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Conduction Heat Transfer

� Conduction refers to the transport of energy in a 
medium (solid, liquid or gas) due to a temperature 
gradient.

� The physical mechanism is random atomic or molecular 
activity

� Governed by Fourier’s law

� In this chapter we will learn
� The definition of important transport properties and what governs 

thermal conductivity in solids, liquids and gases
� The general formulation of Fourier’s law, applicable to any 

geometry and multiple dimensions
� How to obtain temperature distributions by using the heat 

diffusion equation.
� How to apply boundary and initial conditions



Thermal Properties of Matter

� Recall from Chapter 1, equation for heat conduction:
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� The proportionality constant is a transport property, known as 
thermal conductivity k (units W/m.K)thermal conductivity k (units W/m.K)

• Usually assumed to be isotropic (independent of the direction of 
transfer): kx=ky=kz=k

Is thermal conductivity different between gases, liquids and solids?

Thermal Conductivity (k) provides an indication of the rate at which rate at which 
energy is transferred by the diffusion processenergy is transferred by the diffusion process



Thermal Conductivity: Solids
� Solid (metals) comprised of free electrons and atoms bound 

in lattice
� Thermal energy transported through

� Migration of free electrons, ke

� Lattice vibrational waves, k
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? What is the relative magnitude in pure metals, alloys and non-
metallic solids?



Thermal Conductivity: Fluids

� Intermolecular spacing is much larger
� Molecular motion is random
� Thermal energy transport less effective than in solids; 

thermal conductivity is lower
�Kinetic theory of gases:

λ∝ cnk λ∝ cnk
where n the number of particles per unit volume,        the mean 
molecular speed and llll the mean free path (average distance 
travelled before a collision)

? What are the effects of temperature, molecular weight and 
pressure?
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Thermal Conductivity: Fluids

� Physical mechanisms controlling thermal 

conductivity not well understood in the liquid state

� Generally k decreases with increasing temperature 

(exceptions glycerine and water)

� k decreases with increasing molecular weight.

� Values tabulated as function of temperature. 



Thermal Conductivity: Insulators

� Can disperse solid material throughout an air space – fiber, powder 
and flake type insulations

� Cellular insulation – Foamed systems

�

? How can we design a solid material with low thermal conductivity?

� Cellular insulation – Foamed systems

�Several modes of heat transfer involved (conduction, 
convection, radiation)

�Effective thermal conductivity: depends on the thermal 
conductivity and radiative properties of solid material, 
volumetric fraction of the air space, 
structure/morphology (open vs. closed pores, pore 
volume, pore size etc.) Bulk density (solid mass/total 
volume) depends strongly on the manner in which the 
solid material is interconnected. 





Thermal Diffusivity
Thermophysical properties of matter:
� Transport properties: k (thermal conductivity/heat 

transfer), νννν (kinematic viscosity/momentum transfer), 
D (diffusion coefficient/mass transfer)

� Thermodynamic properties, relating to equilibrium 
state of a system, such as density,ρρρρ and specific heat cp.
� the volumetric heat capacity ρρρρ cp (J/m3.K) measures the ability of a 

material to store thermal energy.material to store thermal energy.

� Thermal diffusivity αααα is the ratio of the thermal 
conductivity to the heat capacity:
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The Conduction Rate Equation

Recall from Chapter 1:
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We assumed that T varies only in the x-
direction, T=T(x)

Direction of heat flux is normal to 
cross sectional area A, where A is 
isothermal surface (plane normal to x-
direction)
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The Conduction Rate Equation

In reality we must account for heat transfer in three dimensions

� Temperature is a scalar field T(x,y,z)

� Heat flux is a vector quantity. In Cartesian coordinates:
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Where three dimensional del operator in cartesian coordinates:
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Summary: Fourier’s Law

� It is phenomenological, ie. based on experimental evidence

� Is a vector expression indicating that the heat flux is normal 

to an isotherm, in the direction of decreasing temperature

� Applies to all states of matter

� Defines the thermal conductivity, ie.
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The Heat Diffusion Equation

� Objective to determine the temperature field, ie. 
temperature distribution within the medium.

� Based on knowledge of temperature distribution we can 
compute the conduction heat flux. 

�Reminder from fluid mechanics: Differential control �Reminder from fluid mechanics: Differential control 
volume.

We will apply the energy 
conservation equation to the 
differential control volume

CV

Element of volume:
dx dy dz

T(x,y,z)



reminder…

DO NOT confuse or interchange the term & units of :
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J/s  or  W



Chapter 2 : Introduction to Conduction

• The driving force for any form of heat transfer is the temperature difference.

