FACULTY OF MECHANICAL ENGINEERING		Page: 1 of 6
APPLIED THERMODYNAMICS (SKMM 2423)	Revision Date of issue Last Amendment Edition	: F : 1 March 2015 : 1 March 2015 : 3

LECTURE HOURS : 3 Hours Lectures 1 Hour Tutorial				
	Lecturers	E-Mail	Room No.	Phone No.
1.	En. Mohsin Mohd Sies	mohsin@fkm.utm.my	C24-313	34578
2.	PM. Dr. Nazri Kamsah	nazrikh@fkm.utm.my	C25-413	34749
3.	Dr. Mohd Faizal Hasan	mfaizal@mail.fkm.utm.my	C24-212	34852
4.	Dr Zulkarnain Abdul Latiff	zkarnain@mail.fkm.utm.my	C25-411	34758
5.	Dr. Aminuddin Saat	amins@fkm.utm.my	C23-216	34657
6	Pn. Natrah Kamaruzaman	natrah@ <mark>mai</mark> l.fkm.utm.my	C23-215	34663

SYNOPSIS

The aim of this course is to teach second-year mechanical engineering students on the application of thermodynamics principles to evaluate the performance criteria of various thermal systems. These includes the reciprocating air-compressor, internal combustion engines, vapor power plants, gas turbine plants, refrigeration and heat pump systems. Also, principles of conservation of mass and energy are applied to various air-conditioning processes to assess the energy transfer during the processes.

PREPARED BY :			CERTIFIED BY	<u>/:</u>	
Name	:	Dr. Haslinda Mohamed Kamar	Name	:	Head of Thermodynamics Panel
Date	:	1 March 2015	Signature	:	
			Date	:	1 March 2015

FACULTY OF MECHANICAL ENGINEERING APPLIED THERMODYNAMICS (SKMM 2423)		Revision Date of issue Last Amendme Edition	:3	h 2015		
By the	Assessed Taxonomy Methods					
1.	Describe the working principles thermodynamics systems (steam plants; reciprocating compressor combustion engines; refrigerators pumps) and the important psychr properties of the atmospheric air.	ometric	P01 11	C2	T, E	
2.	Analyze the performance of them systems (steam & gas power plan compressors; internal combustion refrigerators and heat pumps).	ts; reciprocating	P01, P02	€ € C4	HW, T, E	
3.	Apply the principles of the conser and energy to various air-condition		PO1, PO2	5 C4	HW, E	
4.	Examine ways for further improvements thermatics systems the syst	PO2	C4	PR		
Note: (Note: (T – Test ; PR – Project ; HW – Homework ; Pr – Presentation; E – Final Exam)					

FACULTY OF MECHANICAL ENGINEERING Page : 3 o			ge:3 of 6		
APPLIED THERMODYNAMICS (SKMM 2423)			March 2015 March 2015		
		STUDENT LEARNING TIME			
No	o. Teaching and	Learning Activities	Student Learning Time (hours)		
1	Lectures SCL		36 6		
2	2. Tutorials	WHAN UNTUR	14		
3	B. Independent Study / Assignme	nt / Project	58		
4	. Tests		3		
5	i. Final Exam		> 3		
	Tot	al	120 (120/40 = 3.00)		
	TEKNOLOGI MALLA				
<u>TEA</u>	TEACHING METHODOLOGY				
1.	Explain to students the fundament	•			
2.	Demonstrate solution to problem e				
3.	Do class exercises where students encouraged to discuss with their p		ubtopics in each chapter. Students are		
4.	Conduct tutorial classes during wh further explained. Extra exercises		I theory and difficult formulations are		

FACULTY OF MECHANICAL ENGINEERING			Page: 4 of 6				
APPLIED THERMODYNAMICS (SKMM 2423)			Revision Date of issue Last Amendment Edition	: F : 1 March 2015 : 1 March 2015 : 3			
	WEEKLY SCHEDULE						
Week	Week Lectures Topics/Contents						
		CHAPTER 8: STEAM	CYCLES* (Pg 234)				
1	1 - 3	8-1 The Rankine Cycl Chart;	le; 8-2 Rankine Cycle wit	th Superheat; 8-3 The Ehtnalpy-Entropy			
2	4 - 6	TAN NAM					
2	4 - 0	8-4 The Reheat Cycle; 8-5 The Regenerative Cycle.					
3-4	7 - 12	CHAPTER 9: GAS TURBINE CYCLES* (Pg 260) 9-1 The Practical Gas Turbine Cycle; 9-2 Modifications to the Basic Cycle: Intercooling; Reheat;					
5	13 - 15	9-2 Modifications to the Basic Cycle: Heat Exchanger; Effect of Pressure Loss.					
6-7	6-7 CHAPTER 12: POSITIVE DISPLACEMENT MACHINES* (Pg 381) 12-1 Reciprocating Compressors; 12-2 Reciprocating Compressors Including Clearance;						
8		MID SEMESTER BREAK					
9	22 - 24	12-3 Multi-stage Compression, 12-4 Steady-flow Analysis.					
			SWIULOS				

