


* Conduction refers to the transport of energy in a
medium (solid, liquid or gas) due to a temperature
gradient.

* The physical mechanism is random atomic or molecular
activity
* Governed by Fourier’s law

* In this chapter we will learn

> The definition of important transport properties and what governs
thermal conductivity in solids, liquids and gases

> The general formulation of Fourier’s law, applicable to any
geometry and multiple dimensions

> How to obtain temperature distributions by using the heat
diffusion equation.

> How to apply boundary and initial conditions



* Recall from Chapter 1, equation for heat conduction:

Tl_T :kﬁ

=k
Ox - ]

» The proportionality constant is a transport property, known as
thermal conductivity k (units W/m.K)

 Usually assumed to be isotropic (independent of the direction of
transfer): k,=k,=k,=k

Is thermal conductivity different between gases, liquids and solids?

Thermal Conductivity (k) provides an indication of the rate at which
energy is transferred by the diffusion process



* Solid (metals) comprised of free electrons and atoms bound
in lattice

* Thermal energy transported through
e Migration of free electrons, k,
o Lattice vibrational waves, k,

k = ke + kl where K -

~ dlectrical resistivity, (p,)

? What is the relative magnitude in pure metals, alloys and non-
metallic solids?



* Intermolecular spacing is much larger
* Molecular motion is random

* Thermal energy transport less effective than in solids;
thermal conductivity is lower

» Kinetic theory of gases:

K

NCA

where n the number of particles per unit volume, C the mean
molecular speed and I the mean free path (average distance

travelled before a collision)

? What are the effects of temperature, molecular weight and

pressure?



* Physical mechanisms controlling thermal

conductivity not well understood in the liquid state

* Generally k decreases with increasing temperature
(exceptions glycerine and water)

* k decreases with increasing molecular weight.

* Values tabulated as function of temperature.



? How can we design a solid material with low thermal conductivity?

® Can disperse solid material throughout an air space - fiber, powder
and flake type insulations

® Cellular insulation - Foamed systems

»~ Several modes of heat transfer involved (conduction,
convection, radiation)

» Effective thermal conductivity: depends on the thermal
conductivity and radiative properties of solid material,
volumetric fraction of the air space,
structure/morphology (open vs. closed pores, pore
volume, pore size etc.) Bulk density (solid mass/total
volume) depends strongly on the manner in which the
solid material is interconnected.



- In general, high k values are good -

P conductors while low k values are better
insulators.

k — high for metals
k —low of plastics, glass, wood

Table — com 1led from Appendix A
Material | Temp Material | Temp k

(K) {W:’m-li) (XK) | W/m-K)
Brick 300 0.72 | Air 300 0.026
Cork 300 0.039 | Copper 300 401
Glass 300 1.4 | Aluminum 300 237
More accurate relationship 1is:

K =K (1+aT)

where ‘K,’ and ‘a’ are constants. ‘a’ can

be negative or positive depending on the
material.




Thermophysical properties of matter:

* Transport properties: k (thermal conductivity/heat
transfer), v (kinematic viscosity/momentum transfer),
D (diffusion coefficient/mass transfer)

* Thermodynamic properties, relating to equilibrium
state of a system, such as density,p and specific heat c,,.

e the volumetric heat capacity pc, (J/m3.K) measures the ability of a
material to store thermal energy.

* Thermal diffusivity a is the ratio of the thermal
conductivity to the heat capacity:




Recall from Chapter 1:

e Heatrate in the

x-direction X
* Heatfluxin the q :ﬂ
x-direction X A
T,(high) q, A
T4 (low)

o

We assumed that T varies only in the x-
direction, T=T(x)

Direction of heat flux is normal to
cross sectional area A, where A is
isothermal surface (plane normal to x-
direction)



In reality we must account for heat transfer in three dimensions
* Temperature is a scalar field T(x,y,z)
* Heat flux is a vector quantity. In Cartesian coordinates:

g, =19, +]q, +kq,

—X

for isotropic medium (], = —ka—T , qy = —ka—T ,q, = —ka_T

oy 0z

|:|q = -k 1a_T+Ja_T+Ka_T = leiE
= oxX =0y 07 =
Where three dimensional del operator in cartesian coordinates:
Bl= i + J i + k i

= dx 0y 07



* It is phenomenological, ie. based on experimental evidence

* Isavector expression indicating that the heat flux is normal
to an isotherm, in the direction of decreasing temperature

* Applies to all states of matter

* Defines the thermal conductivity, ie.

___ 9
(0T /0x)




* Objective to determine the temperature field, ie.
temperature distribution within the medium.

* Based on knowledge of temperature distribution we can
compute the conduction heat flux.