• The larger the temperature difference, the larger the rate of heat transfer.

• Three prime coordinate systems:

– Cartesian/rectangular T(x, y, z)

– cylindrical T(r, φφφφ, z)

– spherical T(r, φφφφ, θθθθ).

15

– spherical T(r, φφφφ, θθθθ).



Differential volumes



Chapter 2 : Introduction to Conduction

• Heat transfer problems are also classified as being:

– one-dimensional

– two dimensional

– three-dimensional

• In the most general case, heat transfer through a medium is three-
dimensional. However, some problems can be classified as two- or one-
dimensional depending on the relative magnitudes of heat transfer rates 
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dimensional depending on the relative magnitudes of heat transfer rates 
in different directions and the level of accuracy desired.

• One-dimensional if the temperature in the medium varies in one
direction only and thus heat is transferred in one direction, and the
variation of temperature and thus heat transfer in other directions are
negligible or zero.

• Two-dimensional if the temperature in a medium, in some cases,
varies mainly in two primary directions, and the variation of
temperature in the third direction (and thus heat transfer in that
direction) is negligible.
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Chapter 2 : Introduction to Conduction

2.1 The conduction rate equation : Fourier’s Law

• The rate of heat conduction through a medium in a specified direction
(say, in the x-direction) is expressed by Fourier’s law of heat
conduction for one-dimensional heat conduction as:
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Heat is conducted in the direction of 
decreasing temperature, and thus the 
temperature gradient is negative when 
heat is conducted in the positive x-
direction.



Chapter 2 : Introduction to Conduction

2.1 The conduction rate equation : Fourier’s Law

� A rate equation that allows determination of the conduction heat flux 
from knowledge of the temperature distribution in a medium

*for constant value of k
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from knowledge of the temperature distribution in a medium

� Its most general (vector) form for multidimensional conduction is

where, T(x, y, z) is the scalar temperature and ∇ is the 3-D del operator

Implications: 

-Heat transfer is in the direction of decreasing temperature (basis for minus sign)

- Fourier’s Law serves to define the thermal conductivity of the medium

(2.3)



Chapter 2 : Introduction to Conduction

� Heat flux vector may be resolved into orthogonal components
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� Direction of heat transfer is perpendicular to lines of constant 
temperature (isotherms)



Chapter 2 : Introduction to Conduction

� The equation also can be expressed in other coordinates system

(1)
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(2)



Chapter 2 : Introduction to Conduction

� In angular coordinates (φ or φ,θ), the temperature gradient is still based 
on temperature change over a length scale and hence has units of K/m and 
not K/deg .

� For example, the heat rate for one dimensional, radial conduction in a 
cylinder or sphere is:
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Chapter 2 : Introduction to Conduction
2.2 Thermal properties

� Thermal conductivity – a measure of a material’s ability to transfer heat 
by conduction
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Chapter 2 : Introduction to Conduction
2.2 Thermal properties

� Thermal diffusivity – a measure of a 
material’s ability to respond to changes in its 
thermal environment

� Physically it represents how fast heat diffuses 
through a material
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� Further information – refer to property tables :



Chapter 2 : Introduction to Conduction

2.3 The heat equation

� A differential equation whose solution provides the temperature 
distribution in a stationary medium.

� Based on applying conservation energy to a differential control volume 
through which energy transfer is exclusively by conduction.

� For example, the heat equation for Cartesian coordinates is
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- Using energy balance equation



Energy Balance

In heat transfer problems, it is convenient to 
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In heat transfer problems, it is convenient to 
write a heat balance and to treat the 
conversion of nuclear, chemical, 
mechanical, and electrical energies into 
thermal energy as heat generation.



Surface Energy Balance

This relation is valid for both steady and 
transient conditions, and the surface

A surface contains no volume or mass, and 
thus no energy. Therefore, a surface
can be viewed as a fictitious system whose 
energy content remains constant during a 
process.
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transient conditions, and the surface
energy balance does not involve heat 
generation since a surface does not have a 
volume.



