Boiling Heat Transfer Exercise

<u>Purpose</u>: Finding temperature under boiling heat transfer condition

<u>Method</u>: Using principles of heat transfer and other relevant correlations (Rohsenow). In this case it is necessary to employ an iterative method to solve the final nonlinear equation.

<u>Calculate</u> : The bottom surface temperature of the pan, neglecting resistance of the pan.

 $q = q_{cond} + q_{rad}$ T1 = hot plate temperature Between hot plate and pan, both conduction and radiation modes of heat transfer occur in parallel

Parameters	
Thermal conductivity of air	$k_a = 0.057 W/mK$
Specific heat of water	$c_l = 4.215 \ kJ/kgK$
Latent heat of water	$h_{fg} = 2256 \ kJ/kg$
Prandtl number of water	Pr = 1.76
Viscosity of water	$\mu_l = 282.7 \times 10^{-5} Pas$
Surface tension of water	$\sigma = 58.917 \times 10^{-3} N/m$
Gravitational acceleration	$g = 9.807 m/s^2$
Density of liquid water	$ ho_l = 958.0 kg/m^3$
Density of water vapor	$\rho_g = 0.6037 kg/m^3$
Constant= f(liquid, surface material)	$C_{sf} = 0.013$
Stefan-Boltzmann constant	$\sigma = 5.6697 \times 10^{-8} W/m^2 K^4$
Emissivity of hot plate	$arepsilon_1=0.7$
Emissivity of bottom surface of pan	$\varepsilon_2 = 0.9$

T2 = Tw (neglecting resistance of pan), solve for T2

Between hot plate and pan, both conduction and radiation modes of heat transfer occur in parallel

$$q = q_{cond} + q_{rad}$$

For conduction,

$$q_{cond} = -k\frac{dT}{dx} = -k\frac{(T_1 - T_2)}{\delta}$$

For radiation,

$$q_{rad} = \sigma(T_1^4 - T_2^4) \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

For pool nucleate boiling, we can use Rohsenow correlation

$$\frac{c_l(T_2 - T_s)}{h_{fg}} = C_{sf} \left[\frac{q}{\mu_l h_{fg}} \sqrt{\frac{\sigma}{g(\rho_l - \rho_g)}} \right]^{0.33} Pr_l^{1.7}$$

Here, q = total q received by pan from conduction and radiation

$$q = q_{cond} + q_{rad} = -k \frac{(T_1 - T_2)}{\delta} + \sigma(T_1^4 - T_2^4) \frac{1}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1}$$

Thus, Rohsenow's correlation becomes

$$\frac{c_l(T_2 - T_s)}{h_{fg}} = C_{sf} \left[\frac{-k \frac{(T_1 - T_2)}{\delta} + \sigma(T_1^4 - T_2^4) \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}}{\mu_l h_{fg}} \sqrt{\frac{\sigma}{g(\rho_l - \rho_g)}} \right]^{0.33} Pr_l^{1.7}$$

This is a nonlinear equation of one variable, T2

- This problem is now a root finding problem with various methods of solving

$$\frac{c_l(T_2 - T_s)}{h_{fg}} - C_{sf} \left[\frac{-k \frac{(T_1 - T_2)}{\delta} + \sigma(T_1^4 - T_2^4) \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}}{\mu_l h_{fg}} \sqrt{\frac{\sigma}{g(\rho_l - \rho_g)}} \right]^{0.33} Pr_l^{1.7} = 0$$

Using Octave (a free Matlab clone), the built-in function of fzero employs the Newton-Raphson method to give the root (=T2) of the equation

We also used the Excel spreadsheet to perform manual iteration to find T2.

<u>Answer,</u> $T_2 = 386.62 \text{ K} = 113.62 \ {}^oC$ Corresponding to Total heat flux of $q'' = 1.0599 \times 10^5 \frac{W}{m^2}$ and Total heat supplied of $\dot{Q} = 3329.6$ Watts Radiation heat transfer is also larger than conduction in this case, $q_{cond} = 1.0105 \times 10^4 Watts$ and $q_{rad} = 9.5881 \times 10^4 Watts$, almost a whole magnitude larger.