» Reminder from fluid mechanics: Differential control

volume.
Element of volume: : e

We will apply the energy
dx dy dz

conservation equation to the
differential control volume




eminder...

DO NOT confuse or interchange the term & units of :

Quantity Meaning

Thermal Energyv™ Energy associated with microscopic
behavior of marter

Temperature A means of indirectly assessing the
amount of thermal energy stored in matter

Heat Transfer Thermal energy transport due to
temperature gradients

Heart Amount of thermal energy transferred
over a time interval /2 t>0

Heat Rate Thermal energy transfer per unit time

Heat Flux Thermal energy transfer per unit time and
surface area

_|_
U — Thermal energy of system

1 — Thermal energy per unit mass of system

Symbol

U oru

T

Tnits

Jor kg

K or =C

Js or W

W/m’
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* The driving force for any form of heat transfer is the temperature difference.
 The larger the temperature difference, the larger the rate of heat transfer.
* Three prime coordinate systems:

— Cartesian/rectangular T(x, y, 2)

— cylindrical T(r, @ z)

— spherical T(r, ¢ 6.

Z 7 A

(a) Rectangular coordinates (i) Cylindrical coordinates {c) Spherical coordinates

L5



ifferential volumes

« Fo

dz

q-

q.\' +dy

=



Heat transfer problems are also classified as being:
— one-dimensional
— two dimensional
— three-dimensional

In the most general case, heat transfer through a medium is three-
dimensional. However, some problems can be classified as two- or one-
dimensional depending on the relative magnitudes of heat transfer rates
in different directions and the level of accuracy desired.

One-dimensional if the temperature in the medium varies in one
direction only and thus heat is transferred in one direction, and the
variation of temperature and thus heat transfer in other directions are
negligible or zero.

Two-dimensional if the temperature in a medium, in some cases,
varies mainly in two primary directions, and the variation of
temperature in the third direction (and thus heat transfer in that
direction) is negligible.
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80°Ce

80°C !

T(x, )

80°C T

FIGURE 2-5

Two-dimensional heat transfer
in a long rectangular bar.

direction of
heat transfer

FIGURE 2-6

Heat transfer through the window
of a house can be taken to be
one-dimensional.

18



2.1 The conduction rate equation : Fourier’s Law

The rate of heat conduction through a medium in a specified direction
(say, in the x-direction) is expressed by Fourier’s law of heat
conduction for one-dimensional heat conduction as:

TA
: dT dT
—_ L slope — <0
Q cond "~ kA d (W) dx
X
T(x)

Heat is conducted in the direction of _
decreasing temperature, and thus the %
temperature gradient is negative when Heat flow

. o o . R S S A e I
heat is conducted in the positive x-
direction. >

The temperature gradient d7/dx is
simply the slope of the temperature
curve on a T-x diagram.
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2.1 The conduction rate equation : Fourier’s Law

*for constant value of k d T

"OC——
q (dl

= A rate equation that allows determination of the conduction heat flux
from knowledge of the temperature distribution in a medium

= [ts most general (vector) form for multidimensional conduction is
> >

g " =-kVT —> (23)

where, T(x, y, z) is the scalar temperature and [1 is the 3-D del operator

Implications:
-Heat transfer is in the direction of decreasing temperature (basis for minus sign)

- Fourier’s Law serves to define the thermal conductivity of the medi ( Fe_ ;r; v TJ
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» Heat flux vector may be resolved into orthogonal components

 Cartesian Coordinates: T(x_, y,z)

—> AT— AT > AT >
qﬁ"=—kVT=—k(i—T f—kﬁ—Tj—kﬁ—Tk
L% 6!1: N ij: \ OZJ

Dx qy q- n

where: T(x,y,z) 1s the scalar temperature

» Direction of heat transfer is perpendicular to lines of constant
temperature (isotherms)
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» The equation also can be expressed in other coordinates system

* Cylindrical Coordinates: 1 (?‘,gﬁ,z)

— — — —
(1) 1(r.¢.2) Q” = _k@ i _kﬂ _]—kg k
or roQ 0z

\ J LY J i, J
¢ " " 1"
y. 9}" Qggj qZ

* Spherical Coordinates: 1’ (?‘,{35,19)
—r T — —> —r
g":_kgf_kﬂj_k -5T I

61”} ) ro6 ) krsm@@gﬁ}

qr a5 a0

kS
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) (] U 1] (U
» In angular coordinates (@or ¢ 8), the temperature gradient is still based
on temperature change over a length scale and hence has units of K/m and

not K/deg .

