SME 3023 APPLIED NUMERICAL METHOD	DS
FACULTY OF MECHANICAL ENGINEERING, UNIVERSITI TEK	NOLOGI MALAYSIA
Project 2 (Due 6 th June 2013)	Session II 2012-2013

Consider a steady state heat transfer in an L-shaped solid body whose cross-section is given in the figure below. The thermal conductivity of the body is = 15 W/m.K. The left surface of the body is 5 cm and insulated, and the bottom surface is 10 cm and maintained at a uniform temperature of 100 °C. The top surface is 5 cm on both sides of the step and the entire top surface is subjected to convection to ambient air at $T_{\infty} = 25$ °C with a convection coefficient of $h_{conv} = 80 W/m^2$. K. The right surface is 2 cm and is also insulated. Use finite difference formulation to determine the temperature distribution in the body. Use $\Delta x = \Delta y = 1cm$ as the mesh interval. Solve the problem using Matlab/Octave. Show the temperature distribution as isotherms on a Matlab plot. Also calculate and show the heat flux at each node on a Matlab plot. Hand in your report on a CD containing all the relevant files and plots.

The steady state heat transfer equation can be treated as

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

Uniform T, 100°C