Chapter 2 : Introduction to Conduction

The heat equation (Cartesian Coordinates)

� Applying conservation of energy to a infinitely small differential control 
volume at an instant in time through which energy transfer is by conduction 
only

� For homogeneous medium: qin
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� For homogeneous medium: qin

qout

Neglectin
g high 
order 
terms



Chapter 2 : Introduction to Conduction

The heat equation (Cartesian Coordinates)

� Applying conservation of energy to a infinitely small differential control 
volume at an instant in time through which energy transfer is by conduction 
only • The energy source term

• The energy storage term
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• An energy balance gives

• Substituting gives

-which is the general form of the Heat diffusion equation in Cartesian Coordinates

(2.17)



Chapter 2 : Introduction to Conduction

� For cylindrical coordinates
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(2.24)



Chapter 2 : Introduction to Conduction

� For spherical coordinates
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(2.27)



Boundary and Initial Conditions

� Heat equation is a differential equation:
� Second order in spatial coordinates: Need 2 boundary conditions

� First order in time: Need 1 initial condition

Boundary Conditions

1)1) FIRST KIND (DIRICHLET CONDITION):FIRST KIND (DIRICHLET CONDITION):1)1) FIRST KIND (DIRICHLET CONDITION):FIRST KIND (DIRICHLET CONDITION):
Prescribed temperaturePrescribed temperature

Example: a surface is in contact with a melting solid or a boiling liquid

x

T(x,t)

Ts



2) SECOND KIND (NEUMANN CONDITION): 2) SECOND KIND (NEUMANN CONDITION): 
Constant heat flux at the surfaceConstant heat flux at the surface

Example: What happens when an electric heater is attached to a 
surface? What if the surface is perfectly insulated?

q

Boundary and Initial Conditions

x
T(x,t)

x

T(x,t)

qx”



Boundary and Initial Conditions

3) THIRD KIND (MIXED BOUNDARY CONDITION) : 3) THIRD KIND (MIXED BOUNDARY CONDITION) : 
When When convectiveconvective heat  transfer occurs at the surfaceheat  transfer occurs at the surface

T(0,t)

T(x,t)

T(0,t)

x

hT ,∞



Boundary and Initial Conditions
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Chapter 2 : Introduction to Conduction
Example: (Prob 2.23)

The steady-state temperature distribution in a one-dimensional wall of 
thermal conductivity 50 W/mK and thickness 50 mm is observed to be T(°C) = 
a + bx2, where a = 200°C , b = -2000°C/m2, and x is in meters. 

i) What is the generation rate, q in the wall ?

ii) Calculate the heat fluxes at the two wall faces. In what manner are these 
heat fluxes related to the heat generation rate ?                                          

.
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heat fluxes related to the heat generation rate ?                                          



Chapter 2 : Introduction to Conduction
Example: (Prob 2.24)

The temperature distribution across a wall 0.3 m thick at a certain instant of 
time is T(x) = a + bx + cx2, where T is in degree Celcius and x is in meters, a = 
200°C, b = -200°C/m and c = 30°C/m2. The wall has a thermal conductivity of 1 
W/mK.

i) On a unit surface area basis, determine the rate of heat transfer (heat 
flux)  into and out of the wall and the rate of change of energy stored by 
the wall. 
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the wall. 

ii) If the cold surface is exposed to a fluid at 100°C, what is the convection 
coefficient 



Chapter 2 : Introduction to Conduction
Example: (Prob 2.26)

One dimensional, steady state conduction with uniform internal energy 
generation occurs in a plane wall with a thickness of 50 mm and a constant 
thermal conductivity of 5 W/mK. For these conditions, the temperature 
distributions has the form , T(x) = a + bx + cx2. The surface at x=0 has a 
temperature of 120°C and experiences convection with a fluid for which 
T∞=20°C and h=500W/m2K. The surface at x=L is well insulated.

i) Applying an overall energy balance to the wall, calculate the internal 
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i) Applying an overall energy balance to the wall, calculate the internal 
energy generation rate.

ii) Determine the coefficients a, b and c by applying the boundary 
conditions to the prescribed temperature distribution.



Chapter 2 : Introduction to Conduction
Example: (Prob 2.40)

Two-dimensional steady state conduction occurs in a hollow cylindrical solid of thermal 

conductivity, k = 16 W/mK, outer radius, ro=1m, and overall length, 2zo=5m, where the 

origin of the coordinate system is located at the midpoint of the centerline. The inner 

surface of the cylinder is insulated, and the temperature distribution within the cylinder 

has the form T(r,z) = a + br2 + clnr + dz2 where a=20°C, b=150°C/m2, c=-12°C, d=-300°C/m2 

and r and z are in meters.
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a) Determine the inner radius, ri of the cylinder

b) Obtain an expression for the volumetric rate of heat generation

c) Determine the axial distribution of the heat flux at the outer surface , q”r(ro,z). What 

is the heat rate at the outer surface? Is it into or out of the cylinder?

d) Determine the radial distribution of the heat flux at the both end faces of the 

cylinder, q”z(r,+zo) and q”z(r,-zo). What are the corresponding heat rates ? Are they 

into or out of the cylinder ?

e) Verify that your results are consistent with an overall energy balance on the cylinder