» For example, the heat rate for one dimensional, radial conduction in a
cylinder or sphere is:

— Cylinder
qy = 4.9, =27rLg,
o,

Q;" - A;' (}': =27r ﬁj‘;
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2.2 Thermal properties

* Thermal conductivity — a measure of a material’s ability to transfer heat

by conduction
Plastics lce | Oxides
NONMETALLIC SOLIDS
Foams Fibers
INSLILATION SYSTEMS
Qils  Water Mercury
Carbon LIQuIbs |
dioxide Hydrogen '
GASES
0.01 0.1 1 10 100 1000

Thermal conductivity (W/me=K)
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2.2 Thermal properties

* Thermal diffusivity - a measure of a
material’s ability to respond to changes in its
thermal environment

» Physically it represents how fast heat diffuses
through a material

_ Heat conduction _ k

m?/s
Heat storage Pe, (m7s)

» Further information - refer to property tables :

Solids: TablesA.1 -A.3
Gases: Table A4
Liquids: Tables A5 —A.7

The thermal diffusivities of some
materials at room temperature

Material «, m2/s*

Silver 149 x 106
Gold 127 x 10-%
Copper 113 x 10-®
Aluminum 97.5 x 10-*°
Iron 22.8 x 107°
Mercury (1) 4.7 x 10~®
Marble 1.2 x 10°°
Ice 1.2 x 10°°
Concrete 0.75 x 107®
Brick 0.52 x 10-®
Heavy soil (dry) 0.52 x 10-°
Glass 0.34 x 10-®
Glass wool 0.23 x 10-©
Water (1) 0.14 x 106
Beef 0.14 x 10-©
Wood (oak) 0.13 x 12'5




2.3 The heat equation

» A differential equation whose solution provides the temperature
distribution in a stationary medium.

» Based on applying conservation energy to a differential control volume
through which energy transfer is exclusively by conduction.

» For example, the heat equation for Cartesian coordinates is

MNx, w2 1 ey e

l-Ill_r ay
4=t " S s
d r’-ﬂ A P
LESF LA / g
s ' i F 4 I
= (e ———— 1 I
. i I |
8 I i . e
L1 g !
fa'.-—i-- : . —_——
1 E).r Dy 4 dx
|

- Using energy balance equation

) ) )i
ox\ ox vl oy _
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nergy Balance

Q]]l DLH —|_ E

g . '-._.,',_-
Ne-l heat Heat
transfer generation

FIGURE 1-15

In steady operation, the rate of energy
transfer to a system is equal to the rate
of energy transfer from the system.

AE thuma] ﬁ:,sh m (J)

-

"

Chﬂnge in thermal
energy of the system

In heat transfer problems, it is convenient to
write a heat balance and to treat the
conversion of nuclear, chemical,
mechanical, and electrical energies into
thermal energy as heat generation.
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ergy Bala

A surface contains no volume or mass, and
thus no energy. Therefore, a surface

can be viewed as a fictitious system whose
energy content remains constant during a

process.

Surface energy balance: E, = E

This relation is valid for both steady and
transient conditions, and the surface
energy balance does not involve heat
generation since a surface does not have a
volume.

Q1:Q2+Q;1

When the directions of interactions are not known, all energy interactions
can be assumed to be towards the surface, and the surface energy balance can
be expressed as X E;; = 0. Nole that the interactions in opposite direction will

end up having negative values, and balance this equation.

11
L1
i '
Wall || Control
it surface
it
i
| | radiation
L
| &
conduction : E/ Q3
ﬁ: I
NG
| S
|
:: convection
it
il
FIGURE 1-19

Energy interactions at the outer wall
surface of a house.
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The heat equation (Cartesian Coordinates)

» Applying conservation of energy to a infinitely small differential control

volume at an instant in time through which energy transfer is by conduction

only
bz 0

E,—E,;+E,=E,

q; + qre
= For homogeneous megdium:

q'\‘ +dy

oT
gy =—k(dy-dz) ~
oT
=—k(dx-dz
gy =—( )6},

&

oT
= —J(dbe-dv)—
q- ( ")52

B +5qx -dx+ﬁ'-\8x2_\
Dx+ax = 9x B B 6362

Neglectin
@qx g high
o~ 4+ —2 . order
Dxtax = 9x O terms
aq,,
~ = v
%—%+@}@
g g

—_

— Cin

— qout
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The heat equation (Cartesian Coordinates)

= Applying conservation of energy to a infinitely small differential control
volume at an instant in time through which energy transfer is by conduction
only q: 4 * The energy source term

Q_\‘+n[\' Eg ZQ'(dX'd_}"d’Z)

X * The energy storage term

\‘
I
I
!
I
I
I
I

~

~

: oT
Ey = p-Cp-(d-dy-db)

I

: |
1 I
| |
| I
1 :d’; . o
: ! if +ve then it 1s a source term
I 4 - . 0 - -
! ; Do 5 if —ve then it 1s a sink term
}I. e _} X .