<u>Reference Book</u>: Y.A. Cengel & M.A. Boles, "Thermodynamics: An Engineering Approach", 6th Edition, McGraw-Hill Inc., New York, 2007.

* <u>Reference Book</u>: Eastop & McConkey, "Applied Thermodynamics for Engineering Technologists", 5th Edition, Prentice Hall (Pearson Education), Essex, England, 1993.

Steam Table: Use the steam table provided in "Thermodynamics: An Engineering Approach", 6th Edition, McGraw-Hill Inc., New York, 2007.

FACULTY OF MECHANICAL ENGINEERING APPLIED THERMODYNAMICS (SKMM 2423)		Revision : F			
WEEKLY SCHEDULE					
Week Lectures Topics/Contents					
10	25 - 27	CHAPTER 13: RECIPROCATING INTERNAL-COMBUSTION ENGINES* Pg 419) 13-1 Four-stroke Cycle; 13-2 Two-stroke Cycle; 13-4 Criteria of Performance: Indicated Power; Brake Power; Friction Power and Mechanical Efficiency;			
11	28 - 30	13-4 C <mark>riteria of Performance:BM</mark> EP, Thermal Efficiency and Fuel Consumption; Volumetric Efficiency.			
12	31-33	CHAPTER 14: REFRIGERATION AND HEAT PUMPS* (Pg 485) 4-1 Reversed Heat Engine Cycles; 14-2 Vapour-Compression Cycles; 4-3 Refrigerating Load; 14-4 The Pressure-Enthalpy Diagram;			
13	34 - 36	14-5 Compressor Types; 14-6 The Use of the Flash Chamber; 14-7 Vapour-Absorption Cycles.			
14	37 - 39	CHAPTER 15: PSYCHROMETRY AND AIR-CONDITIONING# 15-1 Psychrometric mixtures; 15-2 Specific humidity, relative humidity and percentage saturation; 15-3 Specific enthalpy, specific heat capacity and specific volume of moist air;			
15	40 - 42	15-4 Air-conditioning systems.			

FACULTY OF MECHANICAL ENGINEERING		Page: 6 of 6
APPLIED THERMODYNAMICS (SKMM 2423)	Revision Date of issue Last Amendment Edition	: F : 1 March 2015 : 1 March 2015 : 3

TEXTBOOK

T.D. Eastop and A. McConkey, Applied Thermodynamics for Engineering Technologist, 5th Ed., Pearson Education Limited, England, 1993.

REFERENCES

- 1. Y.A. Cengel & M.A. Boles, Thermodynamics: An Engineering Approach, 7th Ed., McGraw-Hill Inc., New York, 2007.
- 2. M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 5th Ed., John Wiley & Sons Inc., New York, 2008.
- 3. S.C. Gupta, Thermodynamics, Dorling Kindersley (India); 2005.

R.E. Sonntag, C. Borgnakke, and G.J. Van Wylen, Fundamentals of Thermodynamics, 6th Ed., John Wiley &
Sons Inc., New York, 2003.

	e l	GRA	<u>DING</u>	•	
No.	Assessment	Number	% each	% total	Dates
1.	Test 1	1	15	15	25/03/2015 9pm DK5/DK6 P19
2.	Test 2	1	15 MAP	15	29/04/2015 9pm DK5/DK6 P19
3.	Test 3		15	15	3/06/2015 9pm DK5/DK6 P19
4.	Homework	5	2	10	
5.	Project	1	5	5	Week #13
6.	Final Exam	1	40	40	
	Overal	ll Total		10	00

ATTENDANCE

The student should adhere to the rules of attendance as stated in the University Academic Regulation :-

1. Students must attend not less than 80% of lectures.

	FACULTY OF MECHANICAL ENGINEERING		Page: 7 of 6	
	APPLIED THERMODYNAMICS (SKMM 2423)	Revision Date of issue Last Amendment Edition	: F : 1 March 2015 : 1 March 2015 : 3	
2.	The students are prohibited from sitting in the tests and final examination upon their failure to comply with the above requirement.			

