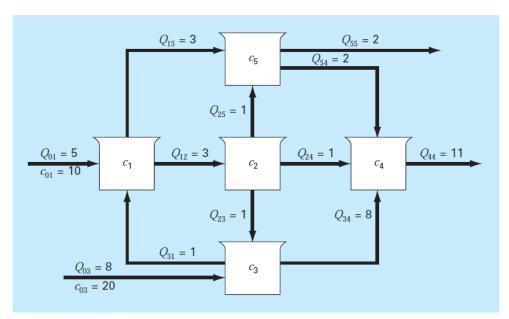


Figure 1 System of networked chemical reactors.

Deliverables

Your report should include the description of the problem, how you set up the problem, assumptions, method of solution, the Matlab/Octave code that you used, the results, all relevant plots, discussion and potential weaknesses in your solution method. Upload your work to the elearning website in a zip file containing all relevant files.