)  An energy balance gives

/ E}n Lot +Eg - Esr

q.in_qorfr-l_qg'(dx'ay'dz’):‘gsr
* Substituting gives

o(.eT\ é(.er\ &(.er\y *  oT
Sl ) Sl N I Sl S I Sl - | —
ar[kar}l-ay(ﬂ ay]+az(k@:]+q P75

-which is the general form of the Heat diffusion equation in Cartesian Coordinatgg

(2.17)




= (CLhabte

» For cylindrical coordinates

10 er 1 é(,0T) &é(,eT) ° cT
——(RT ]+ {F: ]‘l‘ﬂ (k J+g:pc — > (2.24)
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» For spherical coordinates

1 éf oT 1 0 oT 1 4] or ) or
——(h'z—J—l' 7 [ﬁ J 5 - {ksmﬁ—}Lq £,
rosin~@0¢\ 0¢ ) r“sin@ 00 o6 o

—> (2.27)
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oundary and Initial Conditions

* Heat equation is a differential equation:
e Second order in spatial coordinates: Need 2 boundary conditions

e First order in time: Need 1 initial condition

Boundary Conditions

1) FIRST KIND (DIRICHLET CONDITION):
Prescribed temperature

Example: a surface is in contact with a melting solid or a boiling liquid

T

S

T(x,t)




oundary and Initial Conditions

2) SECOND KIND (NEUMANN CONDITION):

Constant heat flux at the surface

Example: What happens when an electric heater is attached to a
surface? What if the surface is perfectly insulated?

T(x,t)

T(x,t)



oundary and Initial Conditions

3) THIRD KIND (MIXED BOUNDARY CONDITION) :
When convective heat transfer occurs at the surface

T(x,t)




Constant Surface Temperature: Insulated Surface

cT
Tix, 1} — A =10
a |x—{]'

Tix, 1 I{G,T]ZT; e

Constant Heat Flux: Convection
Applied Flux

or
—k—&t weo=h| To —T(0,1)]
e, 1)

oF 4
=k lx=0= 45
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Example: (Prob 2.23)

The steady-state temperature distribution in a one-dimensional wall of
thermal conductivity 50 W/mK and thickness 50 mm is observed to be T(°C) =
a + bx?, where a = 200°C, b = -2000°C/m?2, and x is in meters.

i)  What is the generation rate, g in the wall ?

ii) Calculate the heat fluxes at the two wall faces. In what manner are these
heat fluxes related to the heat generation rate ?
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g
Example: (Prob 2.24)

The temperature distribution across a wall 0.3 m thick at a certain instant of
time is T(x) = a + bx + cx?, where T is in degree Celcius and x is in meters, a =
200°C, b = -200°C/m and c = 30°C/m?2. The wall has a thermal conductivity of 1
W/mK.

i)  Ona unit surface area basis, determine the rate of heat transfer (heat
flux) into and out of the wall and the rate of change of energy stored by
the wall.

ii) If the cold surface is exposed to a fluid at 100°C, what is the convection
coefficient
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Example: (Prob 2.26)

One dimensional, steady state conduction with uniform internal energy
generation occurs in a plane wall with a thickness of 50 mm and a constant
thermal conductivity of 5 W/mK. For these conditions, the temperature
distributions has the form , T(x) = a + bx + cx> The surface at x=0 has a
temperature of 120°C and experiences convection with a fluid for which
T,=20°C and h=500W/m?K. The surface at x=L is well insulated.

i)  Applying an overall energy balance to the wall, calculate the internal
energy generation rate.

ii) Determine the coefficients a, b and ¢ by applying the boundary
conditions to the prescribed temperature distribution.
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1d)LE g
Example: (Prob 2.40)

Two-dimensional steady state conduction occurs in a hollow cylindrical solid of thermal
conductivity, k =16 W/mK, outer radius, r,=1m, and overall length, 2z_=5m, where the
origin of the coordinate system is located at the midpoint of the centerline. The inner
surface of the cylinder is insulated, and the temperature distribution within the cylinder
has the form T(r,z) = a + br> + cIlnr + dz> where a=20°C, b=150°C/m?, c=-12°C, d=-300°C/m?

and r and z are in meters.
a) Determine the inner radius, r; of the cylinder
b) Obtain an expression for the volumetric rate of heat generation

c) Determine the axial distribution of the heat flux at the outer surface , q”,(r,,z). What
is the heat rate at the outer surface? Is it into or out of the cylinder?

d) Determine the radial distribution of the heat flux at the both end faces of the
cylinder, q”,(1,+z,) and q”,(1,-z,). What are the corresponding heat rates ? Are they
into or out of the cylinder ?

e) Verify that your results are consistent with an overall energy balance on the cylinder
40