Exercise 4 – Boiling Heat Transfer Program listing and output

f.m🖂	🔚 boill.m 🔀 🔚 boiling.txt 🗵	
1	csf = 0.013;	_
2	hfg=2256*1000;	
3	cl=4.215*1000;	
4	Pr=1.76;	
5	mu=282.7e-6;	
6	sigma=58.917e-3;	
7	g=9.807;	
8	rhol= <mark>958</mark> ;	
9	rhog=0.6037;	
10	sigmarad=5.6697e-8;	
11	k=0.057;	
12	delta=5e-3;	
13	T1=1273; Ts=373;	
14	epsilon1=0.7; epsilon2=0.9;	
15	diam=0.2;	
16		
17	Area=pi*diam^2/4;	
18		
19	T2=fzero(@f,300)	
20		
21	<pre>emissivcoeff=1/((1/epsilon1)+(1/epsilon2)-1);</pre>	
22		
23	qrad=sigmarad*(T1^4-T2^4)*emissivcoeff	
24	qcond=k*(T1-T2)/delta	
25		Main Program
26	<pre>q=k*(T1-T2)/delta+sigmarad*(T1^4-T2^4)*emissivcoeff</pre>	Main Fiogram
27		
28	Qdot = q*Area	

🔚 f.m 🗵	l 🔚 boilm 🔀
1	
2	<pre>function y=f(T2)</pre>
3	
4	csf = 0.013;
5	hfg=2256*1000;
6	cl=4.215*1000;
7	Pr=1.76;
8	mu=282.7e-6;
9	sigma=58.917e-3;
10	g=9.807;
11	rhol=958;
12	rhog=0.6037;
13	sigmarad= <mark>5.6697e-8;</mark>
14	k=0.057;
15	delta=5e-3;
16	T1=1273; Ts=373;
17	epsilon1=0.7; epsilon2=0.9;
18	<pre>coeff=sqrt(sigma/(g*(rhol-rhog)))/(mu*hfg);</pre>
19	<pre>emissivcoeff=1/((1/epsilon1)+(1/epsilon2)-1);</pre>
20	
21	y=cl*(T2-Ts)/hfg-csf*(Pr^1.7)*((k*(T1-T2)/delta+sigmarad*(T1^4-T2^4)*emissivcoeff)*coeff)^0.33
22	
23	endfunction
24	
4	III.

Function file to find root for

🔚 f.mE	3 🔚 boill.m 🛛 🔚 boiling.txt 🛛	
1	> diary on	
2	octave-3.2.3.exe:9:E:\jaea.course.2015	
3	> boil	
4	y = -0.16196	
5	y = -0.21805	
6	y = -0.10587	
7	y = -0.16383	
8	y = -0.16009	
9	y = -0.44237	
10	y = 0.11852	
11	y = -1.4419e - 005	
12	y = -2.0203e - 010	
13	y = 4.8572e - 017	
14	y = -3.7817e - 016	Outpu
15	$T_2 = 386.62$	Outpu
16	qrad = 9.5881e+004	
17	qcond = 1.0105e+004	
18	q = 1.0599e + 005	
19	Qdot = 3329.6	
20	<pre>octave-3.2.3.exe:10:E:\jaea.course.2015</pre>	
21	> diary off	
22		

ka	cl		hfg		Pr		mu1		sigma	g	rhol			
0.057		4215	22	56000	-	1.76	2.83	E-04	5.89E-02	9.807		958		
rhog	cst	F	sign	narad	eps1		eps2		delta	T1	Ts			
0.6037		0.013	5.6	57E-08		0.7		0.9	5.00E-03	1273		373		
Т2 (К)		left		right	t									
30	00	-0.13	639	0.02	25571]	0.1							
35	50	-0.04	297	0.02	25506		0.1							
40	00	0.050	445	0.0	02543	1	0.05						$\mathbf{\mathbf{\mathbf{Z}}}$	
39	90	0.031	762	0.02	25446		0							
38	30	0.013	078	0.02	25462		-0.05							-left
38	35	0.02	242	0.02	25454		-0.1							- right
38	36	0.024	289	0.02	25452		0.45							
38	37	0.026	157	0.02	25451		-0.15	300	320	340 3	60	380	400	
386	.5	0.025	223	0.02	25452			500	520	т2 (К)			100	
386	.7	0.025	596	0.02	25451									
386	.6	0.02	541	0.02	25452									
386.6	65	0.025	503	0.02	25451			Excel output						
386.6	53	0.025	466	0.02	25451						-			
386.6	52	0.025	447	0.02	25451]								
386.62	25	0.025	456	0.02	25451